A. Arnoux, A. Batou, C. Soize, and L. Gagliardini, Stochastic reduced-order model for dynamical structures having a high modal density in the low frequency range, International Symposium on Computational Modelling and Analysis of Vehicle Body Noise and Vibration, the Proceedings of the Symposium, 2012.

A. Arnoux, A. Batou, C. Soize, and L. Gagliardini, Stochastic reduced order computational model of structures having numerous local elastic modes in low frequency dynamics, Journal of Sound and Vibration, vol.332, issue.16, 2012.
DOI : 10.1016/j.jsv.2013.02.019

URL : https://hal.archives-ouvertes.fr/hal-00803461

M. F. Azeez and A. F. Vakakis, PROPER ORTHOGONAL DECOMPOSITION (POD) OF A CLASS OF VIBROIMPACT OSCILLATIONS, Journal of Sound and Vibration, vol.240, issue.5, pp.859-889, 2001.
DOI : 10.1006/jsvi.2000.3264

K. J. Bathe and E. L. Wilson, Numerical Methods in Finite Element Analysis, 1976.

A. Batou, C. Soize, and N. Brie, Reduced-order model for nonlinear dynamical structures having numerous local elastic modes in the low-frequency range, the Proceedings of the ISMA 2012 conference, pp.17-19, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00734174

T. Belytschko and W. L. Mindle, Flexural wave propagation behavior of lumped mass approximations, Computers & Structures, vol.12, issue.6, pp.805-812, 1980.
DOI : 10.1016/0045-7949(80)90017-6

N. Bouhaddi and R. Fillod, A method for selecting master DOF in dynamic substructuring using the Guyan condensation method, Computers & Structures, vol.45, issue.5-6, pp.5-6, 1992.
DOI : 10.1016/0045-7949(92)90052-2

I. Bucher and S. G. Braun, Left Eigenvectors: Extraction From Measurements and Physical Interpretation, Journal of Applied Mechanics, vol.64, issue.1, pp.97-105, 1997.
DOI : 10.1115/1.2787300

H. C. Chan, C. W. Cai, and Y. K. Cheung, Convergence Studies of Dynamic Analysis by Using the Finite Element Method With Lumped Mass Matrix, Journal of Sound and Vibration, vol.165, issue.2, pp.193-207, 1993.
DOI : 10.1006/jsvi.1993.1253

R. R. Craig and A. J. Kurdila, Fundmentals of Structural Dynamics, 2006.

J. F. Durand, C. Soize, and L. Galiardini, Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation, The Journal of the Acoustical Society of America, vol.124, issue.3, pp.1513-1525, 2008.
DOI : 10.1121/1.2953316

URL : https://hal.archives-ouvertes.fr/hal-00685108

R. J. Guyan, Reduction of stiffness and mass matrices, AIAA Journal, vol.3, issue.2, pp.380-388, 1965.
DOI : 10.2514/3.2874

J. L. Guyader, Modal sampling method for the vibration study of systems of high modal density, The Journal of the Acoustical Society of America, vol.88, issue.5, pp.2269-2270, 1990.
DOI : 10.1121/1.400069

J. L. Guyader, Characterization and reduction of dynamical models of vibratiing systems with high modal density, Journal of Sound and Vibration, vol.328, pp.4-5, 2009.

Y. Hahn and N. Kikuchi, Identification of global modeshape from a few nodal eigenvectors using simple free-form deformation, Engineering with Computers, vol.87, issue.3, pp.115-128, 2005.
DOI : 10.1007/s00366-005-0314-x

P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1997.

M. S. Jensen, HIGH CONVERGENCE ORDER FINITE ELEMENTS WITH LUMPED MASS MATRIX, International Journal for Numerical Methods in Engineering, vol.35, issue.11, pp.1879-1888, 1996.
DOI : 10.1002/(SICI)1097-0207(19960615)39:11<1879::AID-NME933>3.0.CO;2-2

L. Ji and B. R. Mace, A mode-based approach for the mid-frequency vibration analysis of coupled long- and short-wavelength structures, Journal of Sound and Vibration, vol.289, issue.1-2, pp.148-1700, 2006.
DOI : 10.1016/j.jsv.2005.02.003

E. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, vol.90, issue.1, pp.117-148, 2001.
DOI : 10.1007/s002110100282

R. S. Langley and P. Bremmer, A hybrid method for the vibration analysis of complex structural-acoustic systems, The Journal of the Acoustical Society of America, vol.105, issue.3, pp.1657-1672, 1999.
DOI : 10.1121/1.426705

W. Li, A DEGREE SELECTION METHOD OF MATRIX CONDENSATIONS FOR EIGENVALUE PROBLEMS, Journal of Sound and Vibration, vol.259, issue.2, pp.409-425, 1963.
DOI : 10.1006/jsvi.2002.5336

H. G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.12-16, 2005.
DOI : 10.1016/j.cma.2004.05.027

A. K. Noor, M. S. Anderson, and W. H. Greene, Continuum Models for Beam- and Platelike Lattice Structures, AIAA Journal, vol.16, issue.12, pp.1219-1228, 1978.
DOI : 10.2514/3.61036

J. H. Ong, Improved automatic masters for eigenvalue economization, Finite Elements in Analysis and Design, vol.3, issue.2, pp.149-160, 1987.
DOI : 10.1016/0168-874X(87)90006-0

J. Planchard, Vibrations of nuclear fuel assemblies: A simplified model, Nuclear Engineering and Design, vol.86, issue.3, pp.383-391, 1995.
DOI : 10.1016/0029-5493(85)90303-6

R. Sampaio and C. Soize, Remarks on the efficiency of POD for model reduction in non-linear dynamics of continuous elastic systems, International Journal for Numerical Methods in Engineering, vol.45, issue.3, pp.22-45, 2007.
DOI : 10.1002/nme.1991

URL : https://hal.archives-ouvertes.fr/hal-00686148

J. A. Sethian, A fast marching level set method for monotonically advancing fronts., Proc. Nat .Acad. Sci., 93, 1996.
DOI : 10.1073/pnas.93.4.1591

C. Soize, Reduced models in the medium frequency range for general dissipative structural-dynamics systems, European Journal of Mechanics - A/Solids, vol.17, issue.4, pp.657-685, 1998.
DOI : 10.1016/S0997-7538(99)80027-8

URL : https://hal.archives-ouvertes.fr/hal-00765806

C. Soize and A. Batou, Stochastic Reduced-Order Model in Low-Frequency Dynamics in Presence of Numerous Local Elastic Modes, Journal of Applied Mechanics, vol.78, issue.6, p.61003, 2011.
DOI : 10.1115/1.4002593

URL : https://hal.archives-ouvertes.fr/hal-00692835

C. Soize, Random matrix theory for modeling uncertainties in computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.1333-1366, 1216.
DOI : 10.1016/j.cma.2004.06.038

URL : https://hal.archives-ouvertes.fr/hal-00686187