
HAL Id: hal-00806394
https://hal-upec-upem.archives-ouvertes.fr/hal-00806394

Submitted on 30 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear reduced order modeling of complex wing
models

X.Q. Wang, R. A. Perez, M. P. Mignolet, R. Capillon, Christian Soize

To cite this version:
X.Q. Wang, R. A. Perez, M. P. Mignolet, R. Capillon, Christian Soize. Nonlinear reduced order
modeling of complex wing models. 54th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural
Dynamics, and Materials Conference and Co-located Events (SDM 2013), AIAA/ASME/ASCE/AHS/
ASC, Apr 2013, Boston, Massachusetts, United States. pp.1-14. �hal-00806394�

https://hal-upec-upem.archives-ouvertes.fr/hal-00806394
https://hal.archives-ouvertes.fr


 
American Institute of Aeronautics and Astronautics 

 
 

1 

Nonlinear Reduced Order Modeling of Complex Wing 
Models  

X.Q. Wang1, Ricardo A. Perez2, Marc P. Mignolet3 
Arizona State University, Tempe, AZ 85287 

Rémi Capillon4, and Christian Soize5 
Université Paris-Est, 77454 Marne-la-Vallee, France 

The focus of this paper is on the identification of nonlinear reduced order models for the 
prediction of the geometrically nonlinear structural response of cantilevered  structures, 
including the wing of the Predator. These models represent the extension to large 
displacements/rotations of the modal models used in the linear range. The identification of 
their coefficients is carried out here from a full finite element model of the structure in a 
commercial software, Nastran was used in the present effort. Issues encountered in the past 
in successfully carrying out this identification are revisited and clarified. The development of 
a nonlinear reduced order model for the Predator is then performed and validated 
demonstrating the capabilities of these reduced order models in connection with complex 
structural models. 

I. Introduction 
any novel aircraft designs, such as the Predator and its successors, see Fig. 1, involve very high aspect 
ratio/very flexible wings that are likely to undergo large deformations when subjected to the aerodynamic 

forces expected during flight. The aeroelastic analysis of such vehicles is thus rendered difficult by the need to 
account for the nonlinear geometric effects induced by these large deformations. While such computations can be 
carried out with full finite element models, they are notably more difficult than their counterparts for the linear 
structure in which modal techniques can be used to dramatically simplify the structural model. 
 

 
Figure 1. General Atomics Predator Unmanned Aircraft System (UAS) [1]. 

 
Nonlinear reduced order models, which are the equivalent to nonlinear geometric problems of the modal methods 

of linear structures, can be used instead of the full finite element model to provide a compact structural dynamic 
model that is straighforward to couple with the aerodynamic solver (linear or CFD). Of particular interest here are 
the nonlinear reduced order modeling methods which proceed non-intrusively from a full finite element model 
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developed in a standard commercial code (Nastran will be used here), see [2] for a very recent review. These 
methods have progressed steadily over the last few years and have reached the point at which rather complex 
structural models can be very successfully modeled, such as the 96,000 degree-of-freedom 9-bay panel of Fig. 2, see 
[3] for modeling discussion. 

The applications of these nonlinear reduced order modeling methods have primarily focused on panel-like 
structures and thus with all around supports (e.g. clamps) with the exception of [4] which focused on flat 
cantilevered structures, e.g. wing-like models. It was pointed out in that investigation that: 
(i) there exists an inconsistency between the reduced order modeling approach which assumes that the material is 

linearly elastic in that the Green strain and the second Piola-Kirchhoff stress are linearly related (by the elasticity 
tensor) while typical commercial finite element codes based on updated Lagrangian formulations are akin to 
assuming the linear relationship between the Almansi strain and Cauchy stress tensors. These two assumptions 
are incompatible except in the linear, small deformation case. 

(ii) there exists some purely numerical issues that are specific to cantilevered structure as the magnitude of their 
corresponding geometric nonlinearity is typically much smaller than for fully supported structures. An approach 
to avoid these numerical issues was demonstrated. 

 

 
Figure 2. Finite element model of a 9-bay fuselage sidewall panel. 

 
The focus of the present investigation is on extending the recent successes obtained with complex structures, see 

[3] and Fig. 2, to wing models. To this end, a revisit of the flat cantilevered beam will first be accomplished which 
will demonstrate the effects of the inconsistency discussed in (i) above and suggests a mitigation strategy. Next, a 
cantilevered curved beam will be considered to demonstrate the well foundedness of this strategy to curved 
structures. Finally, an extensive modeling of the wing of the Predator UAS of Fig. 1 will be carried which 
demonstrates the accuracy and effectiveness of the proposed nonlinear reduced order modeling method.   

