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New stru
tures based on 
ompletions ⋆Gilles BertrandUniversité Paris-Est, Laboratoire d'Informatique Gaspard-MongeEquipe A3SI, ESIEE ParisAbstra
t. We propose new axioms relative to 
ombinatorial topology.These axioms are settled in the framework of 
ompletions whi
h areindu
tive properties expressed in a de
larative way, and that may be
ombined.We introdu
e several 
ompletions for des
ribing dyads. A dyad is a pairof 
omplexes whi
h are, in a 
ertain sense, linked by a �relative topology�.We �rst give some basi
 properties of dyads, then we introdu
e a se
ondset of axioms for relative dendrites. This allows us to establish a theo-rem whi
h provides a link between dyads and dendrites, a dendrite is ana
y
li
 
omplex whi
h may be also des
ribed by 
ompletions. Thanks toa previous result, this result makes 
lear the relation between dyads, rela-tive dendrites, and 
omplexes whi
h are a
y
li
 in the sense of homology.Keywords: A
y
li
 
omplexes, Combinatorial topology, Simpli
ial Com-plexes, Collapse, Completions.1 Introdu
tionSimple homotopy plays a fundamental role in 
ombinatorial topology [1�7℄. Ithas also been shown that the 
ollapse operation is fundamental to interpretsome notions relative to homotopy in the 
ontext of 
omputer imagery [8�10℄,see also [11�13℄.In this paper, we further investigate an axiomati
 approa
h related to simplehomotopy. This approa
h has been introdu
ed in [14℄ where the notion of adendrite was presented through two simple axioms. A dendrite is an a
y
li
obje
t. A theorem asserts that an obje
t is a dendrite if and only if it is a
y
li
in the sense of homology.Here, we present new axioms for des
ribing dyads. Intuitively, a dyad is a
ouple of obje
ts (X,Y ), with X ⊆ Y , su
h that the 
y
les of X are �at the rightpla
e with respe
t to the ones of Y �. Let us 
onsider Fig. 1, where an obje
t
X , and two obje
ts Y ⊆ X , Z ⊆ X are depi
ted. We see that it is possible to
ontinuously deform Y onto X , this deformation keeping Y inside X . Thus, thepair (Y,X) is a dyad. On the other hand, Z is homotopi
 to X , but Z is not �atthe right pla
e�, therefore (Z,X) is not a dyad.
⋆ This work has been partially supported by the �ANR-2010-BLAN-0205 KIDICO�proje
t.
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X Y ZFig. 1. An obje
t X (an annulus), and two obje
ts Y ⊆ X, Z ⊆ X (two simple 
losed
urves). The pair (Y,X) is a dyad, while (Z,X) is not.The paper is organized as follows. First, we give some basi
 de�nitions forsimpli
ial 
omplexes (Se
. 2). Then, we re
all some basi
 fa
ts relative to thenotion of a 
ompletion (Se
. 3), 
ompletions will be used as a language fordes
ribing our axioms. We also re
all the de�nition of a dendrite (Se
. 4). Inthe two following se
tions we introdu
e new axioms for presenting the notionof a dyad (Se
. 5), and the notion of a relative dendrite (Se
. 6). In Se
. 7, wegive a theorem (Th. 4) whi
h makes 
lear the link between dyads and dendrites.Thanks to a previous result, this result makes 
lear the relation between dyads,relative dendrites, and 
omplexes whi
h are a
y
li
 in the sense of homology.The paper is self 
ontained. In parti
ular, almost all proofs are in
luded.2 Basi
 de�nitions for simpli
ial 
omplexesLet X be a �nite family 
omposed of �nite sets. The simpli
ial 
losure of X is the
omplex X− = {y ⊆ x | x ∈ X}. The family X is a (�nite simpli
ial) 
omplexif X = X−. We write S for the 
olle
tion of all �nite simpli
ial 
omplexes. Notethat ∅ ∈ S and {∅} ∈ S, ∅ is the void 
omplex, and {∅} is the empty 
omplex.Let X ∈ S. An element of X is a simplex of X or a fa
e of X . A fa
et of Xis a simplex of X whi
h is maximal for in
lusion.A simpli
ial sub
omplex of X ∈ S is any subset Y of X whi
h is a simpli
ial
omplex. If Y is a sub
omplex of X , we write Y � X .Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number ofits elements minus one. The dimension of X , written dim(X), is the largestdimension of its simpli
es, the dimension of ∅ is de�ned to be −1.A 
omplex A ∈ S is a 
ell if A = ∅ or if A has pre
isely one non-emptyfa
et x. We set A◦ = A \ {x} and ∅◦ = ∅. We write C for the 
olle
tion of all
ells. A 
ell α ∈ C is a vertex if dim(α) = 0.The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. We say that

X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if X ∩ Y = ∅. Thus,
X and Y are disjoint if and only if X ∩ Y = ∅ or X ∩ Y = {∅}.If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simpli
ial 
omplex
XY su
h that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and
XY = X if Y = {∅}. The join αX of a vertex α and a 
omplex X ∈ S is a 
one.Important 
onvention. In this paper, if X,Y ∈ S, we impli
itly assume that
X and Y have disjoint ground sets whenever we write XY .



