P. Abry, S. Jaffard, and B. Lashermes, Wavelet leaders in multifractal analysis Wavelet Analysis and Applications Applied and Numerical Harmonic Analysis, pp.201-246, 2006.

P. Abry, S. Jaffard, S. Roux, B. Vedel, and H. Wendt, Wavelet decomposition of measures: Application to multifractal analysis of images Unexploded ordnance detection and mitigation NATO Science for peace and security, pp.1-20, 2008.

P. Abry, B. Lashermes, and S. Jaffard, <title>Revisiting scaling, multifractal, and multiplicative cascades with the wavelet leader lens</title>, Wavelet Applications in Industrial Processing II, pp.103-117, 2004.
DOI : 10.1117/12.581234

P. Abry, B. Lashermes, and . Jaffard, Wavelet leader based multifractal analysis, Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.

P. Abry, S. Roux, and S. Jaffard, Detecting oscillating singularities in multifractal analyis: Application to hydrodynamic turbulence, 2010.

P. Abry and F. Sellan, The Wavelet-Based Synthesis for Fractional Brownian Motion Proposed by F. Sellan and Y. Meyer: Remarks and Fast Implementation, Applied and Computational Harmonic Analysis, vol.3, issue.4, pp.377-383, 1996.
DOI : 10.1006/acha.1996.0030

A. Arneodo, B. Audit, N. Decoster, J. Muzy, and C. Vaillant, Wavelet Based Multifractal Formalism: Applications to DNA Sequences, Satellite Images of the Cloud Structure, and Stock Market Data, pp.27-102, 2002.
DOI : 10.1007/978-3-642-56257-0_2

A. Arneodo, E. Bacry, S. Jaffard, and J. Muzy, Singularity spectrum of multifractal functions involving oscillating singularities, The Journal of Fourier Analysis and Applications, vol.28, issue.n.4, pp.159-174, 1998.
DOI : 10.1007/BF02475987

A. Arneodo, E. Bacry, and J. Muzy, The thermodynamics of fractals revisited with wavelets, Physica A: Statistical Mechanics and its Applications, vol.213, issue.1-2, pp.232-275, 1995.
DOI : 10.1016/0378-4371(94)00163-N

J. Aubry, Representation of the Singularities of a Function, Applied and Computational Harmonic Analysis, vol.6, issue.2, pp.282-286, 1999.
DOI : 10.1006/acha.1998.0251

J. Aubry and S. Jaffard, Random Wavelet Series, Communications in Mathematical Physics, vol.227, issue.3, pp.483-514, 2002.
DOI : 10.1007/s002200200630

URL : https://hal.archives-ouvertes.fr/hal-00012098

J. Aujol and A. Chambolle, Dual Norms and Image Decomposition Models, International Journal of Computer Vision, vol.19, issue.3, pp.85-104, 2005.
DOI : 10.1007/s11263-005-4948-3

URL : https://hal.archives-ouvertes.fr/inria-00071453

G. Brown, G. Michon, and J. , On the multifractal analysis of measures, Journal of Statistical Physics, vol.59, issue.2, pp.775-790
DOI : 10.1007/BF01055700

A. P. Calderòn and A. Zygmund, Singular Integral Operators and Differential Equations, American Journal of Mathematics, vol.79, issue.4, pp.901-921, 1957.
DOI : 10.2307/2372441

A. Cohen, I. Daubechies, and .. Fauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5, pp.485-560, 1992.
DOI : 10.1002/cpa.3160450502

A. Cohen and R. Ryan, Wavelets and Multiscale Signal Processing, Chapman and Hall 17. I. Daubechies (1992) Ten lectures on wavelets, 1995.

H. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, Lect. Notes Pure Appl. Math, vol.136, pp.123-137, 1992.

Y. Gousseau and J. Morel, Are Natural Images of Bounded Variation?, SIAM Journal on Mathematical Analysis, vol.33, issue.3, pp.634-648, 2001.
DOI : 10.1137/S0036141000371150

T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A, pp.33-1141, 1986.

