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ESTIMATING THE COVARIANCE OF RANDOM MATRICES

PIERRE YOUSSEF

ABSTRACT. We extend to the matrix setting a recent result of Srivastava-Vershynin
[21] about estimating the covariance matrix of a random vector. The result can be in-
terpreted as a quantified version of the law of large numbers for positive semi-definite
matrices which verify some regularity assumption. Beside giving examples, we dis-
cuss the notion of log-concave matrices and give estimates on the smallest and largest
eigenvalues of a sum of such matrices.

1. INTRODUCTION

In recent years, interest in matrix valued random variables gained momentum. Many
of the results dealing with real random variables and random vectors were extended to
cover random matrices. Concentration inequalities like Bernstein, Hoeffding and others
were obtained in the non-commutative setting ( [5],[22], [14]). The methods used were
mostly combination of methods from the real/vector case and some matrix inequalities
like the Golden-Thompson inequality (see [8]).

Estimating the covariance matrix of a random vector has gained a lot of interest re-
cently. Given a random vector X in Rn, the question is to estimate Σ = EXX t. A
natural way to do this is to take X1, .., XN independent copies of X and try to approxi-
mate Σ with the sample covariance matrix ΣN = 1

N

∑
iXiX

t
i . The challenging problem

is to find the minimal number of samples needed to estimate Σ. It is known using a
result of Rudelson (see [19]) that for general distributions supported on the sphere of
radius

√
n, it suffices to take cn log(n) samples. But for many distributions, a number

proportional to n is sufficient. Using standard arguments, one can verify this for gauss-
ian vectors. It was conjectured by Kannan- Lovasz- Simonovits [11] that the same result
holds for log-concave distributions. This problem was solved by Adamczak et al ([3],
[4]). Recently, Srivatava-Vershynin proved in [21] covariance estimate with a number
of samples proportional to n, for a larger class of distributions covering the log-concave
case. The method used was different from previous work on this field and the main idea
was to randomize the sparsification theorem of Batson-Spielman-Srivastava [7].

Our aim in this paper is to adapt the work of Srivastava-Vershynin to the matrix setting
replacing the vector X in the problem of the covariance matrix by an n × m random
matrixA and try to estimate EAAt by the same techniques. This will be possible since in
the deterministic setting, the sparsification theorem of Batson-Spielman-Srivastava [7]
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has been extended to a matrix setting by De Carli Silva-Harvey-Sato [9] who precisely
proved the following:

Theorem 1.1. Let B1, . . . , Bm be positive semi-definite matrices of size n × n and
arbitrary rank. Set B := ∑

iBi. For any ε ∈ (0, 1), there is a deterministic algorithm
to construct a vector y ∈ Rm with O(n/ε2) nonzero entries such that y ≥ 0 and

B �
∑
i

yiBi � (1 + ε)B.

For an n× n matrix A, denote by ‖A‖ the operator norm of A seen as an operator on
ln2 . The main idea is to randomize the previous result using the techniques of Srivastava-
Vershynin [21]. Our problem can be formulated as follows:

Take B a positive semi-definite random matrix of size n×n. How many independent
copies of B are needed to approximate EB i.e taking B1, .., BN independent copies of
B, what is the minimal number of samples needed to make

∥∥∥ 1
N

∑
iBi − EB

∥∥∥ very small.

One can view this as an analogue to the covariance estimate of a random vector by
taking for B the matrix AAt where A is an n×m random matrix. With some regularity,
we will be able to take N proportional to n. However, in the general case this is no
longer true. In fact, take B uniformly distributed on {neieti}i6n where ej denotes the
canonical basis of Rn. It is easy to verify that EB = In and 1

N

∑
iBi is a diagonal

matrix and its diagonal coefficients are distributed as

n

N
(p1, .., pn),

where pi denotes the number of times eieti is chosen. This problem is well- studied and
it is known (see [12]) that we must take N > cn log(n). This example is essentially due
to Aubrun [6]. More generally, ifB is a positive semi-definite matrix such that EB = In
and Tr(B) 6 n almost surely, then by Rudelson’s inequality in the non-commutative
setting (see [15]) it is sufficient to take cn log(n) samples.

The method will work properly for a class of matrices satisfying a matrix strong
regularity assumption which we denote by (MSR) and can be viewed as an analog to
the property (SR) defined in [21].

Definition 1.2. [Property (MSR)]
Let B be an n×n positive semi-definite random matrix such that EB = In. We will say
that B satisfies (MSR) if for some η > 0 we have :

P(‖PBP‖ > t) 6 c

t1+η ∀t > c.rank(P ) and ∀P orthogonal projection of Rn.

The main result of this paper is the following:
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Theorem 1.3. Let B be an n× n positive semi-definite random matrix verifying EB =
In and (MSR) for some η > 0. Then for every ε < 1, taking N = C1(η) n

ε
2+ 2

η
we have

E
∥∥∥∥∥ 1
N

N∑
i=1

Bi − In
∥∥∥∥∥ 6 ε where B1, .., BN are independent copies of B.

If X is an isotropic random vector of Rn, put B = XX t then ‖PBP‖ = ‖PX‖2
2.

Therefore if X verifies the property (SR) appearing in [21], then B verifies property
(MSR). So applying Theorem 1.3 to B = XX t, we recover the covariance estimation
as stated in [21].

In order to apply our result, beside some examples, we investigate the notion of log-
concave matrices in relation with the definition of log-concave vectors. Moreover re-
marking some strong concentration inequalities satisfied by these matrices we are able,
using the ideas developed in the proof of the main theorem, to have some results with
high probability rather than only in expectation as is the case in the main result. This
will be discussed in the last section of the paper.

The paper is organized as follows: in section 2, we show how to prove Theorem 1.3
using two other results (Theorem 2.1, Theorem 2.2) which we prove respectively in
sections 3 and 4 using again two other results (Theorem 3.1, Theorem 4.1) whose proofs
are given respectively in sections 5 and 6. In section 7, we give some applications and
discuss the notion of log-concave matrices and prove some related results.

2. PROOF OF THEOREM 1.3

We first introduce a regularity assumption on the moments which we denote by
(MWR):

∃p > 1 such that E 〈Bx, x〉p 6 Cp ∀x ∈ Sn−1.

Note that by a simple integration of tails, (MSR) (with P a rank one projection) implies
(MWR) with p < 1 + η.

The proof of Theorem 1.3 is based on two theorems dealing with the smallest and

largest eigenvalues of
1
N

N∑
i=1

Bi.