New stru
tures based on 
ompletions 3Let A ∈ C and X � A. The dual of X for A is the simpli
ial 
omplex,written X∗

A
, su
h that X∗

A
= {x ∈ A | (A \ x) 6∈ X}.We have ∅∗

A
= A and {∅}∗

A
= A◦, and, for any A ∈ C, we have the following:- If X � A, then (X∗

A
)∗
A
= X .- If X � A, Y � A, then (X ∪ Y )∗

A
= X∗

A
∩ Y ∗

A
and (X ∩ Y )∗

A
= X∗

A
∪ Y ∗

A
.3 CompletionsWe give some basi
 de�nitions for 
ompletions, they will allow us to formulateour axioms as well as to 
ombine them. A 
ompletion may be seen as a rewritingrule whi
h permits to derive 
olle
tions of sets. See [14℄ for more details.Let S be a given 
olle
tion and let K be an arbitrary sub
olle
tion of S. Thus, wehave K ⊆ S. In the sequel of the paper, the symbol K, with possible supers
ripts,will be a dedi
ated symbol (a kind of variable).Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that K is �nitary,if F is �nite whenever (F,G) ∈ K.Let 〈K〉 be a property whi
h depends on K. We say that 〈K〉 is a 
ompletion (on

S) if 〈K〉 may be expressed as the following property:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉where K is an arbitrary �nitary binary relation on 2S.If 〈K〉 is a property whi
h depends on K, we say that a given 
olle
tion X ⊆ Ssatis�es 〈K〉 if the property 〈K〉 is true for K = X.Theorem 1. [14℄ Let 〈K〉 be a 
ompletion on S and let X ⊆ S. There exists,under the subset ordering, a unique minimal 
olle
tion whi
h 
ontains X andwhi
h satis�es 〈K〉.If 〈K〉 is a 
ompletion on S and if X ⊆ S, we write 〈X; K〉 for the uniqueminimal 
olle
tion whi
h 
ontains X and whi
h satis�es 〈K〉.Let 〈K〉 be a 
ompletion whi
h is expressed as the above property 〈K〉. Bya �xed point property, the 
olle
tion 〈X; K〉 may be obtained by starting from
K = X, and by iteratively adding to K, until idempoten
e, all the sets G su
hthat (F,G) ∈ K and F ⊆ K (see [14℄).Let 〈K〉 and 〈Q〉 be two 
ompletions on S. It may be seen that 〈K〉 ∧ 〈Q〉is a 
ompletion, the symbol ∧ standing for the logi
al �and�. In the sequel ofthe paper, we write 〈K,Q〉 for 〈K〉 ∧ 〈Q〉. Also, if X ⊆ S, the notation 〈X; K,Q〉stands for the smallest 
olle
tion whi
h 
ontains X and whi
h satis�es 〈K〉∧〈Q〉.Example. Let us 
onsider the 
olle
tion S = S. Thus, K denotes an arbitrary
olle
tion of simpli
ial 
omplexes. We de�ne the property 〈Υ 〉 as follows:
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T 6= {∅}. 〈Υ 〉Let K be the binary relation on 2S su
h that (F,G) ∈ K i� there exist S, T ∈ S,with F = {S, T }, G = {S ∪ T }, and S ∩ T 6= {∅}. We see that K is �nitaryand that 〈Υ 〉 may be expressed as the property 〈K〉. Thus 〈Υ 〉 is a 
ompletion.Now, let us 
onsider the 
olle
tion Π = 〈C;Υ 〉. It may be 
he
ked that Π is
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isely the 
olle
tion of all simpli
ial 
omplexes whi
h are (path) 
onne
ted(see also [17℄ where the property 〈Υ 〉 is used in a di�erent 
ontext). Having inmind the above iterative pro
edure, 〈C, Υ 〉 may be seen as a dynami
 stru
turewhere the 
ompletion 〈Υ 〉 a
ts as a generator, whi
h, from C, makes it possibleto enumerate all �nite 
onne
ted simpli
ial 
omplexes.4 DendritesThe notion of a dendrite was introdu
ed in [14℄ as a way for de�ning a remarkable
olle
tion made of a
y
li
 
