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Abstract—The  choice  of  control  strategy  for  Direct  Wave
Energy  Converters  (DWEC)  is  often  discussed  without  taking
into account the limitations of electric Power Take-Off (PTO):
limits  of  torque  or  force  and  power,  as  well  as  losses  in  the
electric  chain.  These assumptions  leads to large and expensive
electric systems, that prevent leading to a global minimization of
the  per-kWh  cost.  We  propose  herein  a  simple  loss  model  in
order to design a better control strategy.
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I.  INTRODUCTION

Achieving  sustainable  development  requires  the  use  of
more renewable sources in the energy mix. Renewable marine
sources  like  tidal  current  and  wave  energy  devices  offer
consistent potential with low environmental impact and hence
might become a part of the future solution [1]. 

Many principles have been developed for the purpose of
converting energy from water waves. Among these principles,
Direct Wave Energy Converters (DWEC) with electric  Power
Take-Off (PTO) are the most direct and most flexible [2]. They

may make use of mechanical transmission (gear box, rack and
pinion,  etc)  or  may not  (direct  drive)  [3].  They lead  to  the
possibility  of  higher  efficiency  and  reliability,  yet  feature
higher power fluctuations in the grid than WEC with hydraulic
or mechanical storage systems.

In order to minimize the per-kWh cost of this technology,
the  efficiency  of  both  the  electric  chain  and  control  must
increase without excessive oversizing. DWEC use a resonance
mechanism  for  converting  wave  energy.  To  generate
resonance  for  various  sea  states,  a  large  PTO  may  be
introduced,  so  as  to  correct  the  natural  resonant  frequency
relative to wave pulsation [4]. 

Control  design  however  must  take  into  account  the
limitations of an electric PTO, i.e.: power limitations, force or
torque limitations, losses in the electric chain. But the problem
is often see as  decoupled. Thus, two types of papers classically
deal  with  control  strategies  in  DWEC:  the  theoretical
optimization of control with no or very little considerations for
the limits  of  realization  [5];  and optimization using a given
electric  system  [6].  Only  a  few papers  have  dealt  with  the
coupling between control strategy and sizing [7,8].

II. WAVE ENERGY CONVERTER MODEL

In  this  study,  we  will  be  focusing  on  the  control  of  a
generic point absorber device with a single degree of freedom.
The  system  considered  is  a  floating  vertical  cylinder
constrained  to  only  move in  heave  motion  only,  under  the
action of wave excitation forces (see  Fig. 1). The theoretical
work presented herein may be applied to other floating bodies,
but  this  simple  example  will  be  useful  for  illustrating  and
comparing various control strategies.
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A. Linear Hydro-Mechanical Model

The equation of motion for the considered WEC, under the
hypothesis  of  small  perturbations  around  the  equilibrium
position (linearity), can be written as [9]:

(M + a∞) ξ̈ (t )+∫0

∞

h(τ)ξ̇ (t−τ)d τ+ K ξ= f tot
(1)

 with f tot= f exc− f PTO (2)

where ξ is the vertical position of the buoy, v=ξ̇ the vertical
speed  of  the  buoy, M  the  buoy  mass  and  K a  hydrostatic
stiffness.  fexc and  fPTO denote respectively  the wave excitation
force and PTO force. We apply the Cummins decomposition
[10] of radiation forces  through an added mass term  a∞ and
convolution  product  with  a  kernel  h(t),  which  is  typically
called the radiation impulse response function. 

This equation can now be rewritten in the s-domain (i.e.
Laplace transformation) using mechanical impedance  ZBuoy(s),
in order to use an electric analogy in the following:

Z Buoy(s)=
F tot (s)

V (s)
=

F tot (s)

sΞ(s) (3)

 with Z Buoy (s)=∣Z Buoy(s)∣e
jθ Buoy( s)

(4)

Upper case characters are used for the s-domain and lower
case for the time domain, hence:  Ξ(s),  V(s),  H(s),  Ftot(s) are
respectively the Laplace transform of ξ(t),  v(t),  h(t) and ftot(t).
In the case of equation (1), the buoy impedance is:

Z Buoy(s)=(M+ a∞) s+ H (s)+
K
s

(5)

The values adopted in this study correspond to a buoy with
a radius of 5 m and a height of 10 m. The parameters have been
computed  in  the  AQUAPLUS  seakeeping  code  for
hydrodynamics  simulations  [11] (see  Table  I).  It  should  be
noted here that the real part of buoy impedance depends only
on the radiation transfer function with s = j ω. This real part

must be positive in order to respect the law of conservation of
energy:

