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Function spaces vs. Scaling functions:
Some issues in image classification

S. Jaffard∗, P. Abry†, S. Roux†

Abstract: Criteria based on the computation of fractal dimensions have been used in order
to perform image analysis and classification; we show that such criteria often amount to deter-
mine the regularity of the image in some classes of function spaces, and that looking for richer
criteria naturally leads to the introduction of new classes of function spaces. We will investigate
the properties of some of these classes, and show which type of additional information they yield
for the initial image.
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1 Introduction

Since the 1970s, tools derived form fractal geometry have been used in order to derive parametres
of fractal nature, which give a new type of information on the image studied, and can be used for
classification. Fractal objects often present two related aspects: One is analytic, and consists in
scaling-invariance properties, and the other is geometric and is expressed by the fractal dimension
of the object. For instance, the one-dimensional Brownian motion is scaling invariant (B(ax) has
the same law as a1/2B(x)), and its sample paths have fractal dimension 3/2.

Let us start by considering the geometric aspect, which is supplied by fractal dimensions.
The simplest notion of dimension which can be used is the box dimension:

Definition 1 Let A be a bounded subset of Rd; if � > 0, let N�(A) be the smallest number of

balls of radius � required to cover A.

The upper box dimension of A is

dimB(A) = lim sup
�→0

logN�(A)

− log �
.

The lower box dimension of A is

dimB(A) = lim inf
�→0

logN�(A)

− log �
.

The following important feature makes this notion useful in practical applications: If both
limits coincide, then the box dimension can be computed through a regression on a log-log plot
(logN�(A) vs. log �):

dimB(A) = lim
�→0

logN�(A)

− log �
. (1)

As such, this tool has a rather narrow field of applications in image processing; indeed, it
applies only when a particular “fractal” set can be isolated in the image. However, the fact that
the limit exists in (1) points towards another possible feature, which is much more common: It
shows that some quantities display an approximate power-law behavior through the scales. In
practice, this property holds for many other quantities than N�(A) and the associated power-
law exponents can thus yield collections of important parameters, which can be used in image
classification. Loosely speaking, the purpose of multifractal analysis is to:

• Introduce new quantities which present these power-law behaviors,

• study their mathematical properties, and in particular relate them with scales of function
spaces,

• determine implications for “fractal features” which are present in the image.
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2 Scaling functions and function spaces

Let us now briefly pass into review the different quantities which have been used up to now as
possible candidates for scaling-invariance features. First, we mention that these quantities usually
depend on (at least) one auxiliary parameter p, and therefore the exponents which are derived are
not one real number, but a function of this parameter p, hence the term scaling functions used
in order to charcaterize these collections of exponents. Note that the use of a whole function in
order to perform classification yields a much more precise tool than the use of one single number.

Let us now be more specific; we start with what was historically the first example of a scaling
function. It was introduced by N. Kolmogorov in the context of fully developed turbulence,
with a motivation which was quite similar to ours: Take advantage of the (hypothetic) scaling
invariance of fully developed turbulence in order to derive a collection of “universal” parameters
which could be computed on experimental data, and use it in order to determine if a given model
is correct or not.

Let f : Rd → R. the scaling function of f is the function η(p) which satisfies
�

|f(x+ h)− f(x)|pdx ∼ |h|η(p). (2)

This loose definition means precisely that

η(p) = lim inf
|h|→0

log
��

|f(x+ h)− f(x)|pdx
�

− log |h|
. (3)

As in the case of the box dimension, we have to draw a distinction between the mathematical
definition, whose purpose is to make sense in a general setting, and the practical evaluation of
η(p) which requires that the liminf is a real limit, and, in practice, that one can make a precise
regression on the scales available in the data.

We will now see the function space interpretation of this initial scaling function. This inter-
pretation will serve several purposes. First, it allows to derive several mathematical properties
of this scaling function, but its main advantage will be to point the way towards variants and
extensions of this scaling function

• whose computation are numerically easier and more accurate,

• which yield new families of scaling parameters.

This second motivation had unexpected consequences: We will see for instance that such new
scaling functions allow to show the presence of “oscillating singularite ” in the data, which was
an important open issue in several applications.

The most straightforward function space interpretation of the scaling function is obtained
through the use of the spaces Lip(s, Lp) defined as follows.

Definition 2 Let s ∈ (0, 1), and p ∈ [1,∞]; f ∈ Lip(s, Lp(Rd)) if
�

|f(x)|pdx < ∞ and

∃C > 0 such that ∀h > 0,
�

|f(x+ h)− f(x)|p ≤ C|h|sp. (4)
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It follows from this definition that, if η(p) < p, then

η(p) = sup{s : f ∈ Lip(s/p, Lp(Rd))}. (5)

In other words, the scaling function allows to determine which spaces Lip(s, Lp) contain the
signal for s ∈ (0, 1), and p ∈ [1,∞]. this reformulation has several advantages:

• Using clasical embeddings between function spaces, one can derive reformulations of the
scaling function, which can lead tio a better implementation,

• such a reformulation can naturally lead to extensions outside of the range s ∈ (0, 1), and
therefore apply to signals which are either smoother or rougher than allowed by this range,

• extensions for p < 1 would lead to a scaling function defined for p < 1, and therefore
which will be more powerful for classification).

The simpler setting for these extension is supplied by the Besov spaces; this setting will offer
the additional advantage of yielding a wavelet reformulation of the scaling function. In order to
define Besov spaces, we need to recall the definition of a wavelet basis.

Orthonormal wavelet bases are a privileged tool to study multifractal functions for several
reasons. A first one, exposed in this section, is that classical function spaces (such as Besov
or Sobolev spaces) can be characterized by conditions bearing on the wavelet coefficients, see
Section 2.2. We will just recall some properties of orthonormal and biorthogonal wavelet bases
that will be useful in the following. We refer the reader for instance to [15, 16, 34, 39] for detailed
expositions of this subject.

2.1 Orthonormal and biorthogonal wavelet bases

Orthonormal wavelet bases are of the following form: There exists a function ϕ(x) and 2d −
1 functions ψ(i) with the following properties: The functions ϕ(x − k) (k ∈ Z

d) and the
2dj/2ψ(i)(2jx − k) (k ∈ Z

d, j ∈ Z) form an orthonormal basis of L2(Rd). This basis is r-
smooth if ϕ and the ψ(i) are Cr and if the ∂αϕ, and the ∂αϕψ(i), for |α| ≤ r, have fast decay.