omplexes.In the rest of the paper, K will denote an arbitrary sub
olle
tion of S.De�nition 1. We de�ne the two 
ompletions on S: For any S, T ∈ S,
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉We set R = 〈C;D1〉 and D = 〈C;D1,D2〉, thus we have R ⊆ D.Ea
h element of R is a rami�
ation and ea
h element of D is a dendrite.Let us re
all some basi
 de�nitions relative to simple homotopy [1℄, note thatthese notions may also be introdu
ed by the means of 
ompletions [14℄.Let X,Y ∈ S and x, y be two distin
t fa
es of X . If y is the only fa
e of Xwhi
h 
ontains x, then Y = X\{x, y} is an elementary 
ollapse ofX . We say that
X 
ollapses onto Y , if there exists a sequen
e 〈X0, ..., Xk〉 su
h that X0 = X ,
Xk = Y , and Xi is an elementary 
ollapse of Xi−1, i ∈ [1, k]. The 
omplex Xis 
ollapsible if X 
ollapses onto ∅. We say that X is (simple) homotopi
 to Yif there exists a sequen
e 〈X0, ..., Xk〉 su
h that X0 = X , Xk = Y , and either
Xi is an elementary 
ollapse of Xi−1, or Xi−1 is an elementary 
ollapse of Xi,
i ∈ [1, k]. The 
omplex X is (simply) 
ontra
tible if X is simple homotopi
 to ∅.For example, if X is a tree, then X is 
ollapsible, X is a dendrite, and alsoa rami�
ation. In fa
t, any 
ollapsible 
omplex is a rami�
ation [6℄. The Bing'shouse with two rooms [15℄ and the dun
e hat [16℄ are 
lassi
al examples of
omplexes whi
h are 
ontra
tible but not 
ollapsible. Both of them are dendrites.In fa
t, it was shown [14℄ that any simply 
ontra
tible 
omplex is a dendrite.Furthermore it was shown that:- a 
omplex is a dendrite if and only if it is a
y
li
 in the sense of homology; and- a 
omplex is a dendrite if and only if its suspension is simply 
ontra
tible.5 DyadsIn this se
tion, we introdu
e the notion of a dyad and give some propositionswhi
h are ne
essary to establish one of the main result of the paper (Th. 4). Seethe introdu
tion and Fig. 1 for an intuitive presentation of a dyad. See also Fig.2 for an illustration of the axiom 〈Ẍ1〉.
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R S T

Fig. 2. Two obje
ts R, S whi
h 
onstitute a dyad (R,S). An obje
t T whi
h is gluedto S. The 
ouple (S ∩ T, T ) is a dyad, thus, by axiom 〈Ẍ1〉, (R,S ∪ T ) is also a dyad.We set S̈ = {(X,Y ) | X,Y ∈ S, X � Y } and C̈ = {(A,B) ∈ S̈ | A,B ∈ C}.In the sequel of the paper, K̈ will denote an arbitrary sub
olle
tion of S̈. Fur-thermore, α and β will always denote verti
es.De�nition 2. We de�ne three 
ompletions on S̈: For any (R,S) ∈ S̈, T ∈ S,-> If (R,S) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S ∪ T ) ∈ K̈. 〈Ẍ1〉-> If (R,S) ∈ K̈ and (R,S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈Ẍ2〉-> If (R,S ∪ T ) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S) ∈ K̈. 〈Ẍ3〉We set Ẍ = 〈C̈; Ẍ1, Ẍ2, Ẍ3〉. Ea
h element of Ẍ is a dyad.We introdu
e the following 
ompletions on S̈ (the symbols T̈, Ü, L̈ standrespe
tively for �transitivity�, �upper 
on�uen
e�, and �lower 
on�uen
e�):For any (R,S), (S, T ), (R, T ) ∈ S̈,-> If (R,S) ∈ K̈ and (S, T ) ∈ K̈, then (R, T ) ∈ K̈. 〈T̈〉-> If (R,S) ∈ K̈ and (R, T ) ∈ K̈, then (S, T ) ∈ K̈. 〈Ü〉-> If (R, T ) ∈ K̈ and (S, T ) ∈ K̈, then (R,S) ∈ K̈. 〈L̈〉Considering 
omplexes R,S, T su
h that R � S � T , we see that we obtaindire
tly 〈T̈〉, 〈Ü〉, 〈L̈〉 from 〈Ẍ1〉, 〈Ẍ2〉, 〈Ẍ3〉, respe
tively. Thus, we have:Proposition 1. The 
olle
tion Ẍ satis�es the properties 〈T̈〉, 〈Ü〉, and 〈L̈〉.Proposition 2. For any X ∈ S, we have (∅, αX) ∈ Ẍ.Proof. If X = ∅, then (∅, αX) ∈ Ẍ (sin
e (∅, ∅) ∈ C̈). If X = {∅}, then
(∅, αX) ∈ Ẍ (sin
e αX = α and (∅, α) ∈ C̈). Suppose X 6= ∅ and X 6= {∅}.i) If X has a single fa
et, then X ∈ C. Thus (∅, αX) ∈ Ẍ (sin
e (∅, αX) ∈ C̈);ii) If X has more than one fa
et, then there exists X ′, X ′′ ∈ S su
h that X =
X ′ ∪ X ′′, and Card(X ′) < Card(X), Card(X ′′) < Card(X). Suppose that
(∅, αX ′) ∈ Ẍ, (∅, αX ′′) ∈ Ẍ, and (∅, α(X ′ ∩ X ′′)) ∈ Ẍ. Then, by 〈Ü〉, we have
(α(X ′∩X ′′), αX ′′) ∈ Ẍ. Therefore, by 〈Ẍ1〉 (setting R = ∅, S = αX ′, T = αX ′′),we have (∅, αX) ∈ Ẍ. The result follows by indu
tion on Card(X). �Proposition 3. For any X ∈ S, we have (X,X) ∈ Ẍ.Proof. By Prop. 2, we have (∅, αX) ∈ Ẍ. Sin
e Ẍ satis�es 〈Ü〉, it impliesthat (αX,αX) ∈ Ẍ (setting R = ∅, and S = T = αX). By 〈Ẍ2〉 (setting
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R = S = αX , and T = X), this gives (αX ∩X,X) = (X,X) ∈ Ẍ. �We de�ne two 
ompletions on S̈: For any S, T ∈ S,-> If (S ∩ T, T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈. 〈Ÿ1〉-> If (S, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈Ÿ2〉We give, hereafter, a theorem (Th. 2) whi
h provides another way to gen-erate the 
olle
tion Ẍ. This theorem will be used in se
tion 7 to establish alink between dendrites and dyads. Before, we make a remark on a basi
 prop-erty of 
ompletions whi
h allows one to establish the equivalen
e between two
ompletions stru
tures. This property is ne
essary for the proof of Th. 2.Remark 1. Let 〈K〉 be a 
ompletion on S and let X ⊆ S. It may be shown [14℄that we have 〈X; K〉 = ∩{Y ⊆ S | X ⊆ Y and Y satis�es 〈K〉}. Thus, if agiven 
olle
tion Y ⊆ S is su
h that X ⊆ Y and Y satis�es 〈K〉, then we havene
essarily 〈X; K〉 ⊆ Y.Theorem 2. We have Ẍ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉.Proof. We set Ẍ′ = 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉. As a 
onsequen
e of Prop. 3, we
an obtain 〈Ÿ1〉 and 〈Ÿ2〉 from 〈Ẍ1〉 and 〈Ẍ2〉, respe
tively (setting R = S).The 
olle
tion Ẍ also satis�es the properties 〈T̈〉, 〈Ü〉, 〈L̈〉 (Prop. 1). Thus, sin
e
C̈ ⊆ Ẍ, we have Ẍ′ ⊆ Ẍ (see remark 1). Now, let (R,S) ∈ S̈ and T ∈ S:- Suppose (R,S) ∈ Ẍ

