B. Zitová and J. Flusser, Image registration methods: a survey, Image and Vision Computing, vol.21, issue.11, pp.977-1000, 2003.
DOI : 10.1016/S0262-8856(03)00137-9

A. Yilmaz, O. Javed, and M. Shah, Object tracking, ACM Computing Surveys, vol.38, issue.4, pp.1-45, 2006.
DOI : 10.1145/1177352.1177355

V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helmstaedter et al., Boundary Learning by Optimization with Topological Constraints, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2488-2495, 2010.
DOI : 10.1109/CVPR.2010.5539950

S. Faisan, N. Passat, N. Noblet, R. Chabrier, and C. Meyer, Topology Preserving Warping of 3-D Binary Images According to Continuous One-to-One Mappings, IEEE Transactions on Image Processing, vol.20, issue.8, pp.2135-2145, 2011.
DOI : 10.1109/TIP.2011.2158338

B. Dawant, S. Hartmann, J. Thirion, F. Maes, D. Vandermeulen et al., Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and freeform deformations: Part I, methodology and validation on normal subjects, IEEE Transactions on Medical Imaging, vol.18, issue.10, pp.902-916, 1999.

P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot, Sufficient Conditions for Topological Invariance of 2D Images under Rigid Transformations, DGCI, Proceedings, pp.155-168, 2013.
DOI : 10.1007/978-3-642-37067-0_14

URL : https://hal.archives-ouvertes.fr/hal-00827195

P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot, Combinatorial structure of rigid transformations in 2D digital images, Computer Vision and Image Understanding, vol.117, issue.4, pp.393-408, 2013.
DOI : 10.1016/j.cviu.2012.08.014

URL : https://hal.archives-ouvertes.fr/hal-00643734

M. Jacob and E. Andres, On discrete rotations, DGCI, Proceedings, pp.161-174, 1995.

A. Amir, O. Kapah, and D. Tsur, Faster two-dimensional pattern matching with rotations, Theoretical Computer Science, vol.368, issue.3, pp.196-204, 2006.
DOI : 10.1016/j.tcs.2006.09.012

A. Amir, G. M. Landau, and U. Vishkin, Efficient pattern matching with scaling, Journal of Algorithms, vol.13, issue.1, pp.2-32, 1992.
DOI : 10.1016/0196-6774(92)90003-U

A. Amir, A. Butman, M. Lewenstein, and E. Porat, Real Two Dimensional Scaled Matching, Algorithmica, vol.14, issue.5, pp.314-336, 2009.
DOI : 10.1007/s00453-007-9021-x

C. Hundt, M. Li´skiewiczli´skiewicz, and N. Ragnar, A combinatorial geometrical approach to two-dimensional robust pattern matching with scaling and rotation, Theoretical Computer Science, vol.410, issue.51, pp.5317-5333, 2009.
DOI : 10.1016/j.tcs.2009.09.009

C. Hundt and M. Li´skiewiczli´skiewicz, On the Complexity of Affine Image Matching, STACS, Proceedings, pp.284-295, 2007.
DOI : 10.1007/978-3-540-70918-3_25

C. Hundt, Affine Image Matching Is Uniform ${\text{\rm TC}^0}$ -Complete, CPM, Proceedings, pp.13-25, 2010.
DOI : 10.1007/978-3-642-13509-5_2

C. Hundt and M. Li´skiewiczli´skiewicz, Combinatorial Bounds and Algorithmic Aspects of Image Matching under Projective Transformations, MFCS, Proceedings, pp.395-406, 2008.
DOI : 10.1007/978-3-540-85238-4_32

J. Reveillès, Géométrie discrète, calcul en nombres entiers et algorithmique, Thèse d'ï¿L'tat, 1991.

E. Andres, The Quasi-Shear rotation, DGCI, Proceedings, pp.307-314, 1996.
DOI : 10.1007/3-540-62005-2_26

M. S. Richman, Understanding discrete rotations, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.2057-2060, 1997.
DOI : 10.1109/ICASSP.1997.599351

URL : http://cam.cornell.edu/richman/ic97paper.ps.Z

B. Nouvel and E. Rémila, Incremental and Transitive Discrete Rotations, IWCIA, Proceedings, pp.199-213, 2006.
DOI : 10.1007/11774938_16

URL : https://hal.archives-ouvertes.fr/hal-00016037

Y. Thibault, Y. Kenmochi, and A. Sugimoto, Computing upper and lower bounds of rotation angles from digital images, Pattern Recognition, vol.42, issue.8, pp.1708-1717, 2009.
DOI : 10.1016/j.patcog.2008.12.027

URL : https://hal.archives-ouvertes.fr/hal-00622416

G. Bertrand, On critical kernels, Comptes Rendus de l, Académie des Sciences?Série Mathématiques I, issue.345, pp.363-367, 2007.

A. Rosenfeld, Connectivity in Digital Pictures, Journal of the ACM, vol.17, issue.1, pp.146-160, 1970.
DOI : 10.1145/321556.321570

T. Y. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Computer Vision, Graphics, and Image Processing, vol.48, issue.3, pp.357-393, 1989.
DOI : 10.1016/0734-189X(89)90147-3

L. Mazo, N. Passat, M. Couprie, and C. , Paths, Homotopy and Reduction in Digital Images, Acta Applicandae Mathematicae, vol.55, issue.1, pp.167-193, 2011.
DOI : 10.1007/s10440-010-9591-5

URL : https://hal.archives-ouvertes.fr/hal-00622495

L. Mazo, N. Passat, M. Couprie, and C. Ronse, Digital Imaging: A Unified Topological Framework, Journal of Mathematical Imaging and Vision, vol.32, issue.9, pp.19-37, 2012.
DOI : 10.1007/s10851-011-0308-9

