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New structures based on completions *

Gilles Bertrand

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge
Equipe A3SI, ESIEE Paris

Abstract. We propose new axioms relative to combinatorial topology.
These axioms are settled in the framework of completions which are
inductive properties expressed in a declarative way, and that may be
combined.

We introduce several completions for describing dyads. A dyad is a pair
of complexes which are, in a certain sense, linked by a “relative topology”.
We first give some basic properties of dyads, then we introduce a second
set of axioms for relative dendrites. This allows us to establish a theo-
rem which provides a link between dyads and dendrites, a dendrite is an
acyclic complex which may be also described by completions. Thanks to
a previous result, this result makes clear the relation between dyads, rela-
tive dendrites, and complexes which are acyclic in the sense of homology.

Keywords: Acyclic complexes, Combinatorial topology, Simplicial Com-
plexes, Collapse, Completions.

1 Introduction

Simple homotopy plays a fundamental role in combinatorial topology [1-7]. It
has also been shown that the collapse operation is fundamental to interpret
some notions relative to homotopy in the context of computer imagery [8-10],
see also [11-13].

In this paper, we further investigate an axiomatic approach related to simple
homotopy. This approach has been introduced in [14] where the notion of a
dendrite was presented through two simple axioms. A dendrite is an acyclic
object. A theorem asserts that an object is a dendrite if and only if it is acyclic
in the sense of homology.

Here, we present new axioms for describing dyads. Intuitively, a dyad is a
couple of objects (X,Y), with X C Y, such that the cycles of X are “at the right
place with respect to the ones of Y. Let us consider Fig. 1, where an object
X, and two objects Y C X, Z C X are depicted. We see that it is possible to
continuously deform Y onto X, this deformation keeping Y inside X. Thus, the
pair (Y, X) is a dyad. On the other hand, Z is homotopic to X, but Z is not “at
the right place”, therefore (Z, X) is not a dyad.

* This work has been partially supported by the “ANR-2010-BLAN-0205 KIDICO”
project.
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Fig. 1. An object X (an annulus), and two objects Y C X, Z C X (two simple closed
curves). The pair (Y, X) is a dyad, while (Z, X) is not.

The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sec. 2). Then, we recall some basic facts relative to the
notion of a completion (Sec. 3), completions will be used as a language for
describing our axioms. We also recall the definition of a dendrite (Sec. 4). In
the two following sections we introduce new axioms for presenting the notion
of a dyad (Sec. 5), and the notion of a relative dendrite (Sec. 6). In Sec. 7, we
give a theorem (Th. 4) which makes clear the link between dyads and dendrites.
Thanks to a previous result, this result makes clear the relation between dyads,
relative dendrites, and complexes which are acyclic in the sense of homology.

The paper is self contained. In particular, almost all proofs are included.

2 Basic definitions for simplicial complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is the
complex X~ = {y C x| x € X}. The family X is a (finite simplicial) complex
if X = X~. We write S for the collection of all finite simplicial complexes. Note
that ) € S and {0} € S, () is the void complez, and {0} is the empty complex.

Let X € S. An element of X is a simplex of X or a face of X. A facet of X
is a simplex of X which is maximal for inclusion.

A simplicial subcomplex of X € S is any subset Y of X which is a simplicial
complex. If Y is a subcomplex of X, we write Y < X.

Let X € S. The dimension of x € X, written dim(z), is the number of
its elements minus one. The dimension of X, written dim(X), is the largest
dimension of its simplices, the dimension of ) is defined to be —1.

A complex A € Sis a cell if A = () or if A has precisely one non-empty
facet . We set A° = A\ {z} and 0° = (). We write C for the collection of all
cells. A cell a € C is a vertez if dim(a) = 0.

The ground set of X € S is the set X = U{z € X | dim(z) = 0}. We say that
X € Sand Y €S are disjoint, or that X is disjoint from Y, if X NY = (). Thus,
X and Y are disjoint if and only if X NY =0 or X NY = {0}.

If X e Sand Y € S are disjoint, the join of X and Y is the simplicial complex
XY such that XY ={z U y |z € X,y € Y}. Thus, XY =0if Y = 0 and
XY = X if Y = {0}. The join aX of a vertex @ and a complex X € S is a cone.