′ and (S∩T, T ) ∈ Ẍ
′. Then, by 〈Ÿ1〉, we have (S, S∪T ) ∈ Ẍ

′.Therefore, by 〈T̈〉, we have (R,S ∪ T ) ∈ Ẍ′,- Suppose (R,S) ∈ Ẍ′ and (R,S ∪ T ) ∈ Ẍ′. Then, by 〈Ü〉, we have (S, S ∪ T )
∈ Ẍ′. Therefore, by 〈Ÿ2〉, we have (S ∩ T, T ) ∈ Ẍ′,- Suppose (R,S ∪ T ) ∈ Ẍ′ and (S ∩ T, T ) ∈ Ẍ′. Then, by 〈Ÿ1〉, (S, S ∪ T ) ∈ Ẍ′.Therefore, by 〈L̈〉, we have (R,S) ∈ Ẍ′.It follows that Ẍ′ satis�es the three properties 〈Ẍ1〉, 〈Ẍ2〉, 〈Ẍ3〉. Thus, sin
e
C̈ ⊆ Ẍ′, we have Ẍ ⊆ Ẍ′ (see remark 1). �6 Relative dendritesIn this se
tion, we introdu
e new axioms for de�ning the notion of a relativedendrite. We will see in the sequel (next se
tion) that these axioms provideanother way to des
ribe dyads. We set C̈+ = C̈ ∪ {({∅}, {∅})}.De�nition 3. We de�ne two 
ompletions on S̈: For any (S, T ), (S′, T ′) ∈ S̈,-> If (S, T ), (S′, T ′), (S ∩ S′, T ∩ T ′) ∈ K̈, then (S ∪ S′, T ∪ T ′) ∈ K̈. 〈Z̈1〉-> If (S, T ), (S′, T ′), (S ∪ S′, T ∪ T ′) ∈ K̈, then (S ∩ S′, T ∩ T ′) ∈ K̈. 〈Z̈2〉Ea
h element of 〈C̈+; Z̈1, Z̈2〉 is 
alled a relative dendrite.In Fig. 3, two examples of two 
ouples (S, T ), (S′, T ′) ∈ S̈ whi
h satisfy the
onditions of 〈Z̈1〉 are given. Thus, in these two examples, (S ∪ S′, T ∪ T ′) is arelative dendrite.
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S