Therefore, ∀f ∈ L2,

f(x) =
�

k∈Zd

Ckϕ(x− k) +
∞
�

j=0

�

k∈Zd

�

i

cij,kψ
(i)(2jx− k); (6)

the cij,k are the wavelet coefficients of f

cij,k = 2dj
�

Rd

f(x)ψ(i)(2jx− k)dx, (7)

and

Ck =

�

Rd

f(x)ϕ(x− k)dx. (8)

Remarks: In (6), we do not choose the L2 normalisation for the wavelets, but rather an L∞

normalisation which is better fitted to the study of Hölder regularity. The L1 normalisation of (7)
follows accordingly.
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Note that (7) and (8) make sense even if f does not belong to L2; indeed, if one uses smooth
enough wavelets, these formulas can be interpreted as a duality product betweeen smooth func-
tions (the wavelets) and distributions. We will see the examples of Sobolev and Besov spaces.

We will also need decompositions on biorthogonal wavelet bases, which are a useful exten-
sion of orthonormal wavelet bases. A Riesz basis of an Hilbert space H is a collection of vectors
(en) such that the finite linear expansions

�N
n=1 anen are dense in H and

∃C,C � > 0 : ∀N, ∀an, C
N
�

n=1

|an|
2 ≤

�

�

�

�

�

�

�

�

�

�

N
�

n=1

anen

�

�

�

�

�

�

�

�

�

�

2

H

≤ C �
N
�

n=1

|an|
2.

Two collections of functions (en) and (fn) form biorthogonal bases if each collection is a Riesz
basis, and if �en|fm� = δn,m. When such is the case, any element f ∈ H can be written

f =

∞
�

n=1

�f |fn�en. (9)

Biorthogonal wavelet bases are couples of Riesz bases of L2 which are, of the form: on one side,

ϕ(x− k), (k ∈ Z
d) and 2dj/2ψ(i)(2jx− k), (k ∈ Z

d, j ∈ Z)

and, on the other side,

ϕ̃(x− k) (k ∈ Z
d) and 2dj/2ψ̃(i)(2jx− k), (k ∈ Z

d, j ∈ Z).

Therefore, ∀f ∈ L2,

f(x) =
�

k∈Zd

Ckϕ(x− k) +
∞
�

j=0

�

k∈Zd

�

i

cij,kψ
(i)(2jx− k); (10)

where

cij,k = 2dj
�

Rd

f(x)ψ̃(i)(2jx− k)dx, and Ck =

�

Rd

f(x)ϕ̃(x− k)dx. (11)

We will see that biorthogonal wavelet bases are particularly well adapted to the decomposi-
tion of the Fractional Brownian Motion; indeed, well chosen biorthogonal wavelet bases allow
to decorrelate the wavelet coefficients of these processes (the wavelet coefficients become inde-
pendent random variables), and therefore greatly simplifies their analysis.

We will use more compact notations for indexing wavelets. Instead of using the three indices
(i, j, k), we will use dyadic cubes. Since i takes 2d−1 values, we can assume that it takes values
in {0, 1}d − (0, . . . , 0); we introduce:

• λ (= λ(i, j, k)) =
k

2j
+

i

2j+1
+

�

0,
1

2j+1

�d

.

• cλ = cij,k
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• ψλ(x) = ψ(i)(2jx− k).

The wavelet ψλ is essentially localized near the cube λ; more precisely, when the wavelets are
compactly supported

∃C > 0 such that ∀i, j, k, supp (ψλ) ⊂ C λ

(where C λ denotes the cube of same center as λ and C times wider). Finally, Λj will denote
the set of dyadic cubes λ which index a wavelet of scale j, i.e. wavelets of the form ψλ(x) =
ψ(i)(2jx−k) (note that Λj is a subset of the dyadic cubes of side 2j+1). We take for norm on R

d

if x = (x1, . . . , xd), |x| = sup
i=1,...,d

|xi|;

so that the diameter of a dyadic cube of side 2−j is exactly 2−j .

Among the families of wavelet bases that exist, two will be particularly useful for us:

• Lemarié-Meyer wavelets, such that ϕ and ψ(i) both belong to the Schwartz class;

• Daubechies wavelets, such that the functions ϕ and ψ(i) can be chosen arbitrarily smooth
and with compact support.

If the wavelets are r-smooth, they have a corresponding number of vanishing moments, see
[39]:

If |α| < r, then
�

Rd

ψ(i)(x)xαdx = 0.

Therefore, if the wavelets are in the Schwartz class, all their moments vanish.
In order to have a common notation for wavelets and functions ϕ, when j = 0, we note ψλ

the function ϕ(x− k) (where λ is, in this case, the unit cube shifted by k)).

Finally, Λj will denote the set of dyadic cubes λ which index a wavelet of scale j, i.e.
wavelets of the form ψλ(x) = ψ(i)(2jx − k) (note that Λj is a subset of the dyadic cubes of
side 2j+1), and Λ will denote the union of the Λj for j ≥ 0.

Remark: Indexing by dyadic cubes will prove useful for the following reason: The wavelet
ψλ is essentially localized near the cube λ; more precisely, when the wavelets are compactly
supported

∃C > 0 such that ∀i, j, k, supp (ψλ) ⊂ C · λ.

This property will play an important role in the definition of the wavelet leaders below where this
indexing by dyadic cubes is necessary for a simple and natural definition.
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2.2 Wavelets and function spaces

A remarkable property of wavelet bases is that they supply bases not only in the L2 setting, but
also for most function spaces that are used in analysis.

Proposition 1 Let s > 0 and p, q ∈ (0,∞]. Let ψλ be an r-smooth wavelet basis with r >
sup(s, s+ d(1p − 1)). A function f belongs to the Besov space Bs,q

p (Rd) if and only if (ck) ∈ lp

and

�

j∈Z





�

λ∈Λj

�

2(s−d/p)j |cλ|
�p





q/p

≤ C (12)

(using the usual convention for l∞ when p or q in infinite).

This definition is very close to saying that f and its fractional derivatives of order at most s
belong to Lp (see [] for precise embeddings with Sobolev spaces). Let s ∈ (0, 1), and p ∈ [1,∞];
then the following embeddings hold

Bs,1
p �→ Lip(s, Lp(Rd)) �→ Bs,∞

p .

Furthermore, the following embeddngs between Besov spaces hold: If s ≥ 0, p > 0 and 0 <
q1 < q2, then ∀� > 0,

Bs+�,∞
p �→ Bs,q1

p �→ Bs,q2
p �→ Bs,∞

p .