II. Nonlinear Reduced Order Modeling Overview 
The reduced order modeling techniques considered here are based on the following modal-like representation of the 
nonlinear geometric response of the structure 

                                                                    ( ) ( )∑
=

ψ=
M

n

n
n tqtu

1

)(                                           (1) 

where ( )tu  denotes the time varying vector of displacements of all finite element degrees of freedom. Further, the 

vectors )(nψ  are specified, constant basis functions and ( )tqn  are the corresponding time dependent generalized 

coordinates. 
In this light, there are three key aspects in the development of nonlinear reduced order models: 

(a) the selection of the basis functions )(nψ , 

(b) the derivation of the governing (differential) equations for the generalized coordinates ( )tqn .  
In fact, these governing equations will be found to be parametric, i.e. their form is the same (generalized Duffing 

equations) for all structures and all basis functions but the parameters they involve will depend on both structure 
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and basis functions, exactly as the stiffness matrix in linear systems. Thus, the third key aspect is: 
(c) the determination of the parameters of the governing equations of (b). 

Note that steps (a) and (c) will be achieved non-intrusively from a commercial finite element model. 
These three aspects of the nonlinear reduced order modeling technique will be briefly reviewed in the next 

sections. 

A. Selection of the Basis  
The appropriate selection of the basis functions )(nψ  is critical for the accuracy of the reduced order model 

predictions. If the response of the full finite element model is not well represented within the basis, a poor prediction 
generally results. Yet, constructing a reliable basis is notably more difficult than it is for a linear structure where the 
basis is composed of the modes in the frequency band of the excitation which exhibit a sufficiently large modal 
force. 

Clearly, the basis functions required to model a nonlinear geometric response do include those used for the 
corresponding linear problem, but others are also needed to capture the difference in physical behavior induced by 
the nonlinearity. This situation is particularly clear in shell-like structures subjected to transverse loadings in which 
the linear response is predominantly transverse while the tangential/in-plane displacement field provides the 
important “membrane-stretching” effect ( see [2,6,7] for discussion). 

This issue was addressed in [5] through an additional set of basis functions referred to as dual modes aimed at 
capturing the membrane stretching effects. The key idea in this approach is to first subject the structure to a series of 
“representative” static loadings, and determine the corresponding nonlinear displacement fields. Then, extract from 
them additional basis functions, the “dual modes”. More specifically, it was argued in [5] that the representative 
static loadings should be selected to excite primarily the linear basis modes and, in fact, in the absence of geometric 
nonlinearity (i.e. for a linear analysis) should only excite these modes. 

The specific details of the construction of the dual modes from the finite element model can be found in [2,3,5]. 
Once found, they will be appended to the modes that would be used in the linear case to form the basis for the 
representation of the nonlinear response. 

B. Governing Equations for the Genralized Coordinates 
A detailed derivation of the governing equations for the generalized coordinates  ( )tqn  is presented in [2,5]. A 

brief review is presented here to support the inconsistency discussion, item (i) of section I. The desired governing 
equations are derived from the equations of finite deformation elasticity in the undeformed configuration 0Ω . 

Specifically, the equations of motion for an infinitesimal element are (summation is implied over repeated indices) 

                             ( ) iijkij
k

ubSF
X

0
0

0 ρ=ρ+
∂
∂                                                     (2) 

where S  is the second Piola-Kirchhoff stress tensor, 0ρ  denotes the density in the reference configuration, and 0b  

is the vector of body forces, all of which are assumed to depend on the position 0Ω∈X . In Eq. (2), F  denotes the 
deformation gradient tensor of components 

                                
j

i
ij

j

i
ij X

u
X
x

F
∂
∂

+δ=
∂
∂

=                                                                 (3) 

where ijδ  is the Kronecker delta and Xxu −=  is the displacement vector, x being the position vector in the 

deformed configuration. The material is assumed here to be linear elastic in that S  and E  (the Green strain tensor) 
satisfy 
           klijklij ECS =                                                                       (4) 

where C  is a fourth order elasticity tensor, function in general of the undeformed coordinates X . 

    In parallel to its discrete counterpart in Eq. (1), the displacement field iu  in the continuous structure is sought in 
the modal-like representation 

                          ( ) ( ) ( )∑
=

=
M

n

n
ini XUtqtXu

1

)(,          i = 1,2,3                                           (5) 
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where ( )XU n
i

)(  are specified, constant basis functions satisfying the boundary conditions also in the undeformed 
configuration.   