T’(a) (b)Fig. 3. (a) and (b): Two examples of two 
ouples (S, T ), (S′, T ′) ∈ S̈ whi
h satisfy the
onditions of 〈Z̈1〉 (we 
onsider triangulations of these obje
ts). In (a), S and S′ aretwo simple open 
urves, S ∩S′ is a 
omplex made of two verti
es. In (b), S and S′ arealso two simple open 
urves, but S ∩ S′ is a 
omplex made of a segment.In Fig. 3 (a), (S ∪S′, T ∪S′) and (T ∪S′, T ∪T ′) are dyads (this fa
t may beseen using the forth
oming Prop. 9). Then, using 〈T̈〉, it is possible to generate
(S ∪ S′, T ∪ T ′) with the axioms of a dyad.Now, we observe that, in Fig. 3 (b), (S ∪ S′, T ∪ S′) is not a dyad (it 
an be
he
ked that X and Y must have the same Euler 
hara
teristi
 whenever (X,Y )is a dyad). Thus, it is not possible to generate, in a straightforward manner, therelative dendrite (S ∪ S′, T ∪ T ′) with the axioms of a dyad.Remark 2. As a dire
t 
onsequen
e of the de�nitions of 〈Z̈1〉, 〈Z̈2〉, and the oneof a dendrite, we have 〈C̈; Z̈1, Z̈2〉 ⊆ {(X,Y ) ∈ S̈ | X ∈ D, Y ∈ D}. This fa
temphasizes the role of ({∅}, {∅}) in 〈C̈+; Z̈1, Z̈2〉.Let (X,Y ) ∈ S̈. If α is a vertex su
h that αX ∩ Y = X , we say that αX ∪ Yis a 
one on (X,Y ), and we write αX ∪̈ Y for αX ∪ Y .Proposition 4. Let Z ∈ S and let α be an arbitrary vertex. There exists aunique 
ouple (X,Y ) ∈ S̈ su
h that Z = αX ∪̈ Y .Thus, by Prop. 4, if Z ∈ S and if α is an arbitrary vertex, the 
omplexes Xand Y are spe
i�ed whenever we write Z = αX ∪̈ Y . Note that we may have
α 6� Z, in this 
ase X = ∅ and Z = Y .Proposition 5. Let Z,Z ′, Z ′′ ∈ S.We set Z = αX ∪̈ Y , Z ′ = αX ′ ∪̈ Y ′, and Z ′′ = αX ′′ ∪̈ Y ′′.1) If Z = Z ′ ∪ Z ′′, then X = X ′ ∪X ′′ and Y = Y ′ ∪ Y ′′;2) If Z = Z ′ ∩ Z ′′, then X = X ′ ∩X ′′ and Y = Y ′ ∩ Y ′′.Proof. The result follows from 1), 2), and Prop. 4.1) If Z = Z ′ ∪ Z ′′, then Z = α(X ′ ∪ X ′′) ∪ (Y ′ ∪ Y ′′). Furthermore, sin
e
(X ′ ∪ X ′′) ⊆ (Y ′ ∪ Y ′′) and sin
e α is disjoint from Y ′ ∪ Y ′′, we have α(X ′ ∪
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X ′′) ∩ (Y ′ ∪ Y ′′) = X ′ ∪X ′′.2) Suppose Z = Z ′ ∩ Z ′′. Then Z = (αX ′ ∪ Y ′) ∩ (αX ′′ ∪ Y ′′) = α(X ′ ∩X ′′) ∪
(Y ′∩Y ′′)∪(αX ′∩Y ′′)∪(αX ′′∩Y ′). Sin
e (αX ′∩Y ′′)∪(αX ′′∩Y ′) ⊆ Y ′∩Y ′′, wehave Z = α(X ′∩X ′′)∪(Y ′∩Y ′′). Furthermore, sin
e (X ′∩X ′′) ⊆ (Y ′∩Y ′′) andsin
e α is disjoint from Y ′ ∩ Y ′′, we have α(X ′ ∩X ′′)∩ (Y ′ ∩ Y ′′) = X ′ ∩X ′′. �Theorem 3. Let (X,Y ) ∈ S̈. The 
ouple (X,Y ) is a relative dendrite if andonly if αX ∪̈ Y is a dendrite.Proof.1) If (X,Y ) ∈ C̈+, we see that αX ∪̈ Y is a rami�
ation. Thus, αX ∪̈ Y isa dendrite. Suppose R = αS ∪̈ T and R′ = αS′ ∪̈ T ′ are dendrites. Then, bythe very de�nition of a dendrite, R ∩ R′ is a dendrite if and only if R ∪ R′ is adendrite. Consequently, by Prop. 5, α(S∩S′) ∪̈ (T ∩T ′) is a dendrite if and onlyif α(S ∪ S′) ∪̈ (T ∪ T ′) is a dendrite. By the pre
eding remarks, we may a�rm,by indu
tion on 〈C̈+; Z̈1, Z̈2〉, that αX ∪̈ Y is a dendrite whenever (X,Y ) is arelative dendrite.2) Suppose Z = αX ∪̈ Y is a dendrite.i) Suppose Z ∈ C. If X = ∅, we have (X,Y ) ∈ C̈. If X = {∅}, we must have
Y = {∅}, otherwise Z would not be 
onne
ted, thus (X,Y ) ∈ C̈+. If X 6= ∅ and
X 6= {∅}, it may be seen that we must have X ∈ C and Y = X , thus (X,Y ) ∈ C̈.ii) Suppose we have Z = Z ′∪Z ′′, with Z ′, Z ′′, Z ′∩Z ′′ ∈ D. We set Z ′ = αX ′ ∪̈ Y ′and Z ′′ = αX ′′ ∪̈ Y ′′. If (X ′, Y ′), (X ′′, Y ′′), (X ′ ∩ X ′′, Y ′ ∩ Y ′′) are relativedendrites, then (X ′∪X ′′, Y ′ ∪Y ′′) is a relative dendrite (by 〈Z̈1〉), whi
h meansthat (X,Y ) is a relative dendrite (Prop. 5 (1)).iii) Suppose we have Z = Z ′∩Z ′′, with Z ′, Z ′′, Z ′∪Z ′′ ∈ D. We set Z ′ = αX ′ ∪̈ Y ′and Z ′′ = αX ′′ ∪̈ Y ′′. If (X ′, Y ′), (X ′′, Y ′′), (X ′ ∪ X ′′, Y ′ ∪ Y ′′) are relativedendrites, then (X ′∩X ′′, Y ′ ∩Y ′′) is a relative dendrite (by 〈Z̈2〉), whi
h meansthat (X,Y ) is a relative dendrite (Prop. 5 (2)).By i), ii), and iii), we may a�rm, by indu
tion on 〈C;D1,D2〉, that (X,Y ) is arelative dendrite whenever αX ∪̈ Y is a dendrite. �7 Dyads and dendritesThe goal of this se
tion is to derive a theorem (Th. 4) whi
h makes 
lear thelink between dyads and dendrites, this link is formulated with the notion of arelative dendrite. The proof of the theorem is made possible mainly thanks tothe previous Th. 2 and 3 and the following propositions.In the following proposition, and by the 
onvention introdu
ed in Se
tion 2,the notation αA impli
itly means that α is disjoint from the 
ell A. Thus, sin
e
X � Y � A, αX ∪ Y is a 
one on (X,Y ) and αY ∗