Thus Bs,q
p is “very close” to Lip(s, Lp). (Recall also that Bα,∞

∞ = Cα(Rd).) In particular, these
embeddings imply that Kolmogorov’s scaling function satisfies

ηf (p) = sup{s : f ∈ Bs/p,∞
p }. (13)

This property allows to redefine the scaling function by (13). This redefinition has two advan-
tages: On one hand, it extends the scaling function to all values of p > 0, on the other hand, it
suggests an alternative way to compute it, through wavelet coefficients. Indeed, it follows form
(12) and (13) that the scaling function of f is

∀p > 0, ζf (p) = lim inf
j→+∞

log



2−dj
�

λ∈Λj

|dλ|
p





log(2−j)
. (14)

We can now take (14) for definition of the scaling function (usually referred to as the wavelet

scaling function). Note that its interpretation in terms of function spaces implies that it is indepen-
dent of the (smooth enough) wavelet basis. We also recall that a similar formula was previoulsy
introduced by A. Arneodo , E. Bacry and J.-F. Muzy, using the continuous wavelet transform,
see []. An additional advantage of using (14) as a definition is that the scaling function is well
defined even if f is not a function (in the most general case, it can be a tempered distribution);
note that this degree of generality may be necessary: indeed, in all generality, a picture is a dis-
cretization of the light intensity, which is a non-negative quantity. Therefore the most general
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mathematical modeling which takes into account only this a priori information amounts to make
the assumption that f is a measure (indeed non-negative distributions necessarily are measures,
by a famous theorem of L. Schwartz); we note that a posteriori estimation of the smoothness of
images using the wavelet scaling function shows that, indeed, some types of natural images are
not smoother than measures.

We will pay special attention to the case p = +∞: f belongs to Bs
∞(Rd) if and only if

(Ck) ∈ l∞ and
∃C, ∀λ, |cλ| ≤ C2−sj . (15)

The spaces Bs
∞ coincide with the uniform Lipschitz spaces Cs(Rd); for instance, if 1 < s < 1,

an equivalent definition is given by: f ∈ L∞ and

∃C, ∀x, y |f(x)− f(y)| ≤ C|x− y|s.

The uniform Hölder exponent of f is

Hmin
f = sup{s : f ∈ Cs(Rd)}; (16)

it yields an additional parameter for image processing and classification that will prove important
in the following.

Note that the uniform Hölder exponent of f can be derived from the scaling function

Hmin
f = lim

p→+∞
η�f (p);

it can also be derived directly from the wavelet coefficients of f ; indeed, it follows from (37) and
the wavelet characterization of the Besov spaces Bs

∞ that, if

ωj = sup
λ∈Λj

|cλ|,

then

Hmin
f = lim inf

j→+∞

log (ωj)

log(2−j)
. (17)

.
Donner le biais pour un brownien

Besides its use as a classification tool, let us mention another problem posed by function-
space modeling when applied to real-life signals: Data are always available with a finite resolu-
tion; therefore, assumeing that images are function (or perhaps distributions) defined on R

2 (or
a subset of R2 such as a square or a rectangle) is an idealization which is convenient for mathe-
matical modeling. However, real-life images are sampled and given by a finite array of numbers
(usually of size 1024 × 1024). This practical remark has an important consequence: The prob-
lem of finding which function spaces contain a particular image is ill-posed. Indeed, given any
“classical” space of functions defined on a square, and such an array of numbers, one can find
a function in this space that will have the preassigned values at the corresponding points of the

8



grid. In other words, paradoxically, essentially any “standard” function space could be used. Let
us however show extreme consequences of this simple remark.

Recall that the Fourier transform of a function f(x1, x2) is defined by

f̂(ξ1, ξ2) =

�

R2

f(x1, x2)e
−i(x1ξ1+x2ξ2)dx1dx2.

One can, for instance, assume that images are band-limited which means that their Fourier
transforms vanish outside a ball centered at 0, and whose radius is proportional to the inverse of
the sampling width (according to Shannon’s theorem); note that this assumption is often done, in
particular in deblurring and denoising algorithms. This assumption implies that the model used
is composed of C∞ functions; however it would lead to incompatibilities, for instance if we want
to use a realistic model which includes discontinuites along edges (which, as we saw, is a natural
requirement).

Another commonly met pitfall is that an image is given by grey-levels, and thus takes values
in [0, 1]. Therefore, it may seem appropriate to use a modeling by bounded functions, and this
is indeed a classical assumption. We will see that the wavelet techniques we introduced allow to
discuss this assumption, and show that it is not satisfied for most images.

The resolution of the paradox we raised in this section requires the use of multiscale tech-

niques such as the one supplied by wavelet analysis. Let us consider for instance the last example
we mentioned: Starting with a discrete image, given by an array of 1024× 1024 numbers all ly-
ing between 0 and 1, how can we decide that it can be modeled or not by a bounded function?
It is clear that, if we consider the image at only one scale (the finest scale in order to lose no
information), then the answer seems to be affirmative. However, as mentioned earlier, any other
space would also do. One way to solve the difficulty is to consider the image at all the scales
available (in theory, there are 10 of them, since 1024 = 210) and inspect if certain quantities
behave through this range of scales as it is the case for a bounded function. If not, we can
give an unexpected negative answer to our problem, but this negative answer should however be
understood as follows: The image considered is a discretization at a given scale of a “hidden

function” defined on a square (to which we have no access) and, if the scaling properties of this

“hidden function” are, at all scales, the same ones as we observe in the range of scales available,

then it is not bounded.

The recipe in order to settle this point is the following: one uses (38) in order to determine
numerically the value of Hmin

f ,which is done by a regression on a log-log plot, and using Propo-

sition ??, it follows that, if Hmin
f < 0, then the image is not bounded, and if Hmin

f > 0, then

the image is bounded. Of course, if the numerical value obtained for Hmin
f is close to 0 (i.e.

if 0 is contained in the confidence interval which can be obtained using statistical methods, see
[44, 46]) then the issue remains unsettled.

Later refinements and extensions of the scaling functions were an indirect consequence of
its interpretation in terms of fractal dimensions of Hölder singularities, proposed by G. Parisi
and U. Frisch in their seminal paper []. In order to explain their argumentation, we first recall
the definition associated with pointwise regulariy. The most widely used one is supplied by the
Hölder regularity, which has been considered since the end of the 19th century.

9



Definition 3 Let f : R
d → R be a locally bounded function, x0 ∈ R

d and let α ≥ 0; f belongs

to Cα(x0) if there exist C > 0, R > 0 and a polynomial P of degree less than α such that

if |x− x0| ≤ R, then |f(x)− P (x− x0)| ≤ C|x− x0|
α.

The Hölder exponent of f at x0 is

hf (x0) = sup {α : f is Cα(x0)} .

The isohölder sets are

EH = {x0 : hf (x0) = H}.

The isohölder sets are

EH = {x0 : hf (x0) = H}.