Theorem 2.1. Let Bi n× n independent positive semi-definite random matrices verify-
ing EBi = In and (MWR) .
Let ε < 1, then for

N > 16 (16Cp)
1
p−1

n

ε
2p−1
p−1

we get

Eλmin
(

1
N

N∑
i=1

Bi

)
> 1− ε

C1(η) = (64c)1+ 2
η (1 + 1

η )
2
η ∨ 64(4c)

1
η (32 + 32

η )1+ 3
η ∨ 256(2c)

3
2 + 2

η (16 + 16
η )

4
η
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Theorem 2.2. Let Bi n× n independent positive semi-definite random matrices verify-
ing EBi = In and (MSR).
Then for any N we have

Eλmax

(
N∑
i=1

Bi

)
6 C(η).(n+N)

Moreover, for ε < 1 and N > C2(η) n

ε
2+ 2

η
we have

Eλmax

(
1
N

N∑
i=1

Bi

)
6 1 + ε

We will give the proof of these two theorems in sections 3 and 4 respectively. We
need also a simple lemma:

Lemma 2.3. Let 1 < r 6 2 and Z1, ..., ZN be independent positive random variables
with EZi = 1 and satisfying (EZr

i )
1
r 6M Then

E
∣∣∣∣∣ 1
N

N∑
i=1

Zi − 1
∣∣∣∣∣ 6 2M

N
r−1
r

.

Proof. Let (εi)i6N independent±1 Bernouilli variables. By symmetrization and Jensen’s
inequality we can write

E
∣∣∣∣∣ 1
N

N∑
i=1

Zi − 1
∣∣∣∣∣ 6 2

N
E
∣∣∣∣∣
N∑
i=1

εiZi

∣∣∣∣∣ 6 2
N
E
(

N∑
i=1

Z2
i

) 1
2

6
2
N
E
(

N∑
i=1

Zr
i

) 1
r

6
2
N

(
N∑
i=1

EZr
i

) 1
r

6
2M
N

r−1
r

�

Proof of Theorem 1.3. Take N > c(η) n

ε
2+ 2

η
satisfying conditions of Theorem 2.1 (with

p = 1 + η
2 ) and Theorem 2.2. Note that by the triangle inequality

∥∥∥∥∥ 1
N

N∑
i=1

Bi − In
∥∥∥∥∥ 6

∥∥∥∥∥ 1
N

N∑
i=1

Bi −
1
n

Tr
(

1
N

N∑
i=1

Bi

)
In

∥∥∥∥∥+
∥∥∥∥∥ 1
n

Tr
(

1
N

N∑
i=1

Bi

)
In − In

∥∥∥∥∥
:= α + β

C2(η) = 16c
1
η (32 + 32

η )1+ 3
η ∨ 16

√
2(4c)

3
2 + 2

η (8 + 8
η )

4
η
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Observe that

α = max
∣∣∣∣∣λ
(

1
N

N∑
i=1

Bi −
1
n

Tr
(

1
N

N∑
i=1

Bi

)
In

)∣∣∣∣∣
= max

[
λmax

(
1
N

N∑
i=1

Bi

)
− 1
n

Tr
(

1
N

N∑
i=1

Bi

)
,

1
n

Tr
(

1
N

N∑
i=1

Bi

)
− λmin

(
1
N

N∑
i=1

Bi

)]

Since the two terms in the max are non-negative, then one can bound the max by the

sum of the two terms. More precisely, we get α 6 λmax

(
1
N

N∑
i=1

Bi

)
−λmin

(
1
N

N∑
i=1

Bi

)
and by Theorem 2.1 and Theorem 2.2 we deduce that Eα 6 2ε.

Note that

β =
∣∣∣∣∣ 1
N

N∑
i=1

Tr(Bi)
n

− 1
∣∣∣∣∣ =

∣∣∣∣∣ 1
N

N∑
i=1

Zi − 1
∣∣∣∣∣ ,

where Zi = Tr(Bi)
n

. Since Bi satisfies (MWR), then taking r = min(2, 1 + η
2) we have

∀i 6 N, (EZr
i )

1
r 6

1
n

n∑
j=1

(E 〈Biej, ej〉r)
1
r 6 c(η).

Therefore Zi satisfy the conditions of Lemma 2.3 and we deduce that Eβ 6 ε by the
choice of N .

As a conclusion

E
∥∥∥∥∥ 1
N

N∑
i=1

Bi − In
∥∥∥∥∥ 6 Eα + Eβ 6 3ε

�

3. PROOF OF THEOREM 2.1

Given A an n × n positive semi-definite matrix such that all eigenvalues of A are
greater than a lower barrier lA = l i.e A � l.In, define the corresponding potential
function to be φl(A) = Tr(A− l.In)−1.
The proof of Theorem 2.1 is based on the following result which will be proved in
section 5:

Theorem 3.1. Let A � l.In and φl(A) 6 φ, B a positive semi-definite random matrix
satisfying EB = In and Property (MWR) with some p > 1.
Let ε < 1, if

φ 6
1

4 (8Cp)
1
p−1

ε
p
p−1

then there exist l′ a random variable such that
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A+B � l′.In, φl′(A+B) 6 φl(A) and El′ > l + 1− ε.

Proof of Theorem 2.1. We start with A0 = 0 and l0 = −n
φ

so that φl0(A0) = − n
l0

= φ.
Applying Theorem 3.1, one can find l1 such that

A1 = A0 +B1 � l1.In, φl1(A1) 6 φl0(A0)
and

El1 > l0 + 1− ε
Now apply Theorem 3.1 once again to find l2 such that

A2 = A1 +B2 � l2.In, φl2(A2) 6 φl1(A1)
and

El2 > l1 + 1− ε > l0 + 2(1− ε)
After N steps, we get Eλmin(AN) > ElN > l0 +N(1− ε). Therefore,

Eλmin

(
1
N

N∑
i=1

Bi

)
> 1− ε− n

Nφ

Taking N = n
εφ

, we get Eλmin

(
1
N

N∑
i=1

Bi

)
> 1− 2ε.

�

4. PROOF OF THEOREM 2.2

Given A an n×n positive semi-definite matrix such that all eigenvalues of A are less
than an upper barrier uA = u i.e A ≺ u.In, define the corresponding potential function
to be ψu(A) = Tr (u.In − A)−1.
The proof of Theorem 2.2 is based on the following result which will be proved in
section 6:

Theorem 4.1. Let A ≺ u.In and ψu(A) 6 ψ, B a positive semi-definite random matrix
satisfying EB = In and Property (MSR).
Let ε < 1, if

ψ 6 C3(η)ε1+ 2
η

there exists u′ a random variable such that

A+B ≺ u′.In, ψu′(A+B) 6 ψu(A) and Eu′ 6 u+ 1 + ε.