A
∪X∗

A
is a 
one on (Y ∗

A
, X∗

A
).Proposition 6. If A ∈ C, and X � Y � A, then (αX ∪̈ Y )∗

αA
= αY ∗

A
∪̈ X∗

A
.Proof. We have (αX ∪ Y )∗

αA
= (αX)∗

αA
∩ Y ∗

αA
. But (αX)∗

αA
= αX∗

A
(byCor. 1 of [14℄) and Y ∗

αA
= αY ∗

A
∪ A (by Cor. 2 of [14℄). Thus, (αX ∪ Y )∗

αA
=

αX∗

A
∩ (αY ∗

A
∪A) = αY ∗

A
∪X∗

A
(sin
e Y ∗

A
� X∗

A
and X∗

A
� A). �



New stru
tures based on 
ompletions 9Proposition 7. Let (X,Y ) be a relative dendrite. We have X ∈ D if and onlyif Y ∈ D.Proof. Let (X,Y ) ∈ S̈ su
h that αX ∪̈ Y is a dendrite (see Th. 3).i) Suppose Y ∈ D. Sin
e αX ∈ D (Prop. 6 of [14℄) then, byD2, we have αX∩Y =
X ∈ D.ii) Let A ∈ C su
h that Y � A, we suppose that α is disjoint from A. Suppose
X ∈ D. Thus,X∗