Note that Hölder exponents met in signal processing often lie between 0 and 1, in which case
the Taylor polynomial P (x− x0) boils down to f(x0) and the definition of the Hölder exponent
means that, heuristically,

|f(x)− f(x0)| ∼ |x− x0|
hf (x0).

The idea behind the derivation proposed in [] is that, if f is not smooth on a large set of locations,
then, at a given scale h, the increments f(x+h)−f(x) will bring a large contribution to (2), and
therefore the kowledge of the scaling function should yield some information of the size of the
sets where f has a given Hölder regularity. Using statistical physics formalism leads to a natural
conjecture, usually referred to as the multifractal formalism concerning the size of the sets of
singularities of f . In order to recall it, we start by recalling the notion of “size” which is adapted
to this problem.

Definition 4 Let A ⊂ R
d. If � > 0 and δ ∈ [0, d], we denote

M δ
� = inf

R

�

�

i

|Ai|
δ

�

,

where R is an �-covering of A, i.e. a covering of A by bounded sets {Ai}i∈N of diameters

|Ai| ≤ �. The infimum is therefore taken on all �-coverings.

For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is

mesδ(A) = lim
�→0

M δ
� .

There exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ(A) = +∞
∀δ > δ0, mesδ(A) = 0.

This critical δ0 is called the Hausdorff dimension of A, and is denoted by dim(A).
If E is empty then, by convention, dimH (E) = 0.
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If f is locally bounded, then the function H → dim(EH) is called the spectrum of singu-

larities of f .
Note that, in distinction with the box dimension, the Hausdorff dimension cannot be com-

puted via a regression on a log-log plot. Therefore it can be estimated on experimental data only
using indirect methods. We will see that the use of the multifractal formalism is one of them.
This heuristic formula, proposed by Paris and Frisch, is

dim(EH) = inf
p∈R

(d+Hp− ηf (p)) . (18)

One mets several problems when one tries to apply this formula. On one hand, the scaling
function is properly defined only for p > 0 (though one can check that it still makes sense for
large classes of processes when p > −1, see [] for a discussion of this point); on the other, several
natural processes, which are used in signal or image modeling, are counterexamples, see [] for
a discussion of this point. Finally, the only result relating the spectrum of singularities and the
scaling function, is very partial, and stated in Theorem 1 below, see [].

A uniform Hölder function is a function satisfying Hmin
f > 0. In particular, it is continu-

ous. One can prove the following relationship between the scaling function of a function and its
pointwise Hölder singularities, see [24].

Theorem 1 Let f : R
d → R be a uniform Hölder function. Then

dim(EH) ≤ inf
p>p0

(d+Hp− ηf (p)) .

where p0 is such that ηf (p0) = dp0.

Therefore, a natural line of research was to look for an “improved” scaling function, i.e. one
such that (18) would have a wider range of validity, and for which the upper bound supplied
by Theorem 1 would be sharper. This lead to the construction of the wavelet leader scaling

function, which we now recall. The “basic ingredients” in this formula are no more wavelet
coefficients, but wavelet leaders, i.e. local suprema of wavelet coefficients. The reason is that
pointwise smoothness can be expressed much more simply in terms of wavelet leaders than of
wavelet coefficients.

Let λ be a dyadic cube; 3λ is the cube of same center and three times wider. If f is a bounded
function, the wavelet leaders of f are the quantities

dλ = sup
λ�⊂3λ

|cλ� |

Let x0 ∈ R
d; λj(x0) is the dyadic cube of width 2−j which contains x0; and

dj(x0) = dλj(x0) = sup
λ�⊂3λj(x0)

|cλ� |.

It is important to require f to be bounded; otherwise, the wavelet leaders of f can be infinite.
The reason for introducing wavelet leaders is that they give an information on the pointwise
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Hölder regularity of the function. Indeed, one can show that (see [24] and references therein) if
f is a uniform Hölder function, then

hf (x0) = lim inf
j→+∞

�

log (dj(x0))

log(2−j)

�

.

Therefore, it is clear that a scaling function constructed with the help of wavelet leaders will
incorporate pointwise smoothness information. For any p ∈ R, let

Tf (p, j) = 2−2j
�

λ∈Λj

|dλ|
p.

The leader scaling function is defined by

∀p ∈ R, ζf (p) = lim inf
j→+∞

log(Tf (p, j))

log(2−j)
.

An important property of the leader scaling function is that it is “well defined” for p < 0, which
is not the case for the wavelet scaling function. By “well defined”, we mean that it has the
following robustness properties if the wavelets belong to the Schwartz class (they still partly
hold otherwise, see [?, 24]) :

• ζf is independent of the wavelet basis.

• ζf is invariant under the addition of a C∞ perturbation.

• ζf is invariant under a C∞ change of variable.

Note that the wavelet scaling function does not possess these properties when p is negative.
The leader scaling function can also be given a function-space interpretation for p > 0. Let

p ∈ (0,∞); a function f belongs to the Oscillation space Os
p(R

d) if and only if (Ck) ∈ lp and

∃C, ∀j,
�

λ∈Λj

�

2(s−d/p)jdλ

�p
≤ C.

Then
ζf (p) = sup{s : f ∈ Os/p

p }.

Properties of oscillation spaces are investigated in [?, 24].
.

Montrer qu’on obtient des definitions equivalentes en prenant les leaders restreints

We denote by L(u) the transform of a concave function u, i.e.

Lu(H) = inf
p∈R

(d+Hp− u(p)) .

12



The leader spectrum of f is defined through a Legendre transform of the leader scaling function
as follows

Lf (H) = (Lζf )(H).

Of course, the leader spectrum of f has the same robustness properties as the leader scaling
function.

Theorem 2 If f is uniform Hölder then,

∀H, dim(EH) ≤ Lf (H).

!!!
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These basic questions did not receive a single clear-cut answer. Several notions of singular-
ities can be used, leading to different choices of “global quantities”, and leading to estimates on
several notions of “size” of sets.

The formulas that relate the scaling functions with the dimensions of singularities are reffered
to as multifractal formalisms, see Section 4; their range of validity is still far from being well
understood, large classes of examples and counterexamples being known.