Important convention. In this paper, if X,Y € S, we implicitly assume that
X and Y have disjoint ground sets whenever we write XY
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Let A € C and X =< A. The dual of X for A is the simplicial complex,
written X7, such that X} ={x € A|(A\z) € X}.
We have 0% = A and {0}% = A°, and, for any A € C, we have the following:
-If X < A, then (X3)% = X.
SEX <A Y <A then (XUY), =X3NY and (X NY),=XUY].

3 Completions

We give some basic definitions for completions, they will allow us to formulate
our axioms as well as to combine them. A completion may be seen as a rewriting
rule which permits to derive collections of sets. See [14] for more details.

Let S be a given collection and let K be an arbitrary subcollection of S. Thus, we
have IC C S. In the sequel of the paper, the symbol K, with possible superscripts,
will be a dedicated symbol (a kind of variable).

Let K be a binary relation on 25, thus x C 25 x 25. We say that K is finitary,
if F is finite whenever (F,G) € k.

Let (K) be a property which depends on K. We say that (K) is a completion (on
S) if (K) may be expressed as the following property:
— If F C K, then G C K whenever (F,G) € K. (k)
where K is an arbitrary finitary binary relation on 25.

If (K) is a property which depends on K, we say that a given collection X C S
satisfies (K) if the property (K) is true for £ = X.

Theorem 1. [14]| Let (K) be a completion on S and let X C S. There exists,
under the subset ordering, a unique minimal collection which contains X and
which satisfies (K).

If (K) is a completion on S and if X C S, we write (X;K) for the unique
minimal collection which contains X and which satisfies (K).

Let (K) be a completion which is expressed as the above property (K). By
a fixed point property, the collection (X;K) may be obtained by starting from
K = X, and by iteratively adding to K, until idempotence, all the sets G such
that (F,G) € xk and F C K (see [14]).

Let (K) and (Q) be two completions on S. It may be seen that (K) A (Q)
is a completion, the symbol A standing for the logical “and”. In the sequel of
the paper, we write (K, Q) for (K) A (Q). Also, if X C S, the notation (X; K, Q)
stands for the smallest collection which contains X and which satisfies (K) A (Q).

Example. Let us consider the collection S = S. Thus, K denotes an arbitrary
collection of simplicial complexes. We define the property (') as follows:

= If §,T € K, then SUT € K whenever SNT # {0}. )
Let k be the binary relation on 25 such that (F,G) € k iff there exist S,T € S,
with F = {S,T}, G = {SUT}, and SNT # {0}. We see that K is finitary

and that (T") may be expressed as the property (k). Thus (T°) is a completion.
Now, let us consider the collection II = (C;7"). It may be checked that II is
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precisely the collection of all simplicial complexes which are (path) connected
(see also [17] where the property (1) is used in a different context). Having in
mind the above iterative procedure, (C,7") may be seen as a dynamic structure
where the completion () acts as a generator, which, from C, makes it possible
to enumerate all finite connected simplicial complexes.

4 Dendrites

The notion of a dendrite was introduced in [14] as a way for defining a remarkable
collection made of acyclic complexes.

In the rest of the paper, K will denote an arbitrary subcollection of S.

Definition 1. We define the two completions on S: For any S,T € S,

= If S, T e K, then SUT € K whenever SNT € K. (D1)
= If S, T e K, then SNT € K whenever SUT € K. (D2)

We set R = (C;D1) and D = (C;D1,D2), thus we have R C D.
Each element of R is a ramification and each element of D is a dendrite.

Let us recall some basic definitions relative to simple homotopy [1], note that
these notions may also be introduced by the means of completions [14].

Let X,Y € S and z,y be two distinct faces of X. If y is the only face of X
which contains x, then Y = X\ {x, y} is an elementary collapse of X. We say that
X collapses onto Y, if there exists a sequence (Xy, ..., Xx) such that Xo = X,
X, =Y, and X; is an elementary collapse of X;_1, ¢ € [1,k]. The complex X
is collapsible if X collapses onto (). We say that X is (simple) homotopic to Y
if there exists a sequence (X, ..., Xj) such that Xo = X, X}, = Y, and either
X, is an elementary collapse of X;_1, or X;_1 is an elementary collapse of X;,
i € [1,k]. The complex X is (simply) contractible if X is simple homotopic to §.