A set of nonlinear ordinary differential equations governing the evolution of the generalized coordinates ( )tqn  
can then be obtained by introducing Eq. (5) in Eqs (2)-(4) and imposing (Galerkin approach) the error to be 
orthogonal to the basis. This process leads [5] to the requisite reduced order model equations 

              ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1( .                                         (6) 

Note in Eq. (6) that a linear damping term jij qD   has been added to collectively represent various dissipation 

mechanisms. Further, ijM  denotes the elements of the mass matrix, )1(
ijK , )2(

ijlK , )3(
ijlpK  are the linear, quadratic, and 

cubic stiffness coefficients and iF  are the modal forces. 
Equations (6) are the desired governing equations. Note that their form (cubic nonlinearity on stiffness, or 

generalized Duffing) is the same irrespectively of the structure considered or the basis adopted to represent its 
motion. What does depend on the structure and the basis are the stiffness coefficients and their identification from 
the finite element model represents the last key step below.   

C. Identification of the Stiffness Coefficients  
The identification of the linear, quadratic, and cubic stiffness coefficients from a finite element model given a 

basis has been reviewed in details in [2] with a novel approach based on the availability of the tangent stiffness 
matrix described and validated in [3]. These strategies can broadly be divided into those in which the responses to a 
prescribed set of loads is used and those which rely on imposed sets of displacements and the forces that are 
required to accomplish them. The latter approach is followed here. 

To exemplify its applications, assume first that a static displacement field (no summation over n) 
                    )(n

nqu ψ=                                   (7)     

is imposed on the structure. Introducing this equality in Eq. (6) leads to the relation 

          ininnnninnnin FqKqKqK =++ 3)3(2)2()1(  (no sum on n)                                     (8) 
where iF  denotes the modal forces obtained by projecting the finite element forces necessary to induce the 

displacement of Eq. (7) on the basis )(iψ . 

Imposing similar displacement fields but of different magnitudes, i.e. 
                )(ˆˆ n

nqu ψ=             and                 )(~~ n
nqu ψ=                                            (9) 

leads to the equations 

               ininnnninnnin FqKqKqK ˆˆˆˆ 3)3(2)2()1( =++
 
(no sum on n)                           (10) 

and 

                                    ininnnninnnin FqKqKqK ~~~~ 3)3(2)2()1( =++  (no sum on n).                  (11) 

In fact, Eqs (8), (10), and (11) form a system of equations for the coefficients )1(
inK , )2(

innK , and )3(
innnK  for all i. 

Repeating this effort for  n = 1, ..., M  thus yields a first set of stiffness coefficients. 
Proceeding similarly but with combinations of two basis functions, i.e. 

                                            )()( m
m

n
n qqu ψ+ψ=    m > n                                                       (12) 

and relying on the availability of the coefficients )1(
inK , )2(

innK , )3(
innnK  and )1(

imK , )2(
immK , )3(

immmK  determined above, 

leads to equations involving the three coefficients )2(
inmK , )3(

innmK , and )3(
inmmK . Thus, imposing three sets of 

displacements of the form of Eq. (12) provides the equations needed to also identify )2(
inmK , )3(

innmK , and )3(
inmmK . 

Finally, imposing displacement fields as linear combinations of three modes, i.e. 
                                      )()()( r

r
m

m
n

n qqqu ψ+ψ+ψ=     r > m > n                                  (13) 
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permits the identification of the last coefficients, i.e. )3(
inmrK . 

III. Flat Cantilever Beam  

A. Background and Properties  
The symmetry of any flat isotropic structure in the transverse direction implies a series of properties. First, the 

modes of the linear structure decouple into purely transverse and purely inplane modes, with the former retained in 
the reduced order model. Further, the dual modes as described in [2,3,5] will exhibit only inplane motions. Then, 
relying again on the symmetry of the structure and the above properties of the modes, it can be shown that all 

coefficients of the type )1(
tdK , )1(

dtK , )2(
tttK , )2(

tddK , )2(
dtdK , )3(

tdddK , )3(
dtddK , )3(

tttdK , and )3(
dtttK  must vanish for any 

transverse mode t or combination thereof and any dual mode d or combination thereof. The governing equations for 
a one transverse (mode 1) one dual (mode 2) reduced order model (1T1D model) are thus 
      1

3
1

)3(
1111

2
21

)3(
112221

)2(
1121

)1(
11111111 FqKqqKqqKqKqCqM =+++++              (14) 

           2
3
2

)3(
22222

2
1

)3(
2112

2
2

)2(
222

2
1

)2(
2112

)1(
22222222 FqKqqKqKqKqKqCqM =++++++  .     (15) 

Equations (14) and (15) are an exact 2-mode representation of the motions. These equations are often 
approximated by neglecting the nonlinear terms of the inplane generalized coordinate 2q  based either on (i) the use 
of the von Karman strain equations or (ii) on their expected “small” effect on the response as the inplane motions are 
“small”. This assumption leads to the approximate model (referred to as “cleaned” model in the sequel) 
     1