S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Publicacions Matem??tiques, vol.35, pp.155-168, 1991.
DOI : 10.5565/PUBLMAT_35191_06

URL : http://ddd.uab.cat/record/40280

S. Jaffard, Multifractal Formalism for Functions Part I: Results Valid For All Functions, SIAM Journal on Mathematical Analysis, vol.28, issue.4, pp.944-998, 1997.
DOI : 10.1137/S0036141095282991

S. Jaffard, On lacunary wavelet series, The Annals of Applied Probability, vol.10, issue.1, pp.313-329, 2000.
DOI : 10.1214/aoap/1019737675

S. Jaffard, Beyond Besov Spaces, Part 2: Oscillation Spaces, Constructive Approximation, vol.1, issue.1, pp.29-61, 2005.
DOI : 10.1007/s00365-004-0558-5

S. Jaffard, Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of Beno??tBeno??t Mandelbrot, M. Lapidus et M, Proceedings of Symposia in Pure Mathematics, pp.91-152, 2004.

S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functions, Journal of Mathematical Physics, vol.39, issue.8, pp.4129-4141, 1998.
DOI : 10.1063/1.532488

S. Jaffard, Pointwise regularity associated with function spaces and multifractal analysis, Approximation and Probability, pp.93-110, 2006.
DOI : 10.4064/bc72-0-7

S. Jaffard, Wavelet techniques for pointwise regularity, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.15, issue.1, pp.3-33, 2006.
DOI : 10.5802/afst.1111

S. Jaffard, P. Abry, and S. Roux, Singularités oscillantes et coefficients d'ondelettes dominants, Proc. of the GRETSI Conference at Dijon, 2009.

S. Jaffard, P. Abry, S. Roux, B. Vedel, and H. Wendt, The Contribution of Wavelets in Multifractal Analysis, Series in Contemporay Applied Mathematics " CAM 14, pp.51-98, 2010.
DOI : 10.1142/9789814322874_0003

URL : https://hal.archives-ouvertes.fr/ensl-00354520

S. Jaffard and C. Melot, Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents, Communications in Mathematical Physics, vol.109, issue.3, pp.513-539, 2005.
DOI : 10.1007/s00220-005-1354-1

URL : https://hal.archives-ouvertes.fr/hal-01071366

S. Jaffard and Y. Meyer, Wavelet methods for pointwise regularity and local oscillations of functions, Memoirs of the American Mathematical Society, vol.123, issue.587, 1996.
DOI : 10.1090/memo/0587

B. Lashermes, S. Roux, P. Abry, and S. Jaffard, Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders, The European Physical Journal B, vol.35, issue.2, pp.201-215, 2008.
DOI : 10.1140/epjb/e2008-00058-4

URL : https://hal.archives-ouvertes.fr/ensl-00195451

J. Lévy-véhel and S. Seuret, The local Hölder function of a continuous function, Appl. Comp. Harm. Anal, vol.13, pp.3-263, 2002.

S. Mallat, A Wavelet Tour of Signal Processing, 1998.

Y. Meyer, Ondelettes et Opérateurs, 1990.

Y. Meyer, Wavelets, Vibrations and Scalings, CRM Ser. AMS, vol.9, 1998.

Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations, University Lecture Series 22, 2001.

Y. Meyer, F. Sellan, and M. Taqqu, Wavelets, generalized white noise and fractional integration: The synthesis of fractional Brownian motion, The Journal of Fourier Analysis and Applications, vol.21, issue.4, pp.465-494, 1999.
DOI : 10.1007/BF01261639

Y. Meyer and H. Xu, Wavelet Analysis and Chirps, Applied and Computational Harmonic Analysis, vol.4, issue.4, pp.366-379, 1997.
DOI : 10.1006/acha.1997.0214

G. Parisi and U. Frisch, On the singularity structure of fully developed turbulence; appendix to Fully developed turbulence and intermittency, by U. Frisch, Proc. Int. Summer school Phys. Enrico Fermi, pp.84-88, 1985.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

A. Seeger, A note on Triebel-Lizorkin spaces, Approximation and Function spaces, pp.391-400, 1989.

H. Wendt, P. Abry, and S. Jaffard, Bootstrap for Empirical Multifractal Analysis IEEE Signal Proc, Mag, vol.24, issue.4, pp.38-48, 2007.

H. Wendt, P. Abry, S. Roux, S. Jaffard, and B. Vedel, Analyse multifractale d'images: l'apport des coefficients dominants Traitement du Signal, pp.47-65, 2009.

H. Wendt, S. Roux, P. Abry, and S. Jaffard, Wavelet leaders and Bootstrap for multifractal analysis of images Signal processing, pp.1100-1114, 2009.