For example, if X is a tree, then X is collapsible, X is a dendrite, and also
a ramification. In fact, any collapsible complex is a ramification [6]. The Bing’s
house with two rooms [15] and the dunce hat [16] are classical examples of
complexes which are contractible but not collapsible. Both of them are dendrites.

In fact, it was shown [14] that any simply contractible complex is a dendrite.
Furthermore it was shown that:

- a complex is a dendrite if and only if it is acyclic in the sense of homology; and
- a complex is a dendrite if and only if its suspension is simply contractible.

5 Dyads

In this section, we introduce the notion of a dyad and give some propositions
which are necessary to establish one of the main result of the paper (Th. 4). See
the introduction and Fig. 1 for an intuitive presentation of a dyad. See also Fig.
2 for an illustration of the axiom (X1).
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Fig. 2. Two objects R, S which constitute a dyad (R, S). An object T" which is glued
to S. The couple (SNT,T) is a dyad, thus, by axiom (X1), (R,SUT) is also a dyad.

Weset S = {(X,Y) | X,Y €S,X <Y} and C = {(A,B) €S| A, B C}.
In the sequel of the paper, K will denote an arbitrary subcollection of S. Fur-
thermore, o and 8 will always denote vertices.

Definition 2. We define three completions on S: For any (R,S) € S, Tes,

> If (R,S) €K and (SNT,T) € K, then (R,SUT) € K. (X1)
> If (R,S) € K and (R,SUT) € K, then (SNT,T) € K. (X2)
> If(R,SUT) e K and (SNT,T) € K, then (R, S) € K. (X3)

We set X = <@;X1,X2,X3>. Each element of X is a dyad.

We introduce the following completions on S (the symbols T, U, L stand

respectively for “transitivity”, “upper confluence”, and “lower confluence”):

For any (R, S),(S,T),(R,T) €S,

->1If (R,S) € K and (S,T) € K, then (R, T) € K. (T)
> If (R, S) € K and (R,T) € K, then (5,7) € K. (0)
> If (R, T) € K and (S,T) € K, then (R, S) € K. (L)

Considering__ complexes R, S, T such that R < S < T, we see that we obtain

directly (T), (U), (L) from (X1), (X2), (X3), respectively. Thus, we have:
Proposition 1. The collection X satisfies the properties (T), (U), and (L).
Proposition 2. For any X € S, we have (0, aX) € X.

Proof. If X = 0, then (),aX) € X (since (§,0) € C). If X = {0}, then
(0,aX) € X (since aX = a and (0, @) € C). Suppose X # 0 and X # {0}.
i) If X has a single facet, then X € C. Thus (0, aX) € X (since (0, aX) € C);
ii) If X has more than one facet, then there exists X', X" € S such that X =
X'U X", and Card(X') < Card(X), Card(X") < Card(X). Suppose that
0,aX’) € X, (0,aX”) € X, and (0, a(X’ N X")) € X. Then, by (U), we have
(a(X'NX"),aX") € X. Therefore, by (X1) (setting R =0, S = aX', T = aX"),
we have (0, aX) € X. The result follows by induction on Card(X). O

Proposition 3. For any X € S, we have (X, X) € X.

Proof. By Prop. 2, we have (0,aX) € X. Since X satisfies <U>, it implies
that (aX,aX) € X (setting R = (), and S = T = aX). By (X2) (setting
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R=5=aX,and T = X), this gives (aX N X, X) = (X,X)eX. O

We define two completions on S: For any S, T €8,
> If (SNT,T) € K, then (S,SUT) € K. (Y1)
->If (S,SUT) € K, then (SNT,T) € K. (Y2)

We give, hereafter, a theorem (Th. 2) which provides another way to gen-
erate the collection X. This theorem will be used in section 7 to establish a
link between dendrites and dyads. Before, we make a remark on a basic prop-
erty of completions which allows one to establish the equivalence between two
completions structures. This property is necessary for the proof of Th. 2.