3
1

)3(
111121

)2(
1121

)1(
11111111 FqKqqKqKqCqM =++++                   (16) 

     2
2
1

)2(
2112

)1(
22222222 FqKqKqCqM =+++   .                  (17) 

For loadings that are either static or dynamic but with low excitation frequency, the dynamic terms of the inplane 
generalized coordinate are often neglected (this is exact for static problems, approximate for dynamic ones) resulting 
in the simplified version of Eq. (17) 
           2

2
1

)2(
2112

)1(
22 FqKqK =+ .                       (18) 

This equation can be solved for 2q  which can then be reintroduced in Eq. (16) to yield 

      1
3
1)1(

22

)2(
211

)2(
112)3(

111112)1(
22

)2(
112)1(

11111111 Fq
K

KK
KqF

K

K
KqCqM =












−+












+++  .               (19) 

The two terms in brackets in the above equation represent the equivalent linear and cubic stiffnesses of the 
transverse motions. No quadratic term is present owing to the symmetry of the structure. The cubic stiffness term 
was of particular interest in [4] where it was shown that its value  

          
)1(

22

)2(
211

)2(
112)3(

1111
)3(

1111
ˆ

K

KK
KK −=                       (20) 

is much less, by four to five orders of magnitude in fact, than the “uncondensed” value )3(
1111K . This observation 

indicates that the accuracy with which )3(
1111K̂  will be estimated is much less than that of the parameters it involves, 

e.g. )3(
1111K . Yet, )3(

1111K̂  must be accurately identified as it is the only nonlinear term in Eq. (19) and stability requires 

a stiffening behavior, i.e. )3(
1111K̂ ≥ 0. 

This identification challenge was resolved in [4] by estimating and combining two different models. The first is a 
cleaned model of the form of Eqs (16) and (17) involving both transverse and inplane motions. The second is a 
condensed model as in Eq. (19) which led to a positive identified value of )3(

1111K̂  from which the parameter )3(
1111K  

was then determined using Eq. (20). This methodology was delineated in [4] for reduced order models involving 
arbitrary numbers of transverse and dual modes and was validated on a series of flat beams and plate structures, an 
excellent matching of full finite element results being obtained. 



 
American Institute of Aeronautics and Astronautics 

 
 

6 

Since the procedure of [4] relies extensively on Eqs (16) and (17), it is technically not applicable to curved 
structures for which Eqs (14) and (15), and thus Eqs (16) and (17), are not valid owing to non vanishing parameters 

)1(
tdK , )1(

dtK , )2(
tttK , )2(

tddK , etc. Further, the separation of the modes into “transverse” and “inplane” is also unclear.  
The initial focus of the revisit of the cantilever beam studied in [4], see Table 1 for dimensions and properties, was 

thus the search for an estimation procedure of the reduced order model parameters that would lead to a stable model, 
yet would not be dependent upon the symmetry properties assumed above. 

 
Table 1. Flat Cantilevered Beam Properties 

Beam Length 0.2286 m 
Cross-section Width 0.0127 m 
Cross-section Thickness 7.75 10-4 m 
Mass per unit length 7875 kg/m3 
Young’s Modulus 205,000 MPa 
Shear Modulus 80,000 MPa 

B. Reduced Order Models and Their Stability   
Proceeding in increasing order of complexity, a 2-mode (1T1D) model was first considered that is constructed 

with the first bending mode (transverse motion) of the beam and its associated dual. The stiffness parameters of this 
model were determined using the imposed displacements approach of section II.C but this first model was found to 
be unstable. 

Next, the value of )3(
1111K̂  was computed from Eq. (20) to assess whether this stability problem resulted from an 

effective softening ( )3(
1111K̂  <0) but this parameter was determined to be positive indicating a small but definite 

stiffening of the system. As a confirmation, the corresponding cleaned model of Eqs (16) and (17) was found to be 
stable. A similar effort was carried out with a 4-transverse 4-dual (4T4D) model exhibiting the same modes as in [4] 
and again the cleaned model was found to be stable. In fact, this model provided an excellent match of both 
transverse and inplane deflections computed by Nastran for the beam subjected to a single transverse tip force, see 
Fig. 3. 
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Figure 3. Comparison of Nastran and the cleaned 4T4D reduced order model. (a) transverse displacement; 

(b) inplane displacement. Cantilever beam with tip force. 
 
These findings indicate that the instability originates from a different mechanism and two sources were 

considered, i.e. from 
(i) the “small” nonlinear terms in the generalized coordinate 2q  that are present in Eqs (14) and (15) but were 

neglected in Eqs (16) and (17), and/or 
(ii) the terms that should be zero due to symmetry but were identified to be small but nonzero. 