URL : https://hal.archives-ouvertes.fr/hal-00622529

E. Khalimsky, Topological structures in computer science, Journal of Applied Mathematics and Simulation, vol.1, issue.1, pp.25-40, 1987.
DOI : 10.1155/S1048953388000036

V. A. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graphics, and Image Processing, vol.46, issue.2, pp.141-161, 1989.
DOI : 10.1016/0734-189X(89)90165-5

G. Bertrand and G. Malandain, A new characterization of three-dimensional simple points, Pattern Recognition Letters, vol.15, issue.2, pp.169-175, 1994.
DOI : 10.1016/0167-8655(94)90046-9

URL : https://hal.archives-ouvertes.fr/inria-00615050

M. Couprie and G. Bertrand, New Characterizations of Simple Points in 2D, 3D, and 4D Discrete Spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.4, pp.637-648, 2009.
DOI : 10.1109/TPAMI.2008.117

URL : https://hal.archives-ouvertes.fr/hal-00622393

C. Ronse, A topological characterization of thinning, Theoretical Computer Science, vol.43, issue.1, pp.31-41, 2007.
DOI : 10.1016/0304-3975(86)90164-7

G. Bertrand, On P-simple points, Comptes Rendus de l, Académie des Sciences?Série Mathématiques I, issue.321, pp.1077-1084, 1995.

N. Passat and L. Mazo, An introduction to simple sets, Pattern Recognition Letters, vol.30, issue.15, pp.1366-1377, 2009.
DOI : 10.1016/j.patrec.2009.07.008

M. Couprie, F. N. Bezerra, and G. Bertrand, Topological operators for grayscale image processing, Journal of Electronic Imaging, vol.10, issue.4, pp.1003-1015, 2001.
DOI : 10.1117/1.1408316

URL : https://hal.archives-ouvertes.fr/hal-00622474

L. J. Latecki, Multicolor well-composed pictures, Pattern Recognition Letters, vol.16, issue.4, pp.425-431, 1997.
DOI : 10.1016/0167-8655(94)00104-B

G. Damiand, A. Dupas, and J. Lachaud, Fully deformable 3D digital partition model with topological control, Pattern Recognition Letters, vol.32, issue.9, pp.1374-1383, 2011.
DOI : 10.1016/j.patrec.2010.09.005

URL : https://hal.archives-ouvertes.fr/hal-00591065

L. Mazo, N. Passat, M. Couprie, and C. Ronse, Topology on Digital Label Images, Journal of Mathematical Imaging and Vision, vol.31, issue.4, pp.254-281, 2012.
DOI : 10.1007/s10851-011-0325-8

URL : https://hal.archives-ouvertes.fr/hal-00727353

D. Pham, P. Bazin, and J. Prince, Digital Topology in Brain Imaging, IEEE Signal Processing Magazine, vol.27, issue.4, pp.51-59, 2010.
DOI : 10.1109/MSP.2010.936729

J. Mangin, V. Frouin, I. Bloch, J. Régis, and J. , From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations, Journal of Mathematical Imaging and Vision, vol.44, issue.6, pp.297-318, 1995.
DOI : 10.1007/BF01250286

X. Han, C. Xu, and J. L. Prince, A topology preserving level set method for geometric deformable models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.6, pp.755-768, 2003.

P. Bazin, L. M. Ellingsen, and D. L. Pham, Digital Homeomorphisms in Deformable Registration, IPMI, Proceedings, pp.211-222, 2007.
DOI : 10.1007/978-3-540-73273-0_18

R. Ayala, E. Domínguez, A. R. Francés, and A. Quintero, Homotopy in digital spaces, Homotopy in digital spaces, pp.3-24, 2003.
DOI : 10.1016/S0166-218X(02)00221-4

G. Bertrand, M. Couprie, and N. Passat, A note on 3-D simple points and simple-equivalence, Information Processing Letters, vol.109, issue.13, pp.700-704, 2009.
DOI : 10.1016/j.ipl.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00622395

B. Nouvel and E. Rémila, Configurations induced by discrete rotations: periodicity and quasi-periodicity properties, Discrete Applied Mathematics, vol.147, issue.2-3, pp.2-3, 2005.
DOI : 10.1016/j.dam.2004.09.018

Y. Thibault, Rotations in 2D and 3D discrete spaces, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00596947

L. J. Latecki, U. Eckhardt, and A. Rosenfeld, Well-Composed Sets, Computer Vision and Image Understanding, vol.61, issue.1, pp.70-83, 1995.
DOI : 10.1006/cviu.1995.1006

L. Mazo, A Framework for Label Images, CTIC, Proceedings, pp.1-10, 2012.
DOI : 10.1007/978-3-642-30238-1_1

URL : https://hal.archives-ouvertes.fr/hal-00962186

C. Berenstein and D. Lavine, On the number of digital straight line segments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.6, pp.880-887, 1988.
DOI : 10.1109/34.9109

B. Nagy, An algorithm to find the number of the digitizations of discs with a fixed radius, Electronic Notes in Discrete Mathematics, vol.20, pp.607-622, 2005.
DOI : 10.1016/j.endm.2005.04.006

H. J. Heijmans, Discretization of morphological operators, Journal of Visual Communication and Image Representation, vol.3, issue.2, pp.182-193, 1992.
DOI : 10.1016/1047-3203(92)90014-K

L. J. Latecki, C. Conrad, and A. Gross, Preserving topology by a digitization process, Journal of Mathematical Imaging and Vision, vol.8, issue.2, pp.131-159, 1998.
DOI : 10.1023/A:1008273227913