C3(η) =
[
8(2c)

1
η (16 + 16

η )1+ 3
η

]−1
∧
[
16(2c)

3
2 + 2

η (8 + 8
η )

4
η

]−1
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Proof of Theorem 2.2. We start with A0 = 0, u0 = n
ψ

so that ψu0(A0) = ψ.
Applying Theorem 4.1, one can find u1 such that

A1 = A0 +B1 ≺ u1.In, ψu1(A1) 6 ψu0(A0) and Eu1 6 u0 + 1 + ε.

Now apply Theorem 4.1 once again to find u2 such that

A2 = A1 +B2 ≺ u2.In, ψu2(A2) 6 ψu1(A1) and Eu2 6 u1 + 1 + ε.

After N steps we get Eλmax

(
N∑
i=1

Bi

)
6 EuN 6 u0 +N(1 + ε).

Taking N > n
εψ

= c′(η)−1 n

ε
2+ 2

η
, we deduce that

Eλmax

(
1
N

N∑
i=1

Bi

)
6 1 + 2ε

�

5. PROOF OF THEOREM 3.1

5.1. Notations. We are looking for a random variable l′ of the form l + δ where δ is a
positive random variable playing the role of the shift.

If in addition A � (l + δ).In, we will note :
Lδ = A− (l + δ).In � 0 so that Tr

(
B

1
2 (A− (l + δ).In)−1B

1
2
)

=
〈
L−1
δ , B

〉
.

λ1, .., λn will denote the eigenvalues of A and v1, .., vn the corresponding eigenvec-
tors. (vi)i6n are also the eigenvectors of L−1

δ corresponding to the eigenvalues 1
λi−(l+δ) .

5.2. Finding the shift. To find sufficient conditions for such δ exists, we need a matrix
extension of Lemma 3.4 in [7] which, up to a minor change, is essentially contained
in Lemma 20 in [9] and we formulate it here in Lemma 5.2. This method uses the
Sherman-Morrison-Woodbury formula:

Lemma 5.1. Let E be an n × n invertible matrix, C a k × k invertible matrix, U an
n× k matrix and V a k × n matrix. Then we have:

(E + UCV )−1 = E−1 − E−1U(C−1 + V E−1U)−1V E−1

Lemma 5.2. Let A as above satisfying A � l.In. Suppose that one can find δ > 0
verifying δ 6 1

‖L−1
0 ‖

and 〈
L−2
δ , B

〉
φl+δ(A)− φl(A) −

∥∥∥B 1
2L−1

δ B
1
2
∥∥∥ > 1

Then
λmin(A+B) > l + δ and φl+δ(A+B) 6 φl(A).
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Proof. First note that 1
‖L−1

0 ‖
= λmin(A) − l, so the first condition on δ implies that

λmin(A) > l + δ.
Now using Sherman-Morrison-Woodbury formula with E = Lδ, U = V = B

1
2 , C =

In we get :

φl+δ(A+B) = Tr (Lδ +B)−1

= φl+δ(A)− Tr
(
L−1
δ B

1
2
(
In +B

1
2L−1

δ B
1
2
)−1

B
1
2L−1

δ

)

6 φl+δ(A)−

〈
L−2
δ , B

〉
1 +

∥∥∥B 1
2L−1

δ B
1
2

∥∥∥
Rearranging the hypothesis, we get φl+δ(A+B) 6 φl(A).

�

Since ‖L−1
0 ‖ 6 Tr

(
L−1

0

)
= φl(A) and

∥∥∥B 1
2L−1

δ B
1
2

∥∥∥ 6 〈
L−1
δ , B

〉
then in order to

satisfy conditions of Lemma 5.2, we may search for δ satisfying:

(1) δ 6
1

φl(A) and

〈
L−2
δ , B

〉
φl+δ(A)− φl(A) −

〈
L−1
δ , B

〉
> 1

For t 6 1
φ

, let us note :

q1(t, B) =
〈
L−1
t , B

〉
= Tr

(
B(A− (l + t).In)−1

)
and

q2(t, B) =

〈
L−2
t , B

〉
Tr(L−2

t )
= Tr (B(A− (l + t).In)−2)

Tr (A− (l + t).In)−2

We have already seen in Lemma 5.2 that if t 6 1
φ
6 1
‖L−1

0 ‖
then A � (l + t).In so the

definitions above make sense. Since we have :

φl+δ(A)− φl(A) = Tr(A− (l + δ).In)−1 − Tr(A− l.In)−1

= δTr((A− (l + δ).In)−1(A− l.In)−1)
6 δTr(A− (l + δ).In)−2

In order to have (1), it will be sufficient to choose δ satisfying δ 6 1
φ

and

(2)
1
δ
q2(δ, B)− q1(δ, B) > 1
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q1 and q2 can be expressed as follows:

q1(t, B) =
n∑
i=1

〈Bvi, vi〉
λi − l − t

and q2(t, B) =
∑
i
〈Bvi,vi〉

(λi−l−t)2∑
i(λi − l − t)−2

φl(A) =
n∑
i=1

(λi − l)−1 6 φ so that (λi − l).φ > 1 for all i, then we have :

(1− t.φ)(λi − l) = λi − l − t.(λi − l).φ 6 λi − l − t 6 λi − l
therefore

q1(t, B) 6 (1− t.φ)−1q1(0, B)
and

(1− t.φ)2q2(0, B) 6 q2(t, B) 6 (1− t.φ)−2q2(0, B)

Lemma 5.3. Let s ∈ (0, 1) and take δ = (1− s)3q2(0, B)1{q1(0,B)6s}1{q2(0,B)6 s
φ
}. Then

A+B � (l + δ).In and φl+δ(A+B) 6 φl(A).

Proof. As stated before, it is sufficient to check that δ 6 1
φ

and 1
δ
q2(δ, B)−q1(δ, B) > 1.

If q1(0, B) > s or q2(0, B) > s
φ

then δ = 0 and there is nothing to prove since
φl(A+B) 6 φl(A).