To assess option (1), the response of the model of Eqs (14) and (15) was sought with the identified parameter 
values and instability of this model was indeed observed for transverse displacements of the order of 4% of the span 
(corresponding to more than 10 thicknesses). This finding was rather puzzling as the terms present in these 
equations but neglected when obtaining Eqs (16) and (17) seemed much smaller than those kept. 
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One possibility was that these terms were not identified properly thus leading to a fictitious instability problem. In 
this context, there are symmetry relations existing between model parameters, see [2,5], that arise from the existence 
of a potential energy associated with the structural deformations. These symmetry relations indicate that one should 
have )3(

2112
)3(

1122 KK = . These values were found to be 1317.2 +− E  and 1313.2 +− E  which are close enough to each 
other (2% difference) to suggest that these identified values were accurate. In fact, the identification was repeated 
under a series of different conditions and the values of )3(

1122K  and )3(
2112K  were consistently found around -2.1E+13. 

No symmetry condition exists for either )2(
222K  or )3(

2222K which could not thus be validated in this manner, see 
section C below for a separate validation. 

To better understand the occurrence of the instability, the four small terms were reintroduced in turn starting with 
the largest ones in magnitude, i.e. those associated with )3(

1122K  and )3(
2112K  leading to the model 

      1
3
1

)3(
1111

2
21

)3(
112221

)2(
1121

)1(
11111111 FqKqqKqqKqKqCqM =+++++                  (21) 

                  22
2
1

)3(
2112

2
1

)2(
2112

)1(
22222222 FqqKqKqKqCqM =++++  .                        (22) 

Then, the relation between transverse excitation and transverse response was determined to clarify the nature of 
the instability. This analysis was carried out under static conditions and without inplane force, i.e. with 2F = 0. 
Then, Eq. (22) can be used to solve for 2q  in closed form as 

                   
2
1

)3(
2112

)1(
22

2
1

)2(
211

2
qKK

qK
q

+
−= .                              (23) 

Reintroducing this expression in Eq. (21) leads to the desired relation between 1q  and 1F  in the form 

      
[ ]

[ ] 1
3
1

)3(
111122

1
)3(

2112
)1(

22

5
1

2)2(
211

)3(
1122

2
1

)3(
2112

)1(
22

3
1

)2(
211

)2(
112

1
)1(

11 FqK
qKK

qKK

qKK

qKK
qK =+

+
+

+
− .                 (24) 

This complex relation is displayed graphically in Fig. 4 for a variety of values of )3(
2112

)3(
1122 KK =  for the flat beam 

under consideration. Note that the curve ( )111 qFF =  exhibits a maximum for negative values of )3(
2112

)3(
1122 KK = , 

indicating that no static solution exists for the transverse force exceeding this maximum. These observations were 
not affected by the other two small terms, the exact model of Eqs (14) and (15) exhibiting the same feature. Yet, 
such a solution is predicted by the full finite element model (Nastran here)! 

A different perspective on the above issues can be obtained by analyzing the tangent stiffness matrix, KT, which 
can be extracted in Nastran through a DMAP alter but can also be computed for the reduced order model. If the 
lowest eigenvalue of this matrix is positive, the system is stable. 
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Figure 4. Transverse force vs. transverse displacement for the first mode of the cantilever beam, Nastran 

results and reduced order models with different )3(
1122K  values. 
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Plotted in Fig. 5(a) as functions of the load are the first eigenvalues of the original 1T1D model, as compared with 
Nastran results generated by imposing transverse displacements proportional to the first (dominant) transverse mode 
at various levels. It can be seen that the eigenvalues of the 1T1D model are negative at most of the levels (actually it 
is positive only at the level of 1% of the span, where the model is stable), while the Nastran eigenvalues are positive. 
When the 1T1D model is cleaned, the first eigenvalues become positive as seen from Fig. 5(b). However, the curve 
of the cleaned 1T1D model does not match the Nastran curve. 
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Figure 5. Comparison of first eigenvalues of tangent stiffness matrices from Nastran and the full 1T1D 

model. (a) the original 1T1D model; (b) the cleaned 1T1D model. 
 

It was next desired to assess the effects of the parameter )3(
1122K  (which is set equal to )3(

2112K ) on these 

eigenvalues. Then, shown in Fig. 6 are the curves of the first eigenvalue for various )3(
1122K  values. Firstly, when 

keeping the )3(
1122K  and )3(

2112K  values as in the original 1T1D model, the eigenvalues (the solid red line) are positive 

up to the level of 15% of the span then become negative. If we set these parameters equal to -2.17E+13 (i.e. )3(
2112K  

changed from -2.13E+13 to -2.17E+13), the eigenvalues become negative at the level of 5% of the span. This result 
suggests a strong influence of )3(

1122K  on the stability of the reduced order model. It also seems to suggest that the 

value of )3(
1122K  should be either small if negative or positive. This condition is confirmed by the other curves of Fig. 