All notions of pointwise singulartity which have been considered in this context are variants
on the notion of “regularity exponent”, which, roughly speaking, associates the exponent γ to
the singularity |x − x0|

γ at x0 (if α /∈ 2N), see [27, 40] for explicit general definitions of the
notion of regularity exponent); such exponents include the (most widely used) Hölder exponent
(see definition 7), the p-exponent (see definition 8), and the weak-scaling exponent (which we
will not consider in this paper ???, see [40]. However, one can wish to have information on how
the function considered oscillates near the singularity at x0: Consider for instance the “chirps”

Fγ,β(x) = |x− x0|
γ sin

�

1

|x− x0|β

�

, (19)

for a given regularity γ, their oscillatory behavior in the neighbourhod of x0 increases with β;
in this example, β parametrizes a “degree of oscillation”. We will use a finer description of
singularities by introducing an additional “oscillation” parameter, that allows to draw distinc-
tions between functions which share the same Hölder exponent. Measuring such an additional
exponent rises additional difficulties, one of them being that several mathematical definitions
have been proposed, yielding different types of information. Note that the case β = 0, i.e.
Fγ,0(x) = |x− x0|

γ is usually reffered to as a “cusp”.
.

Mettre ici une illustration de cusp, et de chirps avec le meme alpha, mais β = 0, et deux β

positifs franchement differents

One motivation for the detection of singularities such as (19) is that the existence of such
behaviors has been conjectured in some physical data, such as fully developed turbulence, see
[]. Note also that the detection of isolated chirps in a noisy signal is a key issue in the study of
gravitational waves, see []. We will see another motivation, which is an internal mathematical
requirement in multifractal analysis: one is often obliged to compute a primitive of the signal (or
more generally a fractional integral) before performing its multifractal analysis (see Section??).
In that case, the singularity sets can be modified is a way which is difficult to predict if singu-
larities such as (19) are present in the signal. Therefore understanding what multifractal analysis
yields in this case requires the consideration of such behaviors.

.
Developper ici la motivation turbulence? citer au moins Hunt, Vassilicos, Moffat, Lund-
gren, autres? est-ce que ces articles ont eu une suite dans la communaute turbulence?

In Section 3, we discuss the notion of pointwise exponents, starting with the Hölder exponent,
and then showing how considering this exponent for simultaneously the function itself and its
fractional integrals allows to put into light the oscillatory properties of the function considered.

14



We discuss the wavelet characterizations of these quantities, and consider the particular case of
functions that do not display oscillating singularites (i.e. “cusp functions”).

Section 4 deals with the corresponding multifractal formalisms. We start by recalling the
basic ideas underlying the construction of the multifractal formalism for the Hölder exponent,
and based on wavelet leaders.

In Section 5 we show how they can be extended to fractional integrals of the function, and
which information the multifractal analysis of these fractional integrals yield about the presence
of oscillating singularities. We will focus on two clases of examples which yield oscillating
singularities: Lacunary Wavelet esries and Random wavelet series.

In a second companion paper, a multifractal formalism fitted to the obtention of the oscillation
exponent only will be constructed and its properties will be investigated. We will also extend it
into a grandcanonical multifractal formalism, yielding the dimensions of the sets of points where
the couple composed of the Hölder and the oscillation exponent take a given value.

Some results proved in this paper have been announced in [2, 28, 45].

3 Pointwise exponents

We will usually assume that the mathematical objects we deal with are functions defined on
R
d. Let us briefly discuss the functional setting that we will use: L∞ or Lp spaces are not a

convenient setting because the most standard models, such as Brownian motion, FBM or Lévy
processes grow at infinity, and therefore do not belong to theses spaces. A right model should
locally correspond to these spaces, but should allow some growth at infinity. On the other hand,
a non controlled growth (as allowed by the spaces Lp

loc) should be prohibited, for a technical
reason: Our analysis will heavily be based on wavelet techniques, and, if wavelets are only
assumed to have fast decay, so that the computation of the wavelet coefficients might lead to a
divergent integral. This remark shows that a polynomial growth is the maximum we can allow;
and it is compatible with Brownian or FBM sample paths. Therefore we make the following
asumption.

Definition 5 A function f : Rd → R belongs to L1
SG(R

d) (L1 with slow growth) if f ∈ L1
loc and

∃C,A > 0 :

�

B(0,R)
|f(x)|dx ≤ C(1 +R)A.

Furthermore, the local regularity definition that we will use requires a preliminary precaution
the corresponding exponent α may be modified if the values taken by f are modified on a set
of vanishing measure. In order to turn this problem, we always assume in the following that
functions considered are redefined into a new functions f̃ at every point according to the formula

f̃(x0) = lim inf
r→0

1

V ol(B(x0, r))

�

B(x0,r)
f(x)dx, (20)

where B(x0, r) denotes the open ball centered at x0 and of radius r.
Because of Lebesgue’s differentiation theorem, f is thus redefined at most on a set of van-

ishing measure. We will still denote by f this (possibly) new function f̃ . Note that, if f is
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continuous, it is not altered by this redefinition. In all that follows, we implicitly assume that all
functions we consider are canonically redefined using (20). The assumptions that we made have
the following consequences:

• One can always compute the wavelet coefficients of a function f ∈ L1
SG(R

d), and the
corresponding wavelet series converges to f locally in L1.

• If x0 is a Lebesgue point of f the wavelet series converges at x0 towards f(x0).

• If f is continuous in a neighbourhood of x0, then convergence is uniform on compact sets

We will have to make additional assumptions, depending on the notion of pointwise regularity
which is used: We will often make the assumption that they are locally bounded with polynomial
increase. Dealing with the p-exponent allows to relax this hypothesis, see [27, 30]. However, we
will see in Section ??? how to deal with measures, or even how to fit the most general setting of
distributions.

3.1 Regularity exponents

The first pointwise exponents which have been considered fall in the class of regularity exponents

(as opposed to oscillation exponents, with wich we will deal later). This notion has first been
developed in its general form by Y. Meyer: The following definition for a pointwise regularity
criterium is implicit in [40].

.
S.J. : IL peut etre plus astucieux de se placer directement dans le cadre un peu plus restrictif
de [27] Le probleme etant que ca necessite d’introduire tout de suite un cadre technique
assez lourd: il faut la notion d’integration fractionaire pour la condition:

if f ∈ Hα(x0), then ∀β > 0, f−β ∈ Hα+β(x0).

Il faut aussi demander la γ-stabilite, en mentionnant que l’exposant de Holder ne la verifie
pas.

Definition 6 Let α0 ∈ R. A collection of vector spaces of functions (or distributions) Hα(x0)
(indexed by α > α0 and x0 ∈ R) defines a pointwise regularity exponent if:

• This sequence of spaces is decreasing when α increases.

• f(.) ∈ Hα(x0) ⇒ f(.− y0) ∈ Hα(x0 + y0).

• If f − g is C∞ in a neighbourhood of x0, then f ∈ Hα(x0) ⇔ g ∈ Hα(x0).