In the other case i.e q1(0, B) 6 s and q2(0, B) 6 s
φ

, we have δ = (1− s)3q2(0, B).
So δ 6 (1− s)3 s

φ
6 1

φ
and

1
δ
q2(δ, B)− q1(δ, B) = 1

(1− s)3q2(0, B)q2(δ, B)− q1(δ, B)

>
1

(1− s)3q2(0, B)(1− δφ)2q2(0, B)− (1− δφ)−1q1(0, B)

>
(1− s)2

(1− s)3 −
s

(1− s) = 1

�

5.3. Estimating the random shift. Now that we have found δ, we will estimate Eδ
using the property (MWR). We will start by stating some basic facts about q1 and q2.

Proposition 5.4. Let as above A � l.In and φl(A) 6 φ, B satisfying (MWR). Then
we have the following :

(1) Eq1(0, B) = φl(A) 6 φ and Eq1(0, B)p 6 Cpφ
p.

(2) Eq2(0, B) = 1 and Eq2(0, B)p 6 Cp.
(3) P(q1(0, B) > u) 6 Cp(φu)p and P(q2(0, B) > u) 6 Cp

up
.
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Proof. Since EB = In then Eq1(0, B) = φl(A) and Eq2(0, B) = 1.
Now using the triangle inequality and Property (MWR) we get :

(Eq1(0, B)p)
1
p =

[
E
(

n∑
i=1

〈Bvi, vi〉
λi − l

)p] 1
p

6
n∑
i=1

(E 〈Bvi, vi〉p)
1
p

λi − l
6

n∑
i=1

C
1
p
p

λi − l
6 C

1
p
p φ

With the same argument we prove that Eq2(0, B)p 6 Cp. The third part of the propo-
sition follows by Markov’s inequality. �

Lemma 5.5. If δ is as in Lemma 5.3. Then

Eδ > (1− s)3

1− 2Cp
(
φ

s

)p−1


Proof. Using the above proposition and H
..
older’s inequality with 1

p
+ 1

q
= 1 we get :

Eδ = E(1− s)3q2(0, B)1{q1(0,B)6s}1{q2(0,B)6 s
φ
}

= (1− s3)
[
Eq2(0, B)− Eq2(0, B)1{q1(0,B)>s or q2(0,B)> s

φ
}
]

> (1− s)3

1− (Eq2(0, B)p)
1
p .

(
P
{
q1(0, B) > s or q2(0, B) > s

φ

}) 1
q


> (1− s)3

1− C
1
p
p

(
Cp

(
φ

s

)p
+ Cp

(
φ

s

)p) 1
q


> (1− s)3

1− 2Cp
(
φ

s

)p−1


�

Now it remains to make good choice of s and φ in order to finish the prove Theo-
rem 3.1. Take l′ = l + δ, the choice of δ being as before with s = ε

4 .
As we have seen, we get A+B � l′.In and φl′(A+B) 6 φl(A). Moreover,

El′ = l + Eδ > l + (1− s)3

1− 2Cp
(
φ

s

)p−1
 > 1− ε,

by the choice of φ. This ends the proof of Theorem 3.1.

6. PROOF OF THEOREM 4.1

6.1. Notations. We are looking for a random variable u′ of the form u+ ∆ where ∆ is
a positive random variable playing the role of the shift.

We will noteUt = (u+t).In−A so that Tr
(
B

1
2 ((u+ t).In − A)−1B

1
2
)

=
〈
Ut
−1, B

〉
.
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As before, λ1, .., λn will denote the eigenvalues of A and v1, .., vn the corresponding
eigenvectors. (vi)i6n are also the eigenvectors of U−1

t corresponding to the eigenvalues
1

u+t−λi .

6.2. Finding the shift. To find sufficient conditions for such ∆ exists, we need a matrix
extension of Lemma 3.3 in [7] which, up to a minor change, is essentially contained in
Lemma 19 in [9]. For the sake of completeness, we include the proof.

Lemma 6.1. Let A as above satisfying A ≺ u.In. Suppose that one can find ∆ > 0
verifying

(3)

〈
U−2

∆ , B
〉

ψu(A)− ψu+∆(A) +
∥∥∥B 1

2U−1
∆ B

1
2
∥∥∥ 6 1

Then
A+B ≺ (u+ ∆).In and ψu+∆(A+B) 6 ψu(A).

Proof. Since
〈
U−2

∆ , B
〉

and ψu(A)− ψu+∆(A) are positive, then by (3) we have

∥∥∥B 1
2U−1

∆ B
1
2
∥∥∥ < 1 and

〈
U−2

∆ , B
〉

1−
∥∥∥B 1

2U−1
∆ B

1
2

∥∥∥ 6 ψu(A)− ψu+∆(A)

First note that
∥∥∥B 1

2U−1
∆ B

1
2

∥∥∥ =
∥∥∥∥U− 1

2
∆ BU

− 1
2

∆

∥∥∥∥ < 1, so U
− 1

2
∆ BU

− 1
2

∆ ≺ In. Therefore

we get B ≺ U∆ which means that A+B ≺ (u+ ∆).In.
Now using the Sherman-Morrison-Woodbury (see Lemma 5.1) withE = U∆, U = V =
B

1
2 , C = In we get :

ψu+∆(A+B) = Tr (U∆ −B)−1

= ψu+∆(A) + Tr
(
U−1

∆ B
1
2
(
In −B

1
2U−1

∆ B
1
2
)−1

B
1
2U−1

∆

)

6 ψu+∆(A) +

〈
U−2

∆ , B
〉

1−
∥∥∥∥U− 1

2
∆ BU

− 1
2

∆

∥∥∥∥ 6 ψu(A)

�

We may now find ∆ satisfying (3). Let us note :

Q1(t, B) =
∥∥∥B 1

2U−1
t B

1
2
∥∥∥ =

∥∥∥B 1
2 ((u+ t).In − A)−1B

1
2
∥∥∥

and

Q2(t, B) =

〈
U−2
t , B

〉
ψu(A)− ψu+t(A) =

Tr
(
B ((u+ t).In − A)−2

)
ψu(A)− ψu+t(A)

Since Q1 and Q2 are both decreasing in t, we work with each separately. Precisely
fix θ ∈ (0, 1) and define ∆1,∆2 as follows :
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∆1 the smallest positive number such that Q1(∆1, B) 6 θ

and
∆2 the smallest positive number such that Q2(∆2, B) 6 1− θ

Now take ∆ = ∆1 + ∆2, then Q1(∆, B) +Q2(∆, B) 6 θ+ 1− θ = 1. So this choice
of ∆ satisfies (3) and it remains now to estimate ∆1 and ∆2 separately.