ℜ(Z Buoy ( jω))=ℜ(H ( j ω)) (6)

The excitation force fexc(t) is correlated with wave elevation
el(t), and this relationship can be written in the Laplace domain
as follows:

F exc(s)=H exc ( s)EL (s) (7)

TABLE I. PARAMETERS USED IN THE BUOY MODEL

M (kg) a∞ (kg) K (kg.s-2) H(s)(kg.s-1)

772×103 247×103 758×103 s
s2+ 0.682 s+ 0.449

17.9×10
3

B. Energy Conversion Chain

A DWEC contains two major energy conversion in a (see
Fig. 2): hydro-mechanical and electromechanical. The hydro-
mechanical  conversion  is  the  transition  from  wave
hydrodynamic  power  to  mechanical  power;  it  is  obtained
through  the  buoy  and  the  PTO  control  strategy.  The
electromechanical,  on  the  other  hand,  is  the  transition  from
mechanical  power  to  electric  power  feeding  the  grid;  it  is
obtained through the electric  chain,  i.e.  the electric  machine
and the power electronic converters.

According to the theory of impedance matching, in order to
maximize power transfer, the receiver impedance must be the
complex conjugate of the generator impedance. The theoretical
maximum  wave  power  as  a  function  of  pulsation  is  then
expressed as: 

pWave (ω)=
F exc rms(ω)2

4 ℜ(Z Buoy ( j ω))
=

∣H exc( j ω)∣
2 ELrms(ω)2

4 ℜ(H ( j ω))
(8)

where  Fexcrms(ω)  being  the  root  mean square  of  a  sinusoidal
excitation  force  of  pulsation  ω,   ZBuoy(jω)  the  generator
impedance  defined  in  (5),  Hexc(jω) the  excitation  transfer
function defined in (7) and ELrms(ω) the root mean square of a
sinusoidal water elevation of pulsation ω. 

A  reciprocity  relationship  exists  between  excitation  and
radiation; this relationship can be written between the modulus
of the excitation transfer function |Hexc(jω)| and the real part of
the radiation transfer function. In the case of an axisymmetrical
heaving  point  absorber,  within  the  framework  of  linear
potential  theory  and  under  the  hypothesis  of  infinite  water

Fig. 2. Energy  chain  with  the  various  power  conversions  and   round-trip
efficiencies:   ηC,  the  control  efficiency;  and  ηE,  the  electric  chain
efficiency.  The  average  powers  shown  represent  energy  on  a  given
cycle. 

Fig. 1. Simplified model of a direct coupled point absorber in heave.



depth  [9], the excitation transfer function frequency response
gain is equal to:

∣H exc ( j ω)∣=√4 ℜ(H ( j ω))
ρ g3

2ω
3 (9)

where ρ is the mass density of sea water (1025 kg/m3), and g
the earth's  gravity (9.81 m/s2).  The average wave power can
then be rewritten as: 

pWave(ω)=
ρg 3

2ω
3 ELrms(ω)

2 (10)

The average wave power can be determined by mean of the
integration in the frequency domain in so far as the elevation
spectrum is known; as an example:

PWave=∫0

∞

pWave(ω) (11)

The mechanical power and grid power are both defined in
the time domain. The mechanical power is simply defined as:

PMech(t )=ξ̇(t) f PTO (t )=v (t ) f PTO(t ) (12)

The grid power is defined from electrical losses within the
electric chain: 

PGrid (t)=PMech(t )−P loss elec(t ) (13)

Losses  in  the  electric  chain  stem from multiple  sources:
iron  losses  (hysteresis  and  eddy  current  losses)  and  copper
losses  in  the  electrical  machine;  and  conduction  and
commutation losses in the power electronic converters. All of
these losses depend on the design and sizing of the various
electric chain components. The sizing of the machine-converter
set depends on the force-speed profile, and thus on the specific
control strategy. A strong correlation exists between sizing and
control.  To  resolve  this  issue,  the  choice  is  to  introduce  a
simple and generic loss model for the electric chain, i.e.: 

P losselec(t )=closs∣P Mech(t )∣ (14)

This definition is illustrated in  Fig. 3. The loss coefficient
closs lies between 0 (no loss) and 1 (no energy recovery). This
model remains simple, though the study is being conducted  for
a preliminary design  in  order  to  limit  the  ratio  between the
energy exchange and average power. The loss coefficient closs is
chosen  via  a  technological  culture  in  order  to  match  the
smallest  loss  coefficient  capable  of  being  achieved  with  a
reasonable cost. Upon initial sizing of the electric chain, the
model may be refined for greater precision. The average grid
power will thus be equal to: 

PGrid=v f PTO−closs∣v f PTO∣ (15)

In the following discussion, closs has been set equal to 0.1. 