• The function |x− x0|
α locally belongs to Hα(x0) and does not belong Hγ(x0) if γ > α.
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Let us mention a few examples: The most widely used notion of pointwise regularity cri-
terium is supplied by the Hölder regularity (for which α0 = 0), which has been widely used
since the end of the 19th century.

Definition 7 Let f : R
d → R be a locally bounded function, x0 ∈ R

d and let α ≥ 0; f belongs

to Cα(x0) if there exist C > 0, R > 0 and a polynomial P of degree less than α such that

if |x− x0| ≤ R, then |f(x)− P (x− x0)| ≤ C|x− x0|
α.

One difficulty for using this notion is that it requires f to be locally bounded. We will discuss
in Section ??? how to detremine numerically if requirement is fulfilled; when it is not the case,
one can use the following generalization introduced by Calderón and Zygmund in 1961, see [12].

Definition 8 Let p ∈ [1,+∞), α > −d/p and let f be a function locally in Lp(Rd); f belongs

to T p
α(x0) if if there exist C > 0 and a polynomial P of degree less than α such that

∀r ≤ R,

�

1

rd

�

B(x0,r)
|f(x)− P (x− x0)|

pdx

�1/p

≤ Crα. (21)

Remarks: This notion requires the weaker assumption that f ∈ Lp
loc(R

d). We will discuss
in Section ??? how to check this requirement. An advantage over the Hölder exponent is that
it allows to consider negative Hölder exponents, which is a mandatory requirement in many
applications, see [5, 30]: for instance, the function f(x) = 1

|x−x0|γ
belongs locally to Lp if

γ < d/p, in which case it has a p-exponent equal to −γ, as expected.
.

Ê SJ: donner aussi une ref a la suite du papier si on rediscute vraiment ce probleme, dans
le cadre: motivation pour l’integration fractionnaire
Ê

(we also refer to [1, 40] for a discussion of the weaker notion of weak-scaling regularity,
which we won’t deal with here).

Once a notion of pointwise regularity Hα(x0) satisfying the properties listed in Definition 6
is picked, one defines the corresponding pointwise exponent as

rf (x0) = sup{α : f ∈ Hα(x0)} (22)

The Hölder exponent, which is denoted by hsf (x0), corresponds to the Cα(x0) regularity and the
p-exponent, which is denoted by hpf (x0)) corresponds to the T p

α(x0) regularity.
It follows from the definition of rf that

∀λ, µ ∈ R rλf+µg(x0) ≥ inf(rf (x0), rg(x0))

and, if λ �= 0, µ �= 0 and rf (x0) �= rg(x0), then

rλf+µg(x0) = inf(rf (x0), rg(x0)). (23)
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3.2 Oscillation exponents

Let us now come back to our initial motivation of defining oscillation exponents: We wish to
describe strong local oscillations which display the same qualitative feature as in (19). A first
natural idea is to check if this can be done by comparing the values taken by different regularity
exponents. and see if one can infer from this information the value of β. Let us check what this
idea yields on the regularitry exponents that we already introduced; it is straightforward to check
which spaces Cα(x0) or T p

α(x0) contain the functions Fγ,β defined in (19); an easy computation
shows that Fγ,β ∈ Cα(x0) and Fγ,β ∈ T p

α(x0) if and only if α ≤ γ. In other words, checking
which T p

α(x0) spaces contain the Fγ,β does not allow to draw a difference between them for a
fixed γ, therefore, we have to follow a different path. An indications pointing to another idea is
supplied by the following remark. Let γ > 0, be given and let us estimate the primitive of (19).
Since

� x

0
|t− x0|

γ sin

�

1

|t− x0|β

�

dt =

� x

0

|t− x0|
γ+β+1

β

�

cos

�

1

|t− x0|β

���

dt,

it follows that, in the neighbourhood of x0, this primitive is the sum of

|x− x0|
γ+β+1

β
cos

�

1

|x− x0|β

�

and higher order terms; thus the Hölder exponent of Fγ,β is γ, but the Hölder exponent of its
primitive is γ+β+1; this simple comuttaion points towards the clue that the oscillation exponent
can be recovered by comparing the regularity exponents of f and of its primitive.

Before proposing a precise mathematical procedure which allows to recover β, let us mention
a natural requirements that a notion of “oscillation exponent” should satisfy in order to be of
pratical use. The definition used should allow for possible superpositions and “mixtures”; indeed,
in the spirit of multifractal analysis, we do not expect these local behaviors to appear only in an
isolated, “perfect” form as in (19), but rather for a dense set of values of x0, and with possible
corruptions by noise. Therefore one should find a key feature of (19) that characterizes the
exponent β, and use it as a general definition of oscillating singularity. We noticed that β should
be recovered by comparing the regularity exponents of f and of its primitive. We will need
a slight extension of this remark in order to obtain a definition of oscillation exponent which
fulfills this requirement. For that purpose, we introduce the notion of local fractional integral.

Definition 9 Let f be an L2 function; the fractional integral of order s of f is the operator (Id−
∆)−s/2 defined as the convolution operator which amounts to multiply the Fourier transform of

f with (1 + |ξ|2)−s/2.

Let φ be a C∞ compactly supported function satisfying φ(x) = 1 for x in a neighbourhood

of x0. If f ∈ L1
SG, its local fractional integral of order s is

f (−s) = (Id−∆)−s/2(φf). (24)

The Hölder exponent of the local fractional integral of f of order s at x0 is called the fractional

Hölder exponent of f at x0 and denoted by

hsf (x0) = hf (−s)(x0).
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Lemma 1 The definition of hsf (x0) does not depend on the function φ which is chosen.

Proof: Denote by f
(−s)
1 and f

(−s)
2 the local fractional integrals of f corresponding to two

different functions φ1 and φ2; fφ1 − fφ2 vanishes in a neighborhood of x0, and therefore is C∞

in a neighborhood of x0. The local regularity properties of the operator (Id−∆)−s/2 imply that

(Id−∆)−s/2(fφ1 − fφ2) also is C∞ in a neighborhood of x0; therefore f
(−s)
1 and f

(−s)
2 differ

by a C∞ function, and thus share the same Hölder exponent.

Properties of the fractional Hölder exponent have been investigated in [6, 33]. In particular
one can show that it is a concave function.

Illustrations pedagogiques? par exemple: le calcul de hsf pour un cusp, un chirp, un
chirp + FBM; dans ce cas, on doit voir la cassure: d’abord la pente 1 + β, puis la pente 1,
pour s assez grand.

It follows from the concavity of the fractional Hölder exponent that

either Ê ∀s > 0, hsf (x0) = +∞ orÊ ∀s > 0, hsf (x0) < +∞;

an example of the first case is given by

|x− x0|
α sin

�

exp
1

|x− x0|

�

.