Remark 1. Let (K) be a completion on S and let X C S. It may be shown [14]
that we have (X;K) = Nn{Y € S | X C Y and Y satisfies (K)}. Thus, if a
given collection Y C S is such that X C Y and Y satisfies (K), then we have
necessarily (X;K) CY.

Theorem 2. We have X = <C;?1,Y2,T, U,L)

Proof. We set X/ = (C;Yl,Yg,T,U,D:_ As a consequence of Prop. 3, we
can obtain (Y1) and (Y2) from (X1) and (X2), respectively (setting R = 5).

The collection X also satisfies the properties (T, (U), (L) (Prop. 1). Thus, since
C C X, we have X’ C X (see remark 1). Now, let (R, S) € S and T € S:

- Suppose (R, S) € X" and (SNT, T) € X'. Then, by (Y1), we have (S, SUT) € X',
Therefore, by (T), we have (R, SUT) € X’, )

- Suppose (R, S) € X' and (R,SUT) € X'. Then, by (U), we have (S,SUT)
€ X'. Therefore, by (Y2), we have (SNT,T) € X,

- Suppose (R, SUT) € X' and (SNT,T) € X'. Then, by (Y1), (S,SUT) e X,
Therefore, by (L), we have (R, S) € X'.

It follows that X’ satisfies the three properties (X1), (X2), (X3). Thus, since

C C X/, we have X C X/ (see remark 1). O

6 Relative dendrites

In this section, we introduce new axioms for defining the notion of a relative
dendrite. We will see in the sequel (next section) that these axioms provide
another way to describe dyads. We set C* = CU {({0}, {0})}.

Definition 3. We define two completions on S: For any (S,T), (S',T') € S,
> If (S,T), (8", T"), (SNS, TNT') €K, then (SUS", TUT’) € K. (Z1)
-> If (S, T), (8", 1"), (SUS" TUT') € K, then (SNS", TNT') € K. (72)
Each element of (C;Z1,72) is called a relative dendrite.

In Fig. 3, two examples of two couples (5,T), (5", T") € S which satisfy the
conditions of (Z1) are given. Thus, in these two examples, (SU S, TUT’) is a
relative dendrite.
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Fig. 3. (a) and (b): Two examples of two couples (S,T), (S’,T") € S which satisfy the
conditions of (Z1) (we consider triangulations of these objects). In (a), S and S’ are
two simple open curves, S NS’ is a complex made of two vertices. In (b), S and S’ are
also two simple open curves, but SN S’ is a complex made of a segment.

In Fig. 3 (a), (SUS", TUS’) and (TUS',TUT’) are dyads (this fact may be
seen using the forthcoming Prop. 9). Then, using <T>, it is possible to generate
(SUS', TUT’) with the axioms of a dyad.

Now, we observe that, in Fig. 3 (b), (SU S, TUS’) is not a dyad (it can be
checked that X and Y must have the same Euler characteristic whenever (X,Y)
is a dyad). Thus, it is not possible to generate, in a straightforward manner, the

relative dendrite (S US’, T UT') with the axioms of a dyad.

Remark 2. As a direct consequence of the definitions of (Z1), (Z2), and the one
of a dendrite, we have (C;Z1,Z2) C {(X,Y) € S| X € D, Y € D}. This fact
emphasizes the role of ({0}, {0}) in (CT;Z1,Z2).

Let (X,Y) € S. If a is a vertex such that X NY = X, we say that aX UY
is a cone on (X,Y), and we write X UY for aX UY.

Proposition 4. Let Z € S and let « be an arbitrary vertex. There exists a
unique couple (X,Y) €S such that Z=aX UY.

Thus, by Prop. 4, if Z € S and if « is an arbitrary vertex, the complexes X
and Y are specified whenever we write Z = X U Y. Note that we may have
aAZ,in thiscase X =0 and Z =Y.

Proposition 5. Let Z,7', 7" € S.