6.3. Estimating ∆1.

We may write Q1(∆1, B) =

∥∥∥∥∥∥
n∑
i=1

B
1
2viv

t
iB

1
2

u+ ∆1 − λi

∥∥∥∥∥∥.
Put ξi = B

1
2viv

t
iB

1
2 , µi = ψ(u − λi) and µ = ψ∆1. Denote PS the orthogonal pro-

jection on (vi)i∈S , clearly rank(PS) = |S|. Then we have :

E‖ξi‖ = 1

P
(∥∥∥∥∥∑

i∈S
ξi

∥∥∥∥∥ > t

)
= P (‖PSBPS‖ > t) 6 c

t1+η ∀t > c |S|

n∑
i=1

1
µi

= ψu(A)
ψ

6 1

µ is the smallest positive number such that
n∑
i=1

ξi
µi + µ

� θ

ψ
Id

We will need an analog of Lemma 3.5 appearing in [21]. We extend this lemma to a
matrix setting:

Lemma 6.2. Suppose {ξi}i6n are symmetric positive semi-definite random matrices
with E‖ξi‖ = 1 and :

P
(∥∥∥∥∥∑

i∈S
ξi

∥∥∥∥∥ > t

)
6

c

t1+η provided t > c|S| = c
∑
i∈S

E‖ξi‖.

for all subsets S ⊂ [n] and some constants c, η > 0. Consider positive numbers µi such
that

n∑
i=1

1
µi
6 1.

Let µ be the minimal positive number such that
n∑
i=1

ξi
µi + µ

� K · Id,

for some K > C = 4c. Then Eµ 6 c(η)
K1+η .
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We do not reproduce the proof here as it is a direct adaptation of the argument in [21]
to the matrix setting. Applying Lemma 6.2 we get Eµ 6 c(η)

(
ψ
θ

)1+η
, so that

(4) E∆1 6 c(η) ψ
η

θ1+η

6.4. Estimating ∆2.

Suppose θ 6 1
2 . Since ψu(A) − ψu+t(A) = t.Tr

(
(u.In − A)−1 ((u+ t).In − A)−1

)
we can write

Q2(t, B) =
∑
i
〈Bvi,vi〉

(u+t−λi)2

t
∑
i(u+ t− λi)−1(u− λi)−1 6

1
t

∑
i

〈Bvi,vi〉
(u+t−λi)(u−λi)∑

i(u+ t− λi)−1(u− λi)−1(5)

:= 1
t
P2(t, B)

First note that P2(t, B) can be written as
∑
i αi(t) 〈Bvi, vi〉 with

∑
i αi = 1. Having this

in mind, one can easily check that EP2(t, B) = 1 and

(6) EP2(t, B)1+ 3η
4 6 c(η),

where for the last inequality, we used the fact that B satisfies (MWR) with p = 1 + 3η
4 .

In order to estimate ∆2, we will divide it into two parts as follows:

∆2 = ∆21{P2(0,B)6 θ
4ψ }

+ ∆21{P2(0,B)> θ
4ψ }

:= H1 +H2

Let us start by estimating EH1. Suppose that P2(0, B) 6 θ
4ψ and denote

x = (1 + 4θ)P2(0, B).
Since ψu(A) 6 ψ, we have (u−λi).ψ > 1 ∀i and therefore u+x−λi 6 (1+xψ)(u−λi).
This implies that

P2(x,B) 6 (1 + xψ)P2(0, B).
Now write

Q2(x,B) 6 1
x
P2(x,B) 6 1 + xψ

x
P2(0, B) 6

1 + (1 + 4θ) θ4
1 + 4θ 6 1− θ,

which means that
∆21{P2(0,B)6 θ

4ψ} 6 (1 + 4θ)P2(0, B)
and therefore

(7) EH1 = E∆21{P2(0,B)6 θ
4ψ} 6 1 + 4θ

Now it remains to estimate EH2. For that we need to prove a moment estimate for
∆2. First observe that using (6) we have

P{∆2 > t} = P{Q2(t, B) > 1− θ} 6 P{P2(t, B) > t.(1− θ)} 6 c(η)
t1+ 3η

4
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By integration, this implies

E∆1+ η
2

2 =
∫ ∞

0
P{∆2 > t}(1 + η

2)t
η
2 dt 6

∫ 1

0
(1 + η

2)t
η
2 dt+

∫ ∞
1

c(η)
t1+ η

4
6 c(η)

Let p′ = 1 + η
2 , applying H

..
older’s inequality with 1

p′
+ 1

q′
= 1 we have :

EH2 = E∆21{P2(0,B)> θ
4ψ} 6

(
E∆p′

2

) 1
p′

(
P
{
P2(0, B) > θ

4ψ

}) 1
q′

(8)

6 c(η)
(ψ

θ

)1+ η
2

EP2(0, B)1+ η
2


1
q′

6 c(η)
(
ψ

θ

) η
2

Looking at (7) and (8) we have

E∆2 6 1 + 4θ + c(η)
(
ψ

θ

) η
2

Putting the estimates of ∆1 and ∆2 together we deduce

E∆ 6 1 + 4θ + c(η)
(
ψ

θ

) η
2

+ c(η) ψ
η

θ1+η

We are now ready to finish the proof. Take u′ = u+∆, ∆ being chosen as before with
θ = ε

8 . Then taking ψ = c(η)ε1+ 2
η with the constant depending on η properly chosen,

we get E∆ 6 1 + ε.

7. APPLICATIONS

In this section, we will show how to apply our main result. After giving examples,
we will discuss in details the case of log-concave matrices for which we give results
with high probability estimates. Let us first replace (MSR) with a stronger, but easier
to manipulate, property which we denote by (MSR∗). If B is an n × n positive semi-
definite random matrix such that EB = Id, we will say that B satisfies (MSR∗) if for
some η > 0:

P(Tr(PB) > t) 6 c

t1+η ∀t > c.rank(P ) and ∀P orthogonal projection of Rn.

Note that since ‖PBP‖ 6 Tr (PBP ) = Tr (PB), then (MSR∗) is clearly stronger
than (MSR).
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7.1. (2 + ε)-moments for the spectrum. Looking carefully at (MSR), one can see
that it implies regularity assumptions on the eigenvalues of B. Putting some indepen-
dence in the spectral decomposition of B, we will only need to use the regularity of the
eigenvalues. To be more precise, we have the following:

Proposition 7.1. Let B = UDU∗ be an n × n symmetric positive semi-definite ran-
dom matrix. Denote (αj)j6n the diagonal entries of D. Suppose that U and D are
independent and that (αj)j6n are independent and satisfy the following:

∀i 6 n, Eαi = 1 and (Eαpi )
1
p 6 c,

for some p > 2. Then B satisfies (MSR∗).