When this first occurence happens, there is no ambiguity in order to define an oscillation expo-
nent: All possible definitions agree on the value +∞. Therefore, in the following, we suppose
that the second case occurs.

The definition of the oscillation exponent that we will choose is motivated by the simple but
important remark that follows.

Lemma 2 Let f : R → R be a locally bounded function, and denote by Isf an iterated primitive

of order s of f . If s is an integer, then

hsf (x0) = hIs
f
(x0).

Proof: Since the result is clearly local, we can assume that f is supported in a neighbourhood
of x0, and therefore belongs to L2, which allows to use the Fourier transform without any restric-
tion, and also allows to assume that φ = 1 in the definition of the local fractional integral. Up
to a polynomial term, one derives Isf from f by multiplying f̂ by (iξ)−s; this iterated primitive
has the same Hölder exponent as the one obtained using instead |ξ|−s since the corresponding
operators are either the same (up to a multiplicative constant), or deduce from each other by an
Hilbert transform (the Fourier multiplier by sign (ξ)); and applying the Hilbert transform does
not modify the pointwise Hölder exponent since f (−s) is uniform Hölder , see [21] (the notion of
uniform Hölder function is recalled in Definition 13). The result follows by noticing that

1

(1 + |ξ|2)s/2
−

1

|ξ|s
∼

C

|ξ|s+2
when |ξ| → +∞,
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and therefore the corresponding operator is a uniformly smoothing operator which, for any α ∈
R, maps Cα(R) to Cα+s+2(R). Therefore,

hf (−s)−Is
f
(x0) ≥ 2 + sup(hf (−s)(x0), hIs

f
(x0)),

and, using (23), we get hf (−s)(x0) = hIs
f
(x0).

It follows from this lemma that results in dimension 1 which are checked by hand through
the computation of primitives can then be extended in any dimension and to the non-integer case
by using fractional integrals; for instance, let us check that

∀s ≥ 0, hsFα,β
(x0) = α+ (1 + β)s. (25)

Indeed, a straightforward integration by parts shows that this result holds for iterated primitives,
and thus, using Lemma 2, it also holds for fractional integrals of integer order; the result then
follows immediately by the concavity of the fractional Hölder exponent. Therefore, a natural
definition for the oscillation exponent of an arbitrary function at x0 is to use the slope of the
fractional Hölder exponent, i.e. of the function

s → hsf (x0). (26)

In the case of Fα,β , this function is linear, and the definition is unambiguous; however, it is
not always the case, and one can show (see [6, 33]) that, in general, functions defined by (26)
only satisfy the following properties, which are characteristic of the functions h(s) which are
fractional Hölder exponent, i.e. for which there exists a function f satisfying hsf (x0) = h(s).

Proposition 2 Let f : Rd → R be a locally bounded function, and let x0 ∈ R
d. The func-

tion s → hsf (x0) is concave; therefore it has everywhere a left and a right derivative. These

derivatives satisfy

∀s ≥ 0,
∂(hsf (x0))

∂s
≥ 1.

Furthermore, these properties characterize fractional Hölder exponents.

It follows from this characterization that hsf (x0) is, in general, not a linear function of s, and
therefore many choices are possible for its slope. In practice, only two choices have been used
up to now, leading to two different exponents:

• The chirp exponent (choice of the slope “at infinity”)

γf (x0) = lim
s→+∞

∂

∂s
(hsf (x0))− 1, (27)

• the oscillation exponent (choice of the slope “at the origin”)

βf (x0) = lim
s→0

∂

∂s
(hsf (x0))− 1, (28)
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(see [31] for properties associated with chirp exponents, and [6] for properties associated with
oscillation exponents). The drawback of using (27) is that this notion is very unstable: If g is an
arbitrary smooth (but not C∞) function, one can have

γf (x0) = Γ > 0 but γf+g(x0) = 0.

A simple example of this phenomenon is given by the functions: f(x) = x sin(1/x) and g = |x|a

for an a /∈ 2N and arbitrarily large. Therefore, the chirp exponent does not satisfy the requirement
stated at the beginning of section 3.2. These instabilities cannot occur when using the oscillation
exponent as shown by the following result, which states that, as soon as one imposes this stabilitry
requirement, then the choice of βf (x0) is canonical.

Proposition 3 Let f be a locally bounded function satisfying: ∀s > 0, hsf (x0) < +∞. Then

βf (x0) is the only quantity which satisfies the following properties:

• It is deduced from the function s → hsf (x0).

• If hg(x0) > hf (x0), then βf+g(x0) = βf (x0) (the oscillation exponent of f is not

altered under the addition of a function which is smoother than f ).

• It yields the exponent β for the functions Fα,β .

This propositions justifies the fact that, from now on, we will use the exponent βf (x0) in
order to measure oscillations.

Proof: Let us first check that the oscillation exponent satisfies these properties. We only
have to check the second one; indeed, the first one follows from the definition, and the last one
has already been proved. Because of the finiteness assumption for hsf , and its concavity, it is
continuous; therefore, it remains strictly smaller than hg(x0) in a small neighbourhood of x0,
and thus

∃η > 0 : ∀s < η, hsf (x0) < hsg(x0),

so that hsf+g(x0) = hsf (x0).
Let us now prove the converse result. The stability requirement implies that the quantity

considered cannot be function of hsf (x0) for an s > 0; therefore it is a “germ property” at s = 0,
and therefore, a function of the value at 0 of the function s → hsf (x0) and its derivatives. Since
hsf (x0) can be an arbitrary concave function, higher order derivatives do not exist in general;
therefore, only hf (x0) and the first derivative can be involved. Finally, the fact that the exponent
takes the value β for the functions Fα,β implies that it is given precisely by (28).

Remarks: In practice, one cannot directly measure the oscillation exponent since it involves
the estimation of how the Hölder exponent evolves under a fractional integration of “infinitesi-
mal” order, and one rather estimates the evolution under a fractional integration of given fixed
order s, thus obtaining the s-oscillation exponent:

βf (s, x0) =
hsf (x0)− hf (x0)

s
− 1. (29)
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Note that, because of the concavity of hsf (x0),

∀s > 0, γf (x0) ≤ βf (s, x0) ≤ βf (x0)

and
βf (s, x0) = 0 ⇐⇒ βf (x0) = 0. (30)

Definition 10 A locally bounded function f has a cusp singularity at x0 if βf (x0) = 0.

Note that (30) is of practical importance for the following reason: If one is interested in a
qualitative information such as the existence or absence of oscillating singularities (and not the
precise values taken by βf ), then, (30) shows that, in practice, it is equivalent to work with the
s-oscillation exponent and the oscillation exponent in order to obtain the required information.