Weset Z=aX Y, Z' =aX'UY', and Z"" = aX" OY".
DIfZ=2'UZ" then X = X' UX" and Y =Y' UY";
DIfZ=2'NZ", then X = X' NX" andY =Y' NY".

Proof. The result follows from 1), 2), and Prop. 4.
1)IfZ =2'UZ" then Z = a(X' UX") U (Y UY"). Furthermore, since
(X'UX") C (YUY") and since « is disjoint from Y/ UY”, we have a(X’' U
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XN (Y'UY") = X' UX",

2) Suppose Z = Z' N Z". Then Z = (aX' UY’) N (X" UY") = a(X' N X") U
(Y'NY")U(aX'NY")U(aX”NY"). Since (aX'NY")U(aX"NY") CY'NY", we
have Z = o(X'NX")U(Y'NY"). Furthermore, since (X'NX") C (Y'NY") and
since « is disjoint from Y NY”, we have a(X'NX")NY'NY")=X'nX". O

Theorem 3. Let (X,Y) € S. The couple (X,Y) is a relative dendrite if and
only if X UY is a dendrite.

Proof.
1) If (X,Y) € C*, we see that X U Y is a ramification. Thus, aX U Y is
a dendrite. Suppose R = S U T and R’ = oS’ U T’ are dendrites. Then, by
the very definition of a dendrite, R N R’ is a dendrite if and only if RU R’ is a
dendrite. Consequently, by Prop. 5, a(SNS’) U (T'NT") is a dendrite if and only
if a(SUS) U (TUT’) is a dendrite. By the preceding remarks, we may affirm,
by induction on (C*;Z1,Z2), that X UY is a dendrite whenever (X,Y) is a
relative dendrite.
2) Suppose Z = aX UY is a dendrite.
i) Suppose Z € C. If X = (), we have (X,Y) € C. If X = {0}, we must have
Y = {0}, otherwise Z would not be connected, thus (X,Y) € C*. If X # § and
X # {0}, it may be seen that we must have X € C and Y = X, thus (X,Y) € C.
ii) Suppose we have Z = Z'UZ" with Z', 2", Z'NZ" € D. Weset Z' = X' Y’
and Z" = oX” O Y". If (X',Y"), (X",Y"), (X'NnX",Y' ' NY") are relative
dendrites, then (X’UX”,Y'UY") is a relative dendrite (by (Z1)), which means
that (X,Y) is a relative dendrite (Prop. 5 (1)).
iii) Suppose we have Z = Z'NZ", with Z', 7", Z’'UZ" € D. Weset Z' = a X' Y’
and 7" = oX” O Y. If (X',Y"), (X",Y"), (X’ UX",Y'UY") are relative
dendrites, then (X'NX",Y'NY") is a relative dendrite (by (Z2)), which means
that (X,Y) is a relative dendrite (Prop. 5 (2)).
By i), ii), and iii), we may affirm, by induction on (C;D1,D2), that (X,Y) is a
relative dendrite whenever aX UY is a dendrite. O

7 Dyads and dendrites

The goal of this section is to derive a theorem (Th. 4) which makes clear the
link between dyads and dendrites, this link is formulated with the notion of a
relative dendrite. The proof of the theorem is made possible mainly thanks to
the previous Th. 2 and 3 and the following propositions.

In the following proposition, and by the convention introduced in Section 2,
the notation aA implicitly means that « is disjoint from the cell A. Thus, since
X <Y =<4 aXUY isaconeon (X,Y) and oY} U X} is a cone on (Y}, X}).

Proposition 6. If A€ C, and X <Y < A, then (aX UY)*, =aYi U X}.

Proof. We have (aX UY):, = (aX):, NYS,. But (aX)!, = aX} (by
Cor. 1 of [14]) and Y, = aYf U A (by Cor. 2 of [14]). Thus, («X UY)* , =
aXiN(@YfUA)=aYiUX] (since Y < X% and X} < A). O
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Proposition 7. Let (X,Y) be a relative dendrite. We have X € D if and only
if Y € D.