6.  

-30 -20 -10 0 10 20 30
-1

0

1

2

3

4

5

6

7

8

x 10
5

Transverse Displacement / Span (%)

Fi
rs

t E
ig

en
va

lu
e 

of
 K

T

 

 

Nastran
ROM1T1D cleaned, k1122= -2.17E+13, k2112= -2.13E+13
ROM1T1D cleaned, k1122=k2112= -2.17E+13
ROM1T1D cleaned, k1122=k2112=+2.17E+11
ROM1T1D cleaned, k1122=k2112= +4E+11
ROM1T1D cleaned, k1122=k2112= +6E+11
ROM1T1D cleaned, k1122=k2112= +8E+11
ROM1T1D cleaned, k1122=k2112=+2.17E+12

 
Figure 6. Influence of the parameter )3(

1122K  on the first eigenvalue of the tangent stiffness matrices of the 
1T1D reduced order model, cantilever beam. 
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Meanwhile, it can be seen that varying )3(
1122K  alone cannot yield a close matching of the eigenvalue curves 

corresponding to Nastran and the reduced order model. So, the model may be stable but the predictions are not close 
to Nastran suggesting also that another coefficient may need to be adjusted. The first candidate would be )3(

1111K , the 
cubic stiffness coefficient of the transverse mode, which plays a critical role in the response level of the model [4].  

Accordingly, the value of )3(
1111K  was varied with fixed values of )3(

1122K  and )3(
2112K  and the first eigenvalue of the 

tangent stiffness matrix was computed and monitored. It appears from Fig. 6 that the curve corresponding to )3(
1122K  

= 8E+11 is the one most similar to its Nastran counterpart and thus this value of )3(
1122K  was adopted while varying 

)3(
1111K . The results of varying this parameter are shown in Fig. 7. Note that the original value of )3(

1111K  is 7.64E+12. 

It can be seen from Fig. 7 that when )3(
1111K  is set to be 7.613E+12, the curve of the 1T1D model matches the 

Nastran curve quite well up to the level of 25% of the span. The closeness of this value of )3(
1111K  to its originally 

identified one suggests that the cubic terms involving the dominant transverse motions are accurately estimated, 
although possibly not as well as required for )3(

1111K̂ . 
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Figure 7. Influence of the parameter )3(

1111K  on the first eigenvalue of the tangent stiffness matrices of the 

1T1D reduced order model with )3(
1122K  = )3(

2112K  = 8E+11, cantilever beam. 
 

C. Flat Cantilever Beam: Summary of Findings  
The above findings indicate that the reduced order model identified under small deformations is not applicable to 

the large deformations observed in cantilever structures. It is believed that this issue arises from the difference in 
definition of linear elasticity which is in the deformed configuration for Nastran while it is in the undeformed one 
for the reduced order modeling. That is, the inconsistency pointed in (i) in section I. 

The above discussion further indicates that some of the parameters are correctly obtained and these would include 
the quadratic terms (as they relate to the buckling limit for example which is correctly estimated) and the cubic 
terms of the transverse motions with the potential limitations of the identification approach described above and in 
[4]. 

To provide a formal confirmation of the above expectations, the reduced order modeling approach devised in [8] 
in a full Lagrangian framework was applied to a block element model of the above cantilevered beam. This effort 
led to  the coefficients of a 1T1D model shown in Table 2 and that model was found to be stable. Also shown in this 
table are the coefficients as identified from Nastran per the procedure of section II.C with the same linear and dual 
modes. The matching of the quadratic term ( )2(

112K ) and the leading cubic term ( )3(
1111K ) between these two 
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formulations is excellent as expected. Note however the large discrepancy between the coefficients )3(
1122K  obtained 

with the two approaches. Further, the value of that coefficient for the Lagrangian approach of [8] is positive as is 
required for stability per the discussion of section B above vs. negative (and thus unstable) for the model identified 
as in section II.C. The matching of the coefficients )2(

222K  or )3(
2222K  is also poor.  

 
Table 2. Comparison of the Coefficients Identified by the Full Lagrangian 

Approach and the Nastran Procedure. 
 Full Lagrangian [8] Nastran Procedure (Section II.C) 

)2(
112K  3.8927E+11 3.8922E+11 

)3(
1111K  2.7552E+13 2.7547E+13 

)3(
1122K  2.8146E+13 -3.6627E+13 

)2(
222K  5.9545E+11 4.7266E+06 

)3(
2222K  2.0612E+13 -2.6951E+08 

This comparison suggests that the cleaning procedure discussed above appropriately focuses on terms that are 
affected by differences in finite elememt formulations. In this light, the cleaning procedure is considered acceptable, 
especially when the “uncleaned” model is found to be unstable or gives unreliable predictions. 