III. CONTROL STRATEGY IN THE MONOCHROMATIC CASE

A. Control Objective Function

The simplest objective is to maximize average mechanical
power PMech . This objective however could lead to over-sized
solutions since the reactive power flow is not being limited or
else to poor global solutions since electric chain efficiency is
not being taking into account.

The problem here is to maximize the function Pcontrol, which
is a linear combination of the average mechanical power and
the average of the absolute mechanical power:

Pcontrol(ccontrol)=PMech−ccontrol ∣PMech∣ (16)

where 0 ≤ ccontrol  < 1 is a coefficient used to design the control
strategy  for  calibrating  the  objective  function  between  a
maximization of the final energy and limitation of the reactive
power flow. All solutions correspond to a maximization of the
mechanical production with the minimization of power flow; a
trade-off  between  these  two  conflicting  objectives  is  then
weighted by the coefficient ccontrol. 

According  to  the  electric  loss  hypothesis  adopted  herein
(see (14)),  the following relation between objective function
and  grid power is obtained:

Pcontrol(ccontrol=c loss)=PGrid (17)

Let's  now  rewrite  the  objective  function  with PGrid and
P losselec . 

Pcontrol(ccontrol)=PGrid −
c loss−ccontrol

closs

P loss elec (18)

Given  the  hypothesis  adopted  here  for  losses,  solutions
with  closs  ≤  ccontrol  <  1  also represent  also  multiple  trade-offs
between  the  two  conflicting  objectives,  i.e.:  final  electrical

Fig. 3. Definition of the electric loss coefficient closs.



energy and losses in the electric chain. The fact that these two
objectives  are  conflicting  is  not  natural,  yet  nonetheless
illustrates why the coupling between electric chain design and
control design is so important. 

B. Design of a Control Strategy

To devise a new control strategy, a simple test case will be
studied,  (see  [4][12]). The  excitation  is  assumed  to  be
sinusoidal:

f exc(t )=F exc rms √2cos(ω t ) (19)

The  maximum mechanical  power  can  thus  be  found  by
applying (8).

PWave=
F excrms

2

4ℜ(Z Buoy)
=

F excrms
2

4∣Z Buoy∣cos(θBuoy )
(20)

The  pusation  dependency  is  no  longer  show  since  the
pulsation in this case. The PTO force is choosen to be linear
with  respect  to  the  vertical  speed  of  the  buoy,  i.e.  the
relationship  between  PTO  force  and  vertical  speed  can  be
represented by a transfer function. At this point, let's introduce
the receiver mechanical impedance: 

F PTO(s)=Z PTO (s) sΞ(s) (21)

 with Z PTO(s)=∣Z PTO (s)∣e
j θPTO (s )

(22)

This choice introduce a major restriction. More specifically,
discrete  solutions (latching,  declutching)  [12] lit  outside this
family,  although  these  controls  seem  to  be  suitable  for  a
hydraulic actuator and do not use all of the flexibility provided
by an electric chain. Power or force leveling [6] has not been
studied here either, as the goal of these leveling mechanisms
often  consists  of  reducing  peak  values  without  significantly
reducing the production. It must be kept in mind that the peak
values  may  be  significantly  reduced  thanks  to  leveling
mechanisms. 