Proof. First note that since U and D are independent and Eαi = 1 then EB = Id. Let
k > 0 and P be an orthogonal projection of rank k on Rn, then Q = U∗PU is a random
orthogonal projection of rank k independent of D. Note that Tr (PB) = ∑

i6n qiiαi,
and now using Markov’s inequality we have for t > k,

P {Tr (PB) > t} 6 1
(t− k)pE

∣∣∣∣∣∣
∑
i6n

qii(αi − 1)

∣∣∣∣∣∣
p

Looking at the expectation with respect toD and using Rosenthal’s inequality (see [18])
we get

ED

∣∣∣∣∣∣
∑
i6n

qii(αi − 1)

∣∣∣∣∣∣
p

6 C(p) max


∑
i6n

qpiiE|αi − 1|p,
∑
i6n

q2
iiE|αi − 1|2


p
2


Taking in account that qii 6 1, which implies that for any l > 1,
∑
i q
l
ii 6 k, we deduce

that

E

∣∣∣∣∣∣
∑
i6n

qii(αi − 1)

∣∣∣∣∣∣
p

6 C(p)k
p
2

Instead of Rosenthal’s inequality, we could have used a symmetrization argument along-
side Khintchine’s inequality to get the estimate above.
One can easily conclude that B satisfies (MSR∗) with η = p

2 − 1. �

Applying Theorem 1.3, we can deduce the following proposition:

Proposition 7.2. Let B = UDU∗ be an n × n symmetric positive semi-definite ran-
dom matrix. Denote (αj)j6n the diagonal entries of D. Suppose that U and D are
independent and that (αj)j6n are independent and satisfy the following:

∀i 6 n, Eαi = 1 and (Eαpi )
1
p 6 c,

for some p > 2. Let ε < 1, then taking N = C(p) n

ε
2p
p−2

we have

E
∥∥∥∥∥ 1
N

N∑
i=1

Bi − In
∥∥∥∥∥ 6 ε where B1, .., BN are independent copies of B.
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7.2. From (SR) to (MSR). A random vector X in Rl is called isotropic if its covari-
ance matrix is the identity i.e EXX t = Id. In [21], an isotropic random vector X in Rl

was said to satisfy (SR) if for some η > 0,

P
(
‖PX‖2

2 > t
)
6

c

t1+η ∀t > c.rank(P ) and ∀P orthogonal projection of Rl.

We will show how to jump from this property dealing with vectors to the property
(MSR∗) dealing with matrices.

Proposition 7.3. Let A be an n×m random matrix and denote by (Ci)i6m its columns.
Suppose thatA′t =

√
m(Ct

1, .., C
t
m) is an isotropic random vector in Rnm which satisfies

property (SR). Then B = AAt verifies EB = In and Property (MSR∗).

Proof. For l 6 nm, one can write l = (j − 1)n + i with 1 6 i 6 n, 1 6 j 6 m. So
that the coordinates of A′ are given by a′l =

√
mai,j , and since A′ is isotropic we get

Eai,jar,s = 1
m
δ(i,j),(r,s).

The terms of B are given by bi,j =
m∑
s=1

ai,saj,s. We deduce that Ebi,j = δi,j and therefore

EB = In.
Let P be an orthogonal projection of Rn and put P ′ = Im ⊗ P . Clearly we have
‖P ′A′‖2

2 = mTr(PB) and rank(P ′) = m.rank(P ).
Let t > c.rank(P ) then mt > c.rank(P ′) and by property (SR) we have:

P
(
‖P ′A′‖2

2 > mt
)
6

c

(mt)1+η

This means that
P (Tr(PB) > t) 6 c

(mt)1+η

and therefore B satisfies (MSR∗). �

Remark 7.4. In [21], it was shown that an isotropic log-concave vector satisfies (SR).
We will discuss with details this notion for matrices in the next section.
In [1], it was shown that, with r properly chosen, an isotropic (−1

r
)-concave random

vector satisfies (SR). Therefore, one can adapt the results of the next section to the case
of (−1

r
)-concave random matrices.

7.3. From log-concave vectors to matrices. In this section, we will discuss in details
the case of log-concave matrices. After giving some tails estimate, we deduce results
with high probability. The methods will use tools developed in the proof of the main
theorem. Finally, we give an example of log-concave matrices and apply the results
obtained to these matrices.

Definition 7.5. Let A be an n ×m random matrix and denote by (Ci)i6m its columns.
We will say that A is an isotropic log-concave matrix if A′t =

√
m(Ct

1, .., C
t
m) is an

isotropic random vector in Rnm with a log-concave density with respect to the Lebesgue
measure in Rnm.
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Remark 7.6. Let (ai,j) the entries of A. Saying that A′ is isotropic means that

Eai,jak,l = 1
m
δ(i,j),(k,l)

This implies that for any n×m matrix M we have :

E 〈A,M〉A = ETr
(
AtM

)
A = 1

m
M.

One can view this as an analogue to an isotropic condition in the vector case: in fact if
A = X is a vector (i.e an n× 1 matrix), the above condition would be

E 〈X, y〉X = y for all y ∈ Rn.

which means that X is isotropic in Rn.

Proposition 7.7. LetA be an n×m isotropic log-concave matrix and denoteB = AAt.
Then for every orthogonal projection P on Rn we have a large deviation estimate for
Tr(PB)

P {Tr(PB) > c1t} 6 exp
(
−
√
t.m

)
∀t > rank(P ).

and a small ball probability estimate

P {Tr(PB) > c2ε.rank(P )} 6 εc2
√
m.rank(P ) ∀ε 6 1.

Proof. Let P an orthogonal projection on Rn and denote P ′ = Im⊗P . As we have seen
before Tr(PB) = ‖PA‖2

HS = 1
m
‖P ′A′‖2

2 and rank(P ′) = m.rank(P ). Using Paouris
result [16] for the isotropic log-concave vector A′, we have

P
{
‖P ′A′‖2

2 > c1u
}
6 exp

(
−
√
u
)
∀u > rank(P ′).

Let t > rank(P ) and write u = t.m. Since u > m.rank(P ) = rank(P ′) we have

P {m.Tr(PB) > c1t.m} 6 exp
(
−
√
t.m

)
which gives the large deviation estimate stated above.

For the small ball probability estimate, we use once again a result of Paouris [17]
dealing with isotropic log-concave vector:

P
{
‖P ′A′‖2

2 > c2ε.rank(P ′)
}
6 εc2

√
rank(P ′) ∀ε 6 1.