A
∈ D and (αX∪Y )∗

αA
∈ D (Prop. 11 of [14℄). But (αX∪Y )∗

αA
=

αY ∗

A
∪X∗

A
(Prop. 6). Sin
e αY ∗

A
∈ D, by D2, it implies that αY ∗

A
∩X∗

A
= Y ∗

A
∈ D,thus Y ∈ D (Prop. 11 of [14℄). �Lemma 1. The 
olle
tion 〈C̈+; Z̈1, Z̈2〉 satis�es 〈Ÿ1〉 and 〈Ÿ2〉.Proof.i) In 〈Z̈1〉, if we repla
e S by S ∩ T , S′ by S, and T ′ by S, we obtain:-> If (S ∩ T, T ), (S, S), (S ∩ T, S ∩ T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈.ii) In 〈Z̈2〉, if we repla
e T by S ∪ T , S′ by T , and T ′ by T , we obtain:-> If (S, S ∪ T ), (T, T ), (S ∪ T, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈.iii) If X ∈ S, then αX ∪̈ X = αX is a dendrite. Thus, by Th. 3, (X,X) isa relative dendrite. In 
onsequen
e, if K̈ is the 
olle
tion made of all relativedendrites, we obtain 〈Ÿ1〉 and 〈Ÿ2〉 from i) and ii), respe
tively. �The following is easy to 
he
k.Proposition 8. Let X,Y ∈ S.1) If X,Y ∈ D, then X ∩ Y ∈ D if and only if X ∪ Y ∈ D.2) If X,X ∩ Y ∈ D, then Y ∈ D if and only if X ∪ Y ∈ D.3) If X,X ∪ Y ∈ D, then Y ∈ D if and only if X ∩ Y ∈ D.4) If X ∩ Y,X ∪ Y ∈ D, then X ∈ D if and only if Y ∈ D.Lemma 2. The 
olle
tion 〈C̈+; Z̈1, Z̈2〉 satis�es 〈T̈〉, 〈Ü〉, and 〈L̈〉.Proof. Let (R,S) ∈ S̈ and (S, T ) ∈ S̈, and let α, β be two distin
t verti
esdisjoint from T . Note that αR∪S � αR∪T . We set U = β(αR ∪̈ S) ∪̈ (αR ∪̈ T ).i) We observe that U = (αβR) ∪ (βS ∪ T ). We have αβR ∈ D, and (αβR) ∩

(βS ∪T ) = βR ∈ D. Thus, by Prop. 8 (2), U ∈ D if and only if βS ∪T ∈ D, i.e.,if and only if (S, T ) is a relative dendrite (Th. 3).ii) Suppose (S, T ) is a relative dendrite. By i) and Th. 3, (αR ∪̈ S, αR ∪̈ T )is a relative dendrite. By Prop. 7, αR ∪̈ S is a dendrite if and only if αR ∪̈ Tis a dendrite. By Th. 3, it follows that (R,S) is a relative dendrite if and onlyif (R, T ) is a relative dendrite. This fa
t allows us to a�rm that the 
olle
tion
〈C̈+; Z̈1, Z̈2〉 satis�es 〈T̈〉 and 〈L̈〉.iii) Suppose that (R,S) and (R, T ) are relative dendrites, thus αR ∪̈ S and
αR ∪̈ T are dendrites (Th. 3). We have U = β(αR ∪̈ S) ∪̈ (αR ∪̈ T ) and
β(αR ∪̈ S)∩ (αR ∪̈ T ) = αR ∪̈ S. Thus, we see that, by D1, the 
omplex U is adendrite. By i), it follows that (S, T ) is a relative dendrite. This last fa
t allowsus to a�rm that the 
olle
tion 〈C̈+; Z̈1, Z̈2〉 satis�es 〈Ü〉. �



10 Le
ture Notes in Computer S
ien
e: DGCI 2013Lemma 3. If X ∈ D, then (∅, X) ∈ Ẍ.Proof.i) If X ∈ C, then (∅, X) ∈ C̈. Thus (∅, X) ∈ Ẍ.ii) Let S, T ∈ D su
h that S∩T ∈ D. By 〈D1〉, we have S∪T ∈ D. Suppose (∅, S),
(∅, T ), (∅, S ∩ T ) ∈ Ẍ. We have (S ∩ T, T ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Therefore
(S, S ∪ T ) ∈ Ẍ (Th. 2 and 〈Ÿ1〉). Then (∅, S ∪ T ) ∈ Ẍ (Prop. 1 and 〈T̈〉).iii) Let S, T ∈ D su
h that S ∪ T ∈ D. By 〈D2〉, we have S ∩ T ∈ D. Suppose
(∅, S), (∅, T ), (∅, S∪T ) ∈ Ẍ. We have (S, S∪T ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Therefore
(S ∩ T, T ) ∈ Ẍ (Th. 2 and 〈Ÿ2〉). Then (∅, S ∩ T ) ∈ Ẍ (Prop. 1 and 〈L̈〉).By the very de�nition of a dendrite, the result follows by indu
tion. �The following theorem is one of the main results of the paper. Intuitively,it asserts that, if (X,Y ) is a dyad, then we 
an
el out all 
y
les of Y (i.e., weobtain an a
y
li
 