Under  these  conditions,  we  are  permetted  to  use  an
analogous electric system, as shown in  Erreur : source de la
référence  non  trouvée.  Both  the  speed  and  PTO  force  are
sinusoidal as well, since the system is assumed to be linear:

ξ̇ (t )=V rms √2cos(ω t−φ speed ) (23)

f PTO (t )=∣Z PTO∣V rms √2 cos(ωt−φ speed +θPTO) (24)

V rms
2 =

F exc rms
2

∣Z PTO+ Z Buoy∣
2

(25)

The problem therefore is to choose ZPTO  that  maximizes the
function Pcontrol presented in (16).

max
Z PTO ∈ℂ

Pcontrol= max
ZPTO ∈ℂ

( PMech−c control ∣PMech∣) (26)

This  problem  can  be  easily  solved  by  calculating  the
mechanical power function over time:

PMech(t )=∣Z PTO∣V rms
2 [cos(θPTO)+ cos(2ω t−2φ speed + θPTO)]

(27)

The average mechanical power is thus equal to:

PMech=F exc rms
2 ∣Z PTO∣

∣Z PTO+ Z Buoy∣
2 cos(θPTO) (28)

The second term in the objective function can be write as:

ccontrol ∣PMech∣=ccontrol Fexc rms
2 ∣Z PTO∣

∣Z PTO+ Z Buoy∣
2 g (θPTO) (29)

where the integral g(θPTO), shown in Fig. 5, which is defined as:

g (θPTO)=
1
T
∫0

T

∣cos(θPTO)+ cos(2ω t−2φ speed+ θPTO)∣dt (30)

Fig. 5. Function g(θPTO) :  Normalized  average  of  the  absolute
mechanical power in the monochromatic case as a function of the phase
shift between PTO speed and PTO force (see definition in (30)). Let's
note three particular points: g(0)=1 and g(±90°)=2/π≈0.64. 

Fig. 4. Structure of the controller and electrical analogy with a source (the
buoy) and a load (the Power Take-Off).



This  yields  a  closed-form  expression  of  the  objective
function:

Pcontrol=Fexc rms
2 ∣Z PTO∣

∣Z PTO+ Z Buoy∣
2 (cos(θPTO)−ccontrol g (θPTO)) (31)

Let's normalize this value with the wave power: 

pcontrol=
Pcontrol

Pwave

(32)

pcontrol=
4∣Z PTO∣∣Z Buoy∣cos(θBuoy)(cos(θPTO)−ccontrol g (θPTO))

∣Z PTO+ Z Buoy∣
2

(33)

The solution can be written as a condition on both the ZPTO

modulus and the ZPTO argument:

∣Z PTO∣=∣Z Buoy∣ (34)
sin (θPTO)+ sin (θBuoy )

+ ccontrol[ d g (θPTO)

d θPTO

(1+ cos(θPTO−θBuoy))

+ g(θPTO)sin (θPTO−θBuoy )]=0
(35)

The solution θPTO(θBuoy,ccontrol)  is shown in Fig. 6, revealing
two particular classical solutions, namely:

• c control=0⇒θPTO=−θBuoy :  The  complex  conjugate
control  strategy,  which  maximizes  mechanical  power
[13] ;

• c control →1⇒θPTO=0 :  The  passive  control  strategy,
which minimizes power flow [14].

The solutions for 0 < ccontrol < 1 involve a trade-off between the
passive control and complex conjugate control. To demonstrate
the  advantages  of  this  control  strategy,  let's  compare  three

continuous controls using a system with a loss coefficient of
closs= 0.10. This control depends on the choice of ccontrol  used to

find  the  maximum:  complex  conjugate  control  (ccontrol =  0),
passive control (ccontrol → 1) and optimum control for the global
conversion  ccontrol  =  closs=  0.10, which will be referred as the
Trade-Off control. 

C. Results for the Monochromatic Case

The  buoy  impedance  ZBuoy of  the  system  and  the  three
control  impedances  ZPTO  for  the  three  continuous  control
strategies are represented in  Fig.  7. It  is important to have a
passive model of the radiation force for this study, to respect
the energy conservation principle.

The average of the power grid is given by the relation (cf.
(17) and (31)): 

  Pgrid =Fexc rms
2 ∣Z PTO∣

∣Z PTO+ Z Buoy∣
2 (cos(θPTO)−c loss g(θPTO)) (36)

To identify production capacity losses due to a non-ideal
electric chain, an evaluation must be performed of: the control
efficiency  ηC,  the  electric  efficiency  ηE,  and  the  global
efficiency  ηC  ηE. The maximum mechanical power is given in
(20), the mechanical power in (28) and the electric grid power
in (36). 

