C. Allery, A. Hambouni, D. Ryckelynck, and N. Verdon, A priori reduction method for solving the two-dimensional Burgers??? equations, Applied Mathematics and Computation, vol.217, issue.15, pp.6671-6679, 2011.
DOI : 10.1016/j.amc.2011.01.065

URL : https://hal.archives-ouvertes.fr/hal-00585095

J. A. Atwell and B. B. King, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations, Mathematical and Computer Modelling, vol.33, issue.1-3, pp.1-19, 2001.
DOI : 10.1016/S0895-7177(00)00225-9

G. Berkooz, P. Holmes, and J. L. Lumley, The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, Annual Review of Fluid Mechanics, vol.25, issue.1, pp.539-575, 1993.
DOI : 10.1146/annurev.fl.25.010193.002543

G. P. Brooks and J. M. Powers, A Karhunen???Lo??ve least-squares technique for optimization of geometry of a blunt body in supersonic flow, Journal of Computational Physics, vol.195, issue.1, pp.387-412, 2004.
DOI : 10.1016/j.jcp.2003.08.030

E. A. Christensen, M. Brons, and J. M. Sorensen, Evaluation of Proper Orthogonal Decomposition--Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows, SIAM Journal on Scientific Computing, vol.21, issue.4, pp.1419-1434, 2000.
DOI : 10.1137/S1064827598333181

S. P. Huang, S. T. Quek, and K. K. Phoon, Convergence study of the truncated Karhunen???Loeve expansion for simulation of stochastic processes, International Journal for Numerical Methods in Engineering, vol.8, issue.9, pp.1029-1072, 2001.
DOI : 10.1002/nme.255

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, vol.90, issue.1, pp.117-148, 2001.
DOI : 10.1007/s002110100282

L. Li, K. Phoon, and S. Quek, Comparison between Karhunen???Lo??ve expansion and translation-based simulation of non-Gaussian processes, Computers & Structures, vol.85, issue.5-6, pp.264-76, 2007.
DOI : 10.1016/j.compstruc.2006.10.010

X. Ma and N. Zabaras, Kernel principal component analysis for stochastic input model generation. Comptes rendus de l'Académie des sciences de Paris, 1945.

Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics, vol.228, issue.6, pp.1862-1902, 2009.
DOI : 10.1016/j.jcp.2008.11.024

A. Nouy and O. P. Le-maître, Generalized spectral decomposition for stochastic nonlinear problems, Journal of Computational Physics, vol.228, issue.1, pp.202-235, 2009.
DOI : 10.1016/j.jcp.2008.09.010

K. K. Phoon, S. P. Huang, and S. T. Quek, Implementation of Karhunen???Loeve expansion for simulation using a wavelet-Galerkin scheme, Probabilistic Engineering Mechanics, vol.17, issue.3, pp.293-303, 2002.
DOI : 10.1016/S0266-8920(02)00013-9

K. K. Phoon, S. P. Huang, and S. T. Quek, Simulation of strongly non-Gaussian processes using Karhunen???Loeve expansion, Probabilistic Engineering Mechanics, vol.20, issue.2, pp.188-198, 2005.
DOI : 10.1016/j.probengmech.2005.05.007

C. Schwab and R. Todor, Karhunen???Lo??ve approximation of random fields by generalized fast multipole methods, Journal of Computational Physics, vol.217, issue.1, pp.100-122, 2006.
DOI : 10.1016/j.jcp.2006.01.048

P. D. Spanos and B. A. Zeldin, Galerkin Sampling Method for Stochastic Mechanics Problems, Journal of Engineering Mechanics, vol.120, issue.5, pp.1091-1106, 1994.
DOI : 10.1061/(ASCE)0733-9399(1994)120:5(1091)

P. D. Spanos, M. Beer, and J. Red-horse, Karhunen???Lo??ve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel, Journal of Engineering Mechanics, vol.133, issue.7, pp.773-779, 2007.
DOI : 10.1061/(ASCE)0733-9399(2007)133:7(773)

B. Wen and N. Zabaras, A multiscale approach for model reduction of random microstructures, Computational Materials Science, vol.63, pp.269-285, 2012.
DOI : 10.1016/j.commatsci.2012.06.021

M. M. Williams, The eigenfunctions of the Karhunen???Loeve integral equation for a spherical system, Probabilistic Engineering Mechanics, vol.26, issue.2, pp.202-207, 2011.
DOI : 10.1016/j.probengmech.2010.07.009

S. Q. Wu and S. S. Law, Statistical moving load identification including uncertainty, Probabilistic Engineering Mechanics, vol.29, pp.70-78, 2012.
DOI : 10.1016/j.probengmech.2011.09.001

R. Ghanem and P. D. Spanos, Polynomial Chaos in Stochastic Finite Elements, Journal of Applied Mechanics, vol.57, issue.1, pp.197-202, 1990.
DOI : 10.1115/1.2888303

R. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, rev, 2003.
DOI : 10.1007/978-1-4612-3094-6

M. Arnst, R. Ghanem, and C. Soize, Identification of Bayesian posteriors for coefficients of chaos expansions, Journal of Computational Physics, vol.229, issue.9, pp.3134-3154, 2010.
DOI : 10.1016/j.jcp.2009.12.033

URL : https://hal.archives-ouvertes.fr/hal-00684317

S. Das, R. Ghanem, and S. Finette, Polynomial chaos representation of spatio-temporal random fields from experimental measurements, Journal of Computational Physics, vol.228, issue.23, pp.8726-8751, 2009.
DOI : 10.1016/j.jcp.2009.08.025

C. Desceliers, R. Ghanem, and C. Soize, Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, vol.11, issue.6, pp.978-1001, 2006.
DOI : 10.1002/nme.1576

URL : https://hal.archives-ouvertes.fr/hal-00686154

C. Desceliers, C. Soize, and R. Ghanem, Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests, Computational Mechanics, vol.60, issue.5, pp.831-838, 2007.
DOI : 10.1007/s00466-006-0072-7

URL : https://hal.archives-ouvertes.fr/hal-00686150

R. G. Ghanem and A. Doostan, On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data, Journal of Computational Physics, vol.217, issue.1, pp.63-81, 2006.
DOI : 10.1016/j.jcp.2006.01.037

Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, AIP Conference Proceedings, pp.560-586, 2007.
DOI : 10.1063/1.2149785

G. Perrin, C. Soize, D. Duhamel, and C. Funfschilling, Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations, SIAM Journal on Scientific Computing, vol.34, issue.6, pp.2917-2945, 2012.
DOI : 10.1137/11084950X

URL : https://hal.archives-ouvertes.fr/hal-00770006

C. Soize, Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.33-36, pp.2150-2164, 2010.
DOI : 10.1016/j.cma.2010.03.013

URL : https://hal.archives-ouvertes.fr/hal-00684324

C. Soize, Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions, International Journal for Numerical Methods in Engineering, vol.80, issue.21-26, pp.939-970, 2010.
DOI : 10.1002/nme.2712

URL : https://hal.archives-ouvertes.fr/hal-00684322