Proof. Let (X,Y) € S such that aX UY is a dendrite (see Th. 3).
i) Suppose Y € D. Since aX € D (Prop. 6 of [14]) then, by D2, we have aXNY =
X eD.
ii) Let A € C such that Y < A, we suppose that « is disjoint from A. Suppose
X € D. Thus, X3 € Dand (aXUY)%, € D (Prop. 11 of [14]). But (aXUY)% , =
aY;UX% (Prop. 6). Since Yy € D, by D2, it implies that aY;NX% =Y} e D,
thus Y € D (Prop. 11 of [14]). O

Lemma 1. The collection (Ct;Z1,72) satisfies (Y1) and (Y2).

Proof.
i) In (Z1), if we replace S by SNT, S’ by S, and T’ by S, we obtain:
> If (SNT,T), (S,8), (SNT,SNT) € K, then (S,SUT) € K.
ii) In (Z2), if we replace T by SUT, S’ by T, and T’ by T, we obtain:
> If (S,SUT), (T,T), (SUT,SUT) € K, then (SNT,T) € K.
iii) If X € S, then aX U X = aX is a dendrite. Thus, by Th. 3, (X, X) is
a relative dendrite. In consequence, if K is the collection made of all relative
dendrites, we obtain (Y1) and (Y2) from i) and ii), respectively. [J

The following is easy to check.

Proposition 8. Let X,Y € S.

IfX,)Y €D, then XNY €D if and only if XUY € D.
2) If X, XNY €D, thenY €D if and only if XUY € D.
3)IfFX, XUY €D, thenY €D if and only if X NY € D.
4)IFXNY,XUY €D, then X €D if and only if Y € D.

Lemma 2. The collection (Ct;Z1,72) satisfies (T), (U), and (L).

Proof. Let (R,S) € S and (8,T) € S, and let «, B be two distinct vertices
disjoint from T'. Note that «RUS < «RUT. We set U = B(aR U S) U (R U T).
i) We observe that U = (afR) U (8S UT). We have afR € D, and (afR) N
(BSUT) = BR € D. Thus, by Prop. 8 (2), U € D if and only if BSUT € D, i.e.,
if and only if (S,T) is a relative dendrite (Th. 3).

ii) Suppose (S,T) is a relative dendrite. By i) and Th. 3, (a¢R U S,aR U T)
is a relative dendrite. By Prop. 7, aR U S is a dendrite if and only if aR U T
is a dendrite. By Th. 3, it follows that (R, S) is a relative dendrite if and only
if (R,T) is a relative dendrite. This fact allows us to affirm that the collection
(Ct; 71, 72) satisfies (T) and (L).

iii) Suppose that (R,S) and (R,T) are relative dendrites, thus aR U S and
aR U T are dendrites (Th. 3). We have U = B(aR U S) U (R U T) and
BaR U S)N(aRUT)=aRUS. Thus, we see that, by D1, the complex U is a
dendrite. By i), it follows that (S,T) is a relative dendrite. This last fact allows
us to affirm that the collection (CF; Z1, Z2) satisfies (U). O
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Lemma 3. If X € D, then (§, X) € X.

Proof.
i) If X € C, then (), X) € C. Thus (), X) € X.
ii) Let S, T € D such that SNT € D. By (D1), we have SUT € D. Suppose (0, S),
®,7), (0,SNT) € X. We have (SNT,T) € X (Prop. 1 and (U)). Therefore
(S,SUT) e X (Th. 2 and (Y1)). Then (§,SUT) € X (Prop. 1 and (T)).
11) Let S,T € D such that SUT € D. By (D2), we have S NT € D. Suppose
0,5), (0,T), (@, SUT) € X. We have (S, SUT) € X (Prop. 1 and (U)). Therefore
(S nT, T) X (Th. 2 and (Y2)). Then (§,SNT) € X (Prop. 1 and (L)).
By the very definition of a dendrite, the result follows by induction. [

The following theorem is one of the main results of the paper. Intuitively,
it asserts that, if (X,Y) is a dyad, then we cancel out all cycles of Y (i.e., we
obtain an acyclic complex), whenever we cancel out those of X (by the way of
a cone, see Th. 3). Furthermore, Th. 4 asserts that, if we are able to cancel all
cycles of Y by such a way, then (X,Y) is a dyad.