ηC=
Pmech

PWave

=
4∣Z Buoy∣∣Z PTO∣cos(θBuoy)cos(θPTO)

∣Z PTO+ Z Buoy∣
2 (37)

ηE=
P grid

Pmech

=
cos(θPTO)−c loss g(θPTO)

cos(θPTO) (38)

For the three control strategies, the efficiency of both the
control  (ηC)  and  electric  chain  (ηE)  can  be  compared.  The

Fig. 6. Parametric  function  of  the  optimal  PTO  impedance  argument
θPTO(θBuoy,ccontrol) (see  definition  in  (35))  vs.  the  Buoy  impedance
argument θBuoy, as parameterized with the control coefficient ccontrol.

Fig. 7. ZPTO and ZBuoy  for the three control strategies : Complex Conjugate
(C-C)  (ccontrol =  0),  Passive  (P)  (ccontrol →  1),  and  Trade  Off  (T-O)
(ccontrol= closs = 0.1). 



graphs in Fig. 8 display these three efficiencies as a function of
pulsation. The first solution could consist of using the complex
conjugate control near the natural resonance of the buoy and
the  passive  control  far  from  the  resonance.  It  is  obvious
however  that  the  Trade  Off  control  offers  a  much  higher
global  efficiency  than  either  of  the  two  others,  even  when
combined.

For closs = 0.1, the effect of the control coefficient ccontrol for
a given pulsation (ω = 0.65 rad.s-1) can be observed in  . The
global recovery is naturally maximized when ccontrol is equal to
closs (0.1),  though  the  global  efficiency  for
c control∈[0.056 ;0.18]  is  still  greater  than  90%  of  the

maximum.  Hence,  the  strategy  appears  to  be  sufficiently
robust.

IV. POLYCHROMATIC CASE

A. Wave Elevation Spectrum and Capture Width

The  time-domain  model  expressed  in  (1)  can  be  easily
simulated. A time-series excitation force is required however
to  run  a  simulation.  In  order  to  evaluate  some  of  these
examples,  it is necessary to examine the wave elevation. A sea
state  is  characterized  by  the  energy  spectrum  of  the  wave
elevation.  The  modified  Pierson-Moskowitz  spectrum
recommended by the International  Ship Structure Committee
(ISSC) is used in this paper; this spectrum accurately models
the behavior of real sea waves [15]:

S el (ω)=
5

32π
H s

2 T p( 2π

ωT p
)

5

exp(−5
4 ( 2 π

ωT p
)

4

) (39)

where  Hs is  the significant wave height and Tp  the peak wave
period. We are now able to complete (10):

pWave(ω)=
ρg 3

2ω
3 ELrms(ω)

2
=

ρ g 3

2 ω
3 S el (ω)d ω (40)

The  theoretical  maximum  energy  for  a  given  sea-state
(Hs, Tp) can then be derived as follows: 

PWave=∫0

∞ ρ g3

2ω
3 S el(ω)d ω≈94.8H s

2T p
3

(41)

with PWave in watts,  Hs in meters and  Tp in seconds. This is a
unique result for a given system and hypothesis. 

In order to better define the resource for all wave systems,
the wave energy transport JWave is expressed in watts per meter
of wave front, i.e.:

Fig. 8. Comparison  of  control  efficiency  ηC,  electric  efficiency  ηE and
total efficiency  ηC  ηE vs.  the pulsation for the three control  strategies:
Complex-Conjugate  (C-C)  (ccontrol =  0),  Passive  (P)  (ccontrol → 1)  and
Trade-Off (T-O) (ccontrol= closs = 0.1).

Fig. 9 Control efficiency ηC, electric efficiency ηE and global efficiency ηC ηE

vs. the control parameter ccontrol for ω = 0.70 rad.s-1, under the hypothesis closs  =
0.10



J Wave=∫0

∞ ρg 2

2ω
S el(ω)d ω≈421 H s

2 T p (42)

with JWave in watts per meter, Hs in meters and Tp in seconds. 

The  equivalent  capture  width  is  thus  a  common
measurement in the wave energy system, it is the ratio of the
converted  power  to  the  wave  energy  transport  JWave.  For  an
axisymmetric heaving buoy, with the spectrum used herein, the
upper limit for the capture width is: 

Lmax=
PWave

J Wave

=0.225 T p
2

(43)

with Lmax in meters and Tp in seconds. This result corresponds
to a unitary global efficiency (i.e. both control and electric).
The transition  between  efficiency  and  width  ratio  is  a  very
simple one: 

L=ηC (H s , T p)ηE(H s , T p) Lmax(T p) (44)

where L is the capture width of the complete system. 