Writing this in terms of B and P , we easily get the conclusion. �

Now we will apply Theorem 1.3 to this class of matrices. We get the following:

Proposition 7.8. Let A be an n × m isotropic log-concave matrix. Then B = AAt

satisfies (MSR). Moreover ∀ε > 0, taking N > c(ε)n independent copies of B we
have

E
∥∥∥∥∥ 1
N

N∑
i=1

Bi − In
∥∥∥∥∥

2
6 ε.
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Proof. Note first that since A is isotropic in the sense of definition 7.5, then B = AAt

satisfies EB = In.
By proposition 7.7, B satisfies

P (Tr(PB) > c1t) 6 exp(−
√
tm) ∀t > rank(P ) and ∀P orthogonal projection of Rn.

and therefore (MSR). Applying theorem 1.3 we deduce the result. �

The probability estimate for these log-concave matrices are strong enough which al-
lows us to obtain some results with high probability rather than in expectation as is the
case above. Precisely, we can prove the following :

Proposition 7.9. Let ρ > 0 and N 6 nρ, A an isotropic log-concave matrix and
B = AAt. If m > [2(1 + ρ) log 2n]2, then with probability> 1−exp(−1

2
√
m) we have

λmax

(
N∑
i=1

Bi

)
6 2c1.(n+N).

Proof. The proof of proposition 7.9 follows the same idea as in the previous section.
We will only need the following property satisfied by our matrix B = AAt (using
Proposition 7.7 for a rank 1 projection):

P (〈Bx, x〉 > c1t) 6 exp(−
√
tm) ∀t > 1 and ∀x ∈ Sn−1.

Recall some notations :

A0 = 0, A1 = B1, A2 = A1 + B1, .., AN = AN−1 + BN =
N∑
i=1

Bi. u0 = 2c1.n, u1 =

u0 + 2c1, u2 = u1 + 2c1, .., uN = uN−1 + 2c1 and Ui = ui+1In − Ai, ∆ = 2c1 plays
the role of the shift which will no longer be random. Note ψui(Ai) = Tr (ui − Ai)−1

the corresponding potential function when Ai ≺ ui.In and ψ = ψu0(A0) = 1
2c1

.
Denote by =i the event "Ai ≺ ui.In and ψui(Ai) 6 ψ".

Clearly P (=0) = 1. Suppose now that =i is satisfied, as we have seen in Lemma 6.1
the following condition is sufficient for the occurrence of the event =i+1 :

Q2(2c1, Bi+1) +Q1(2c1, Bi+1) 6 1

Note that Q2(2c1, Bi+1) 6 1
2c1
P2(2c1, Bi+1), where P2 is defined in (5). Now denot-

ing λj the eigenvalues of Ai and vj the corresponding eigenvectors, taking the probabil-
ity with respect to Bi+1 one can write :
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P (Q2(2c1, Bi+1) +Q1(2c1, Bi+1) > 1) 6 P
( 1

2c1
P2(2c1, Bi+1) +Q1(2c1, Bi+1) > 1

)
6 P

( 1
2c1

P2(2c1, Bi+1) > 1
2

)
+ P

(
Q1(2c1, Bi+1) > 1

2

)

6 P

 n∑
j=1

〈Bi+1vj, vj〉
(ui+1 − λj)(ui − λi)

> c1

n∑
j=1

1
(ui+1 − λj)(ui − λi)


+ P

 n∑
j=1

〈Bi+1vj, vj〉
ui+1 − λj

>
1
2


6 P (∃j/ 〈Bi+1vj, vj〉 > c1) + P

(
∃j/ 〈Bi+1vj, vj〉 >

1
2ψ

)
6 2n.exp(−

√
m)

So we have shown that P (=i+1|=i) > 1− 2n.exp(−
√
m). Since Bi are independent

we have :

P
(
λmax

(
N∑
i=1

Bi

)
6 2c1.(n+N)

)
> P (=N)

> P (=N |=N−1)P (=N−1|=N−2) ..P (=0)
> 1− 2Nn.exp(−

√
m)

Proposition 7.9 follows by the choice of m. Note that the same method works when-
ever we have in (MSR) a probability less than 1

2nN .
�

Now using the small ball probability estimate alongside the large deviation given by
Proposition 7.7, we have also an estimate on the smallest eigenvalue.

Proposition 7.10. Let ρ > 0 and 4c1
c2
n < N 6 n1+ρ, A an n × m isotropic log-

concave matrix and B = AAt. If m >
[

2
c2

(2 + ρ) log(2n)
]2

, then with probability
> exp(− c2

2
√
m) we have

λmin

(
N∑
i=1

Bi

)
> −c1n+ c2

4 N

Proof. Here we only need the following two properties satisfyied by our matrix B :

P (〈Bx, x〉 > c1t) 6 exp(−
√
tm) ∀t > 1 and ∀x ∈ Sn−1.

and taking ε = 1
2 in Proposition 7.7

P
(
〈Bx, x〉 6 c2

2 t
)
6 exp(−c2

√
m) ∀x ∈ Sn−1.
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Recall some notations :

A0 = 0, A1 = B1, A2 = A1 + B1, .., AN = AN−1 + BN =
N∑
i=1

Bi. l0 = −c1.n, l1 =

l0+ c2
4 , l2 = l1+ c2

4 , .., lN = lN−1+ c2
4 and Li = Ai−li+1In, δ = c2

4 plays the role of the
shift which will no longer be random. Note φli(Ai) = Tr (Ai − li)−1 the corresponding
potential function when Ai � li.In and φ = φl0(A0) = 1

c1
. Note also that δ 6 φ since

c1 > 1 while c2 < 1 for obvious reasons.
Denote by =i the event "Ai � li.In and φ

i
(Ai) 6 φ".