Definition 11 A locally bounded function f has a cusp singularity at x0 if βf (x0) = 0.

We defined the notion of oscillation exponent through a construction derived from the Hölder
exponent (by comparing how it evolves through fractional integration); however, one can notice
that the only specific property of the fractional Hölder exponent that we used is its concavity,
which holds for regularity exponents, in a very general setting, as shown by the following propo-
sition.

Proposition 4 Let f : Rd → R be a function or a distribution, and let x0 ∈ R
d. Let Hα be

a scale of regularity exponents satisfying the hypotheses of Definition ??. The function s →
Hα

f−s(x0) is concave; therefore it is differentiable, except possibly at a countable number of

points; it has everywhere a left and a right derivative; these derivatives satisfy

∀s ≥ 0,
∂(Hα

f−s(x0))

∂s
≥ 1.

Proof: Assez facile si on se place dans le cadre des “gentle spaces” de [27]. peut-etre
vrai dans le cadre le plus general? dans un premier temps je mettrai ici la demo “gentle
spaces”

It follows from Proposition 4 that one can define alternative oscillation exponents in the same
way, but using the p-exponent instead of the Hölder exponent; more generally, one can use the
abstract setting of pointwise smoothness based on gentle spaces which is studied in [27]. In
any of these setting, we see that the oscillation exponent is not a “primary notion”; it has to be
based on a prior notion of pointwise regularity exponent, and is obtained by inspecting how this
regularity exponent behaves under fractional integration: The oscillation exponent is subordi-

nated to the Hölder exponent. This will explain why, in practice, it is difficult to obtain a direct
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access to the oscillation exponent; and it will have important consequences for the corresponding
multifractal formalisms.

Let us now recall the characterization of oscillating singualties, that was discoverd by J.-M.
Aubry, cf [8].

Definition 12 A function g ∈ L∞(Rd) is called indeÞnitely oscillating if and only if ∃ω ∈ S(Rd)
such that such ∀N ∈ N, it can be written

g = ω +
�

|α|=N+1

∂αgα

with each gα ∈ L∞(Rd).

This is a natural generalization (in particular to higher dimen- sions) of the oscillating behav-
ior of the sine function. Then, if h < hf (x0) and f can be written, is the neughbourhood of x0
as

f(x) = |x− x0|
hg

�

x− x0
|x− x0|β+1

�

+ r(x),

where r is smoother that the first term at x0 (see [8]) for a more precise statement).

3.3 Wavelets and pointwise regularity

We will now recall or derive the wavelet characterizations of the quantities we introduced. This is
a mandatory requirement for constructing multifractal formalisms adapted to the determination
of oscillation exponents. Indeed, it has already been shown that, even for the Hölder exponent,
wavelet techniques are necessary in order to recover the whole spectrum of singularities, see
[1, 5, 24]. Therefore it will be all the more true for quantities such as oscillation exponents,
which are based on Hölder exponents.

The functional setting we pick in this section is the following: We assume that the functions
we consider are locally bounded, and satisfy the following assumption.

Definition 13 A function f : Rd → R is a uniform Hölder function if f is locally bounded and

satisfies

∃a, C, � > 0 such that |f(x)− f(y)| ≤ C|x− y|�(1 + |x|+ |y|)a.

This setting allows to deal with stochastic processes used in modeling, such as Brownian
motion, or Fractional Brownian motions for instance, but typically, not with processes with dis-
continuities, such as Lévy processes. This setting is required for the wavelet characterization of
the Hölder exponent, see ??? We will see below how to check this condition in practice, and we
will see in Section ??? how to deal with more general settings which are pertinent for applica-
tions, such a measures, or even distributions.

We will deduce Hölder and oscillation exponents from discrete quantities, which will either
be wavelet coefficients, or quantities based on wavelet coefficients: The wavelet leaders. In
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order to be fully efficient, these notions have to be defined in the rather general setting supplied
by biorthogonal wavelet bases, which are a useful extension of orthonormal wavelet bases. We
first recall the notion of biorthogonality.

A Riesz basis of L2 is a collection of vectors (en) such that the finite linear expansions
�N

n=1 anen are dense in L2 and

∃C,C � > 0 : ∀N, ∀an, C

N
�

n=1

|an|
2 ≤

�

�

�

�

�

�

�

�

�

�

N
�

n=1

anen

�

�

�

�

�

�

�

�

�

�

2

H

≤ C �
N
�

n=1

|an|
2.

Two collections of functions (en) and (fn) form biorthogonal bases if each collection is a Riesz
basis, and if �en|fm� = δn,m. When such is the case, any element f ∈ L2 can be written

f =

∞
�

n=1

�f |fn�en. (31)

Biorthogonal wavelet bases are couples of Riesz bases of L2 which are of the following form:
On one side,

ϕ(x− k), (k ∈ Z
d) and 2dj/2ψ(i)(2jx− k), (k ∈ Z

d, j ∈ Z),

and, on the other side,

ϕ̃(x− k) (k ∈ Z
d) and 2dj/2ψ̃(i)(2jx− k), (k ∈ Z

d, j ∈ Z).

Therefore,

∀f ∈ L2, f(x) =
�

k∈Zd

Ckϕ(x− k) +
∞
�

j=0

�

k∈Zd

�

i

cij,kψ
(i)(2jx− k); (32)

where

cij,k = 2dj
�

Rd

f(x)ψ̃(i)(2jx− k)dx, and Ck =

�

Rd

f(x)ϕ̃(x− k)dx. (33)

Remarks:
We will see that biorthogonal wavelet bases are particularly well adapted to the decomposi-

tion of the Fractional Brownian Motion; indeed, well chosen biorthogonal wavelet bases allow
to decorrelate the wavelet coefficients of these processes (the wavelet coefficients become inde-
pendent random variables), and therefore greatly simplifies their analysis. They are also well
adapted to the analysis of some operators, such as fractional derivations or integrations, since,
up to a normalization factor, these operators map an orthonormal wavelet basis on one element
of a couple of Riesz bases. Since these operators play a key role in the definition of oscillation
exponents, this explains why the boiorthognal setting will be mandatory in the following.

In (32), the L2 normalisation for the wavelets is not used, but rather an L∞ normalisation
which is better fitted to the study of Hölder regularity. The L1 normalisation of (33) follows
accordingly.
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Note that (33) makes sense even if f does not belong to L2; indeed, if one uses smooth
enough wavelets, these formulas can be interpreted as a duality product betweeen smooth func-
tions (the wavelets) and distributions, and convergence usually takes place in the