B. Time Series Excitation Force

The  transfer  function  Hexc(s)  gives  the  relation  between
wave elevation and excitation force:

S exc(ω)=∣H exc ( j ω)∣
2 S el(ω) (45)

Let's  now approximate  the  excitation  force  by  summing
monochromatic excitations:

F exc( t)=∑
k =1

N

F excrms k √2sin (ωk t+ φ k ) (46)

The phases φk are set randomly. The pulsations ωk  used are
981 regular  spaced  pulsations  (Δωk  = 10  mrad.s-1)  between
0.2 rad.s-1 and  10 rad.s-1.  In  our  case,  this  configuration  is
similar to the solution of a reconstructed wave elevation with a
random  phase,  as  presented  in  [12].  Thanks  to  (45),  the
following approximation can now be written:

F excrms k=∣H exc( j ωk )∣√S el (ωk )Δωk (47)

C. Approximation of the Monochromatic Strategies

The optimal solutions for control impedance are provided
in (34) and (35).  For  the monochromatic case,  it  is  easy to
perform the control; however, it is difficult, or even impossible
in  some cases,  to  respect  the  two relationships  for  multiple
frequencies.  In  particular,  passive  control  with  a  frequency-
dependent damping coefficient is impossible to achieve.

As  a  next  step,  the  strategies  presented  in  the  previous
section will be approximated using a classical tunable reactive
form  [16] in  order  to  confirm that  this  strategy yields  good
results in a more realistic case:

Z PTO(s)=M PTO(T p) s+ BPTO (T p)+
K PTO (T p)

s
(48)

where MPTO, BPTO and KPTO, are respectively an emulated mass,
an emulated damping and an emulated stiffness.

To choose the optimal values for these three coefficients,
the choice here was to maximize a cost function given by:

P̃control poly=∫0

∞

pcontrol(ω) pWave (ω) (49)

with pcontrol(ω) given in (33). The assumption made here is that
the frequency approach yields results that closely compare to
the  time-domain  results,  even  though  the  Parseval's  identity
cannot  be  used  (as  the  loss  model  is  not  quadratic).  This
assumption proves to be very useful in reducing computation
time. 

Average mechanical power or average grid power can now
also be predicted: 

̃PMech=∫0

∞

ηC (ω) pWave(ω) (50)

̃PGrid=∫0

∞

ηC(ω)ηE (ω) pWave (ω) (51)

with ηC(ω) and ηE(ω) given in (37) and (38).

D. Stability Constraints on the Emulated Terms 

Emulated terms must be used carefully due to the stability
limits. Stability margins are reduced whenever negative mass
or spring terms are emulated. It can indeed be seen, we can see
in  Erreur : source de la référence non trouvée that the open
loop (OL) transfer function of the system (buoy and control) is
given by: 

H OL( s)=
Z PTO (s)

Z Buoy(s)
(52)

H OL(s)=
M PTO (T p)s2

+BPTO(T p)s+K PTO (T p)

(M +a∞)s2+ H (s)s+ K
(53)

In our case, we can easily calculate two important limits for
the overall system stability (H(jω) has finite limits in zero and
positive infinity):

lim
ω→0

H OL( j ω)=
K PTO(T p)

K
(54)

lim
ω→∞

H OL( j ω)=
M PTO(T p)

M +a∞

(55)

The critical point is  HOL(jω)  = −1. In order to control the
distance  between  the  open  loop  transfer  function  and  this
critical point (and thus control the system stability), the choice
for  two of  the three coefficients  must be constrained.  Three
cases have been tested herein: no constraint, a weak constraint



and a strong constraint. The weak constraint (wc) corresponds
to a gain margin of 6 dB: 

M PTO wc(T p)> −(M + a∞)/2 (56)

K PTOwc(T p)> −K /2 (57)

The strong constraint (sc) corresponds to an infinite gain
margin, i.e.:

M PTO sc (T p)> 0 (58)

K PTOsc (T p)> 0 (59)

Hydrodynamic tests must be conducted in order to select
the stability limits to be used in this case. 