omplex), whenever we 
an
el out those of X (by the way ofa 
one, see Th. 3). Furthermore, Th. 4 asserts that, if we are able to 
an
el all
y
les of Y by su
h a way, then (X,Y ) is a dyad.Theorem 4. Let (X,Y ) ∈ S̈. We have (X,Y ) ∈ Ẍ if and only if (X,Y ) is arelative dendrite.Proof.i) Suppose (X,Y ) is a relative dendrite, i.e., (X,Y ) ∈ 〈C̈+; Z̈1, Z̈2〉. By Th.3, we have αX ∪̈ Y ∈ D and, by Lemma 3, (∅, αX ∪̈ Y ) ∈ Ẍ. We also have
(∅, αX) ∈ Ẍ (Prop. 2). It means that (αX,αX ∪̈ Y ) ∈ Ẍ (Prop. 1 and 〈Ü〉). Weobtain (αX ∩ Y, Y ) = (X,Y ) ∈ Ẍ (Th. 2 and 〈Ÿ2〉). Thus, 〈C̈+; Z̈1, Z̈2〉 ⊆ Ẍ.ii) The 
olle
tion 〈C̈+; Z̈1, Z̈2〉 
ontains C̈ and satis�es 〈Ÿ1〉, 〈Ÿ2〉, 〈T̈〉, 〈Ü〉, and
〈L̈〉 (Lemmas 1 and 2). Thus 〈C̈; Ÿ1, Ÿ2, T̈, Ü, L̈〉 ⊆ 〈C̈+; Z̈1, Z̈2〉 (see remark 1).By Th. 2, the result is Ẍ ⊆ 〈C̈+; Z̈1, Z̈2〉. �Trivially, we have X ∈ D if and only if α∅ ∪̈ X ∈ D. Thus, by Th. 3, X ∈ D ifand only if (∅, X) is a relative dendrite. It follows that, as a dire
t 
onsequen
eof Th. 4, we have the following.Corollary 1. Let X ∈ S. We have X ∈ D if and only if (∅, X) ∈ Ẍ.The following fa
t will be used for the illustration of the next se
tion.Proposition 9. Let X,Y, Z ∈ S su
h that X � Y � Z.If Y 
ollapses onto X, then (X,Z) ∈ Ẍ if and only if (Y, Z) ∈ Ẍ.If Z 
ollapses onto Y , then (X,Y ) ∈ Ẍ if and only if (X,Z) ∈ Ẍ.Proof. If Y 
ollapses onto X , then it may be seen that U ′ = αY ∪̈ Z
ollapses onto V ′ = αX ∪̈ Z. Thus, U ′ is simple homotopi
 to V ′. If Z 
ollapsesonto Y , then U ′′ = αX ∪̈ Z 
ollapses onto V ′′ = αX ∪̈ Y . Again, U ′′ is simplehomotopi
 to V ′′. The result follows from Th. 3, Th. 4, and from Prop. 12 of[14℄. This last proposition ensures that a 
omplex S is a dendrite whenever it issimple homotopi
 to a dendrite. �
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(d) (e) (f)Fig. 4. (a): A triangulation D of the dun
e hat, verti
es with the same label have to beidenti�ed, (b): The 
omplex X = D \ {1, 5, 6} and the 
omplex Y � X (highlighted),(
): The 
omplex Z (highlighted) 
ollapses onto Y , (d): The 
omplex Z 
ollapses onto
T (highlighted), (e) and (f): The �rst steps of a 
ollapse sequen
e of X onto T .8 The dun
e hatWe give, in this se
tion, an illustration of the previous notions. We 
onsider the
omplex D whi
h is the triangulation of the dun
e hat [16℄ depi
ted in Fig. 4 (a).As mentioned before, the dun
e hat is 
ontra
tible but not 
ollapsible. In fa
t,it is possible to �nd a 
ollapsible 
omplex whi
h 
ollapses onto D (e.g., see Th.1of [16℄). This shows that D is a dendrite. In the following, we will see that itis possible to re
ognize D as a dendrite without 
onsidering any 
omplex largerthan D (by using only �internal moves�).We 
onsider the 
omplex X = D \ {1, 5, 6}, we denote by C the 
ell whosefa
et is {1, 5, 6}, and by Y the 
omplex Y = C ∩ X , see Fig. 4 (b). We willsee below that (Y,X) ∈ Ẍ. By 〈Ÿ1〉, this fa
t implies (C,C ∪ X) ∈ Ẍ, i.e.,
(C,D) ∈ Ẍ. Sin
e (∅, C) ∈ Ẍ, by 〈T̈〉, this implies (∅, D) ∈ Ẍ. Thus, by Cor. 1of Th. 4, we get D ∈ D. Now, we 
he
k that (Y,X) ∈ Ẍ using Prop. 9:- The 
omplex Z of Fig. 4 (
) 
ollapses onto Y , thus (Y,X) ∈ Ẍ if (Z,X) ∈ Ẍ;- Z 
ollapses onto the 
omplex T of Fig. 4 (d), thus (Z,X) ∈ Ẍ if (T,X) ∈ Ẍ;- It 
ould be 
he
ked thatX 
ollapses onto T , the �rst steps of a 
ollapse sequen
eare given 4 (e) and (f). Thus, sin
e (T, T ) ∈ Ẍ, we have (T,X) ∈ Ẍ.
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e: DGCI 20139 Con
lusionWe introdu
ed several axioms for des
ribing dyads, i.e., pair of 
omplexes whi
hare, in a 
ertain sense, linked by a �relative topology�. Our two main results aretheorems 3 and 4 whi
h make 
lear the links between dyads and dendrites, i.e.,between dyads and a
y
li
 
omplexes.We proposed an approa
h whi
h is ex
lusively based on dis
rete notions andalso, by the means of 
ompletions, on 
onstru
tions on sets.In the future, we will further investigate the possibility to develop a dis
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