Theorem 4. Let (X,Y) € S. We have (X,Y) € X if and only if (X,Y) is a
relative dendrite.

Proof.

i) Suppose (X,Y) is a relative dendrite, i.e., (X,Y) € (C*;Zl,22>. By Th.
3, we have X UY € D and, by Lemma 3, (),aX U Y) € X. We also have
(0,aX) € X (Prop. 2). It means that (aX,aX UY) € X (Prop. 1 and (U)). We
obtain (aX NY,Y) = (X,Y) € X (Th. 2 and (Y2)). Thus, (C*;Z1,Z2) C X.

ii) The collection (C*;71,72) contains C and satisfies <Y1> <Y2>, (T}, (U), and
(L) (Lemmas 1 and 2). Thus ((C Y1,Y2,T,U,L) C (Ct; Z1,72) (see remark 1).
By Th. 2, the result is X C (Ct;Z1 Z2> D

Trivially, we have X € D if and only if ) U X € D. Thus, by Th. 3, X € D if
and only if (), X) is a relative dendrite. It follows that, as a direct consequence
of Th. 4, we have the following.

Corollary 1. Let X € S. We have X € D if and only if (), X) € X.
The following fact will be used for the illustration of the next section.

Proposition 9. Let XY, Z € S such that X <Y 2 Z.
If Y collapses onto X, then (X, Z) € X if and only if (Y, Z) € X.
If Z collapses onto Y, then (X,Y) € X if and only if (X, Z) € X.

Proof. If Y collapses onto X, then it may be seen that U’ = oY U Z
collapses onto V/ = aX U Z. Thus, U’ is simple homotopic to V’. If Z collapses
onto Y, then U” = aX U Z collapses onto V" = aX UY. Again, U” is simple
homotopic to V”. The result follows from Th. 3, Th. 4, and from Prop. 12 of
[14]. This last proposition ensures that a complex S is a dendrite whenever it is
simple homotopic to a dendrite. [J
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Fig. 4. (a): A triangulation D of the dunce hat, vertices with the same label have to be
identified, (b): The complex X = D\ {1,5,6} and the complex Y < X (highlighted),
(c): The complex Z (highlighted) collapses onto Y, (d): The complex Z collapses onto
T (highlighted), (e) and (f): The first steps of a collapse sequence of X onto T'.

8 The dunce hat

We give, in this section, an illustration of the previous notions. We consider the
complex D which is the triangulation of the dunce hat [16] depicted in Fig. 4 (a).
As mentioned before, the dunce hat is contractible but not collapsible. In fact,
it is possible to find a collapsible complex which collapses onto D (e.g., see Th.1
of [16]). This shows that D is a dendrite. In the following, we will see that it
is possible to recognize D as a dendrite without considering any complex larger
than D (by using only “internal moves”).

We consider the complex X = D\ {1,5,6}, we denote by C the cell whose
facet is {1,5,6}, and by Y the complex Y = C' N X, see Fig. 4 (b). We will
see below that (Y;X) € X. By (Y1), this fact implies (C,C U X) € X, i.e.,
(C, D) € X. Since (§,0) € X, by (T), this implies (), D) € X. Thus, by Cor. 1
of Th. 4, we get D € D. Now, we check that (Y, X) € X using Prop. 9: )

- The complex Z of Fig. 4 (c) collapses onto Y, thus (Y, X) € X if (Z, X) € X;
- Z collapses onto the complex T of Fig. 4 (d), thus (Z, X) € X if (T, X) € X;

- It could be checked that X collapses onto T, the first steps of a collapse sequence
are given 4 (e) and (f). Thus, since (T,T) € X, we have (T, X) € X,
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9 Conclusion

We introduced several axioms for describing dyads, i.e., pair of complexes which
are, in a certain sense, linked by a “relative topology”. Our two main results are
theorems 3 and 4 which make clear the links between dyads and dendrites, ¢.e.,
between dyads and acyclic complexes.

We proposed an approach which is exclusively based on discrete notions and
also, by the means of completions, on constructions on sets.

In the future, we will further investigate the possibility to develop a discrete
framework related to combinatorial topology.
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