E. Results for the Polychromatic Case

Since the numerator of the mechanical impedance transfer
function in (48) has a higher degree than the denominator, the
transfer function is not causal and, as such, can not be realized.
The  function  used  for  the  time-domain  simulations  is  as
follows:

    Z PTO(s)=(M PTO(T p)s+ BPTO(T p)+
K PTO(T p)

s ) 1
1+ τ s

(60)

with  time  constant  τ  being  small  compared  to  the  wave
pulsation (set  here  at  10 ms).  This  is  a  causal,  flexible and
easy-to-implement  control  strategy;  moreover,  it  features  the
same  equations  as  a  Proportional-Integral-Derivative  (PID)
controller.

The case studied here as an example corresponds to a sea-
state with a significant wave height Hs= 2.5 m  and a peak wave
period Tp= 9.5 s. The simulations last 628 s and are repeated 20
times  with  different  random  draws  for  the  excitation  force
phases. In all, 100 different values of ccontrol  have been tested.
The  time-domain  simulations  were  run  using
Matlab/Simulink.

The global  efficiency  as  a  function  of  control  parameter
ccontrol  is  shown in  Fig.  10. The frequency computations are
shown in dashed lines: the approximation appears to be correct,
and the assumption is thus considered to be verified. The three
control strategies are illustrated with examples of power time
series in Fig. 11.

The control strategies determined with ccontrol  > closs forms a
Pareto front in a production-loss diagram (See Fig. 12 (a)). For
a  given  production,  the  result  is  the  solution  offering  the
minimum  losses.  The  solution  with  the  minimum  stability
constraint always yields better results in this diagram.

Fig. 10. Global  efficiency  as  a  function  of  control  parameter  ccontrol for
Tp = 9.5 s under the hypothesis closs  = 0.10. The Global efficiency is the
product of the control efficiency ηC and the electric efficiency ηE   Solid
lines  represent  the  time-domain  simulation  and  dashed  lines  the
approximation in the frequency domains. Blue lines correspond to the
solutions  without  stability constraints  (w/o c.),  green lines with weak
stability constraints (wc) and red lines with strong stability constraints
(sc).

Fig. 11. Example of power time series for a given random draws for the
excitation force phases. The graphs compare the three control strategies:
Complex-Conjugate  (C-C)  (ccontrol =  0),  Passive  (P)  (ccontrol → 1)  and
Trade-Off (T-O) (ccontrol= closs = 0.1). The loss coefficient is  closs   = 0.10,
the sea-state is Tp = 9.5 s and Hs = 2.5 m. The constraint for stability is
weak (see (56) and (57)). Note that the scale for the power in the three
case are not the same. 



Production maximization is not the ultimate goal of these
control strategies. Given the over-sizing required to achieve the
production  maximization,  the  solution  with  maximum  grid
power is not optimal for per-kWh cost. A complete study of the
cost of both the generator and its converter is needed in order
to draw a conclusion on the best control strategy.

We can reasonably suppose that the peak and root mean
square  value  of  the  force  are  correlated  with  the  linear
generator cost. Fig. 12 (b) therefore depicts the two following
ratios for comparing these various solutions:

r f rms=
f PTO rms

Pgrid

 and r f peak=
f PTO peak

P grid
(61)

We can  also  reasonably suppose  that  the  peak  and  root
mean  square  value  of  the  mechanical  power  are  correlated
with the converter  cost.  Fig.  12 (c)  then represents  the two
following ratios for comparing these various solutions:

r P rms=
Pmech rms

P grid

 and r P peak=
Pmech peak

P grid
(62)

V. CONCLUSION AND OUTLOOK

This  paper  has  focused  on  the  potential  resource  for  a
Direct  Wave Energy Converter,  in  a  global  context of  kWh
cost  minimization. Electrical chain losses and force or power
amplitude constraints play an important role in designing the
electric chain, and hence in its cost. Moreover, they play a key
role in the conversion mechanism. For this reason, the control
strategy and the electric chain design are highly correlated.

This  paper  has  proven  that  taking  account  of  electrical
losses  in  the  design  of  a  control  strategy  improves  global
efficiency  of  the  conversion  chain  compared  to  classical
solutions, i.e.: a passive strategy or complex conjugate strategy.
Power and force leveling must be tested with this strategy in
order to minimize the chain size introduced to achieve a given
production.

Converted energy maximization may help to minimize the
per-kWh cost; however recovery optimization is not an end in
itself. The final system, including the electric chain and control
strategy,  must  minimize  the  per-kWh  cost.  In  the  case
presented here, the continuous variation of a control parameter
offers multiple possibilities. Economic considerations must be
taken  into  account  when  approximating  the  per-kWh  cost
optimization.
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