Clearly P (=0) = 1. Suppose now that =i is satisfied, following what was done after
Lemma 5.2, condition (2) was sufficient for the occurrence of the event =i+1 :

4
c2
q2(c2

4 , Bi+1)− q1(c2

4 , Bi+1) > 1

Denoting λj the eigenvalues of Ai and vj the corresponding eigenvectors, taking the
probability with respect to Bi+1 one can write :

P
( 4
c2
q2(c2

4 , Bi+1)− q1(c2

4 , Bi+1) < 1
)
6

6 P
( 4
c2
q2(c2

4 , Bi+1) < 2
)

+ P
(
q1(c2

4 , Bi+1) > 1
)

6 P

 n∑
j=1

〈Bi+1vj, vj〉
(λj − li+1)2 <

c2

2

n∑
j=1

1
(λj − li+1)2

+ P

 n∑
j=1

〈Bi+1vj, vj〉
λj − li+1

> 1


6 P
(
∃j/ 〈Bi+1vj, vj〉 <

c2

2

)
+ P

(
∃j/ 〈Bi+1vj, vj〉 >

1
φ

)
6 2n.exp(−c2

√
m)

So we have shown that P (=i+1|=i) > 1−2n.exp(−c2
√
m). SinceBi are independent

we have :

P
(
λmin

(
N∑
i=1

Bi

)
> −c1n+ c2

4 N
)
> P (=N)

> P (=N |=N−1)P (=N−1|=N−2) ..P (=0)
> 1− 2Nn.exp(−c2

√
m)

Proposition 7.10 follows by the choice of m.

�

Combining the two previous propositions we get the following:

Corollary 7.11. Let A be an n ×m isotropic log-concave matrix. There exists c,C>0
universal constants such that if m > [C log(2n)]2, taking N = Cn copies of A then
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with probability > exp(−c
√
m) we have

c 6 λmin

(
1
N

N∑
i=1

AiA
t
i

)
6 λmax

(
1
N

N∑
i=1

AiA
t
i

)
6 C

7.3.1. Example of log-concave matrices.

For x ∈ Rk, we denote by x̂ the vector with components |xi| arranged in nonincreas-
ing order. Let f : Rk −→ R, we say that f is absolutely symmetric if f(x) = f(x̂) for
all x ∈ Rk. (For example, ‖ · ‖p is absolutely symmetric).
Define F a function on Mn,m by F (A) = f (s1(A), .., sk(A)) for A ∈ Mn,m and
k = min(n,m). It was shown by Lewis [13] that f is absolutely symmetric if and
only if F is unitary invariant and of this form. Moreover, f is convex if and only if F is
convex.
Let A be an n × m random matrix whose density with respect to Lebesgue measure
is given by G(A) = exp (−f (s1(A), .., sk(A))), where f is an absolutely symmetric
convex function. By the remark above, G is log-concave. This covers the case of ran-
dom matrices with density of the form exp (−∑i V (si(A))) where V is an increasing
convex function on R+. When V (x) = x2, this would be the gaussian unitary ensemble
GUE.
Let (ai,j) the entries of A. By a good normalization of f we can suppose that A satisfies

Eai,jak,l = 1
m
δ(i,j),(k,l)

To see this, fix (i, j) and (k, l) two different indexes. NoteDj = diag(1, ..,−1, .., 1) the
m ×m diagonal matrix where the −1 is on the jth term. Let E(i,k) is the n × n matrix
obtained by swapping the ith and kth rows in the identity matrix. Note also F(j,l) the
m×m matrix obtained by swapping the jth and lth rows in the identity matrix.

It is easy to see that ADj change the jth column of A to its opposite and keep the rest
unchanged. Note that ADj has the same singular values as A.

Similarly, E(i,k)AF(j,l) permute ai,j with ak,l and keep the other terms unchanged.
Note also that E(i,k)AF(j,l) has the same singular values as A.

Finally note that these two transformations has a Jacobian equal to 1, and since f
is absolutely symmetric these transformations which preserve the singular values don’t
affect the density.

If j 6= l, by a change of variables M = ADj the density is invariant and we have∫
ai,jak,lG(A)dA = −

∫
ai,jak,lG(A)dA
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Doing the change of variables M = DiA when i 6= k, we can conclude that

Eai,jak,l = 0 if (i, j) 6= (k, l)
Now by a change of variables M = E(i,j)AF(k,l) the density is invariant and we have∫

a2
i,jG(A)dA =

∫
a2
k,lG(A)dA

This implies that∫
a2
i,jG(A)dA = 1

nm

∑
k6n,l6m

∫
a2
k,lG(A)dA = 1

nm

∫
‖A‖2

HSG(A)dA

Now we may normalize f in order to make the previous term equal 1
m

. Suppose that

1
n

∫
‖A‖2

HSG(A)dA = c

Define f̂(x) = f(
√
cx)− nm log(

√
c) and Ĝ(A) = exp

(
−f̂(s1(A), .., sk(A))

)
.

Note that Ĝ is a probability density. Indeed, by the change of variables M =
√
cA

we have

∫
Ĝ(A)dA =

∫
exp

(
−f(
√
cs1(A), ..,

√
csk(A))

)
(
√
c)nmdA

=
∫

exp (−f(s1(M), .., sk(M))) dM = 1

Note also that Ĝ satisfies our isotropic condition. Indeed, by the same change of vari-
ables we can write

1
n

∫
‖A‖2

HSĜ(A)dA = 1
cn

∫
‖M‖2

HSG(M)dM = 1

As a conclusion, we can deduce that such matrices are isotropic log-concave. More-
over, since in this case EAtA = n

m
Im then we also have that

√
m
n
At is anm×n isotropic

log-concave matrix. We summarize this in the following proposition:

Proposition 7.12. Let A be an n × m random matrix whose density with respect to
Lebesgue is given by

G(A) = exp (−f(s1(A), ..., sk(A))) ,
where f is an absolutely symmetric convex function, properly normalized as above and
k = min(n,m). Then A is an isotropic log-concave matrix, and

√
n
m
At is an m × n

isotropic log-concave matrix.

Remark 7.13. In a similar way, one can prove that taking A an n×m random matrix
whose density with respect to Lebesgue is given by

G(A) = (f(s1(A), ..., sk(A)))−(k+r) ,
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where f is an absolutely symmetric convex function, properly normalized, r chosen as
in [1] and k = min(n,m), then A is an isotropic (−1

r
)-concave matrix.

Applying Proposition 7.10 and Proposition 7.9 for A and At we get:

Proposition 7.14. Let A be an n × m random matrix whose density with respect to
Lebesgue is given by

G(A) = exp (−f(s1(A), ..., sk(A))) ,
where f is an absolutely symmetric function, properly normalized as above and k =
min(n,m).
Suppose that n > [C log(2m)]2 and m > [C log(2n)]2, taking N = C max(n,m) then
with probability > 1− exp(−c

√
k) we have

c 6 λmin

(
1
N

N∑
i=1

AiA
t
i

)
6 λmax

(
1
N

N∑
i=1

AiA
t
i

)
6 C

and

c
n

m
6 λmin

(
1
N

N∑
i=1

AtiAi

)
6 λmax

(
1
N

N∑
i=1

AtiAi

)
6 C

n

m
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