IV. Curved Cantilever Beam  
The next structure considered in this effort is a curved cantilever beam to assess the validity/relevance of the above 
findings in the more general setting of a non-flat structure. The curved beam studied in [9] was used in this analysis, 
except that the boundary conditions were changed from clamped-clamped to clamped-free (cantilever). The beam 
has an elastic modulus of 10.6E+6 psi, shear modulus of 4.0E+6 psi, and density of 2.588E-4 lbf-sec2/in4. The span 
of the beam is 18 inches, and its cross section is rectangular with thickness 0.09 inch and width 1 inch. The radius of 
curvature is 81.25 inch, and the rise of the curvature at the center of the beam is 0.5 inch.  

For the curved beam, a reduced-order model of 2 linear modes and 2 dual modes (2L2D) was considered. As 
observed in connection with the flat cantilever beam, the original full model is unstable, but the cleaned model is 
stable and gives very good predictions as shown in Figs. 8(a) and 8(b), even though one expects that the parameters 
zeroed out in this process are not actually zero. 
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Figure 8. Comparison of predicted responses by Nastran and the cleaned full 2L2D reduced-order model. (a) 

transverse displacement; (b) inplane displacement, curved beam.  

V. Predator Structural Modeling   

A. Basis Selection   
Consistently with the discussion of section II, the first step in the construction of a reduced order model for the 
Predator wing was the selection of the basis, starting with the linear modes. Their determination was achieved by 
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considering: 
(1) the frequency band of the excitation in the planned aeroelastic application. 
(2) the modes responding most to a set of “representative” loadings which were selected here as pressure distribution 
constant and or linear varying along span and chord. 
These considerations led to the selection of the first 7 linear modes as key for the representation of the dominant 
motions. 

As discussed in section II.A, it is necessary to enrich the linear basis when considering nonlinear geometric 
deflections because of the membrane stretching effect. The inclusion of purely linear modes, dominated by 
transverse deflections would lead to a model in which the end section of the wing would exhibit large transverse 
deflections with little shortening. This is not the behavior of the physical wing that exhibits a notable rotation so that 
the “effective” span reduces slightly but importantly as the transverse deflection increases. These spanwise 
dominated motions must be included in the model to correctly capture the wing’s large displacement behavior and 
this represents the purpose of the dual modes of [5]. These modes are constructed (see [5]) as follows. First, the 
dominant linear modes retained are selected. In the present case, only a single dominant mode was considered, i.e. 
mode 1 which corresponds to the first wing bending mode. Next, a series of static loadings were applied to the wing 
that would induce only a response of the structure along the first mode if the structure was behaving linearly. The 
loading to be introduced is simply of the form 
     1ψα= GGKF                            (25) 

where F  is the vector of nodal forces, GGK  is the wing’s finite element stiffness matrix, 
1ψ  is the first linear 

mode, and α is a coefficient varied to impose a particular deflection level. 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
Lead-lag displacement at tip node / Span (%)

Ap
pl

ie
d 

un
ifo

rm
 p

re
ss

ur
e

 

 

Nastran
Basis 7L3D

-p

0

+p

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Spanwise displacement at tip node / Span (%)

Ap
pl

ie
d 

un
ifo

rm
 p

re
ss

ur
e

 

 

Nastran
Basis 7L3D

+p

0

-p

 
         (a)                                                                         (b) 

-25 -20 -15 -10 -5 0 5 10 15 20 25
Transverse displacement at tip node / Span (%)

Ap
pl

ie
d 

un
ifo

rm
 p

re
ss

ur
e

 

 

Nastran
Basis 7L3D

-p

0

+p
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Figure 9. Lead-lag (a), spanwise (b), and transverse (c) deflections of the tip leading edge of the Predator wing 
under a uniform load, Nastran and projection of Nastran results on the reduced order model basis.  

 
An ensemble of 10 different loadings of this type were imposed on the predator wing leading to peak deflections 

ranging from -10 to +10 % of span. The processing of the 10 static displacement fields was achieved as in [5] by 
extracting first from these displacements their projections on the 7 modes forming the linear basis. A proper 
orthogonal decomposition (POD) analysis was then performed to obtain the dominant response features. Finally, a 
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potential energy based metric was evaluated to assess whether these modes would simply be slightly higher 
frequency transverse modes or truly high frequency components as desired. 

The above dual construction was also repeated with loadings that would lead to responses, in the linear case, that 
are proportional to linear combinations of modes 1 and 2 and modes 1 and 3. This process ultimately led to the 
selection of 3 duals modes the displacements of which are spanwise dominated as expected. 

The next step of the model construction is the verification of the appropriateness of the basis. This verification is 
achieved by projecting the responses obtained in a series of full nonlinear Nastran solutions (SOL 106) on the basis 
and comparing the Nastran displacement fields with their reconstruction from these projections. In terms of norm 
errors, it is found that the 10-mode model (referred to as 7L3D) gave low relative norm errors of 1%, 1%, and 0.1% 
in the lead-lag, spanwise, and transverse directions for a typical case, i.e. corresponding to a displacement equal to 
8% of span. Another aspect of the model verification is the comparison of the deflections obtained from Nastran and 
from the projection on the basis. This aspect of the verification is performed graphically in Fig. 9 from which it is 
seen that the projection of the responses on the basis are indeed very close to their Nastran counterparts, suggesting 
the applicability of the basis. 

B. Reduced Order Model Stability and Predictions    
Next, the nonlinear stiffness coefficients of the 7L3D model were identified using the method described in section 

II.C, and its stability was checked. As observed in an earlier investigation [4], the stability limit of the model is 
limited to maximum deflections that are only a very small fraction of the span, e.g. of the order of 1%. The model is 
accordingly not readily usable as built. However, the detailed analysis of the flat cantilever beam and the brief study 
of the curved one suggest the following steps: 
(i) zero out all cubic coefficients except those associated solely with the 7 linear modes 
(ii) perform small modifications of these cubic coefficients, most notably the one associated with the largest 
response and possibly the quadratic ones, to improve the matching with Nastran data obtained in large deformations. 

As already observed in connection with both flat and curved cantilevered beam, the reduced order model of the 
Predator wing after the cleaning process of step (i) was found to be stable up to 25% but leading to a significant 
underprediction of the Nastran response, see Figs 10-12 (model 7L3D -1). 

As discussed in the flat beam section, a small change in the cubic coefficient of the dominant mode (mode 1) may 
be necessary because of the difficulty of getting an estimate of it accurate enough considering the softening of the 
inplane terms. Specifically, a change in )3(

1111K  from 109 to 105 led to a very close matching of the Nastran results in 
the spanwise and transverse directions, see Figs 10 and 11, and an acceptable one in the lead-lag direction, see Fig. 
12 (model 7L3D-2). 

Further improvements of the lead-lag direction prediction was attempted by varying the parameters coupling the 
first and second lead-lag modes (modes 3 and 5 in the model) and the first bending mode (mode 1), i.e. )3(

5111K  and 
)2(

311K . This effort led to the model denoted as 7L3D-3 with improved matching shown as shown in Fig. 12. 
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Figure 10. Vertical displacement of the Predator tip under uniform vertical force. Nastran results and 

predictions from the three reduced order models. 
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Figure 11. Horizontal spanwise displacement of the Predator tip under uniform vertical force. Nastran results 

and predictions from the three reduced order models. 
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Figure 12. Horizontal lead-lag displacement of the Predator tip under uniform vertical force. Nastran results 

and predictions from the three reduced order models. 

VI. Summary   
The focus of this investigation was on a revisit of the construction of nonlinear reduced order models of cantilevered 
structures from finite element models developed in commercial software (Nastran here). This process involves most 
notably the selection of an appropriate basis and the identification of the parameters of the reduced order model 
from a series of finite element computations. Difficulties in carrying out the identification in connection with 
cantilevered structures had been reported in the past [4] where it had been suggested that differences in formulations 
of the finite element code and the reduced order model were responsible for the numerical instability shown by some 
identified models. 

The above issues were revisited here, first in connection with a straight cantilevered beam of which a two-mode 
(1T1D) model was extensively considered. The identification approach of section II.C gave very consistent values of 
the model coefficients which further accurately satisfied necessary symmetry conditions. Yet, it was shown that one 
of these coefficients could simply not be correct as it forced the reduced order model to become numerically 
unstable at diplacements only fractions of the span. These observations clearly point to a difference in the 
formulations between finite element code and reduced order model. A formal confirmation of the above 
expectations was obtained by applying the reduced order modeling approach devised in [8] to the cantilevered beam 
model. This effort further confirmed which coefficients are most affected by the formulation differences. In this 
light, the palliative approach of [4] (the “cleaning” of coefficients) which consists in zeroing this last set of 
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coefficients may be considered acceptable, especially when the “uncleaned” model is found to be unstable or gives 
unreliable predictions. 

This approach was confirmed on a curved cantilevered beam model and finally on a full finite element model of 
the Predator wing for which an excellent match between displacements predicted by the reduced order model and 
Nastran was observed. These results demonstrate the strong potential of reduced order models of nonlinear 
geometric structures, even those with very complex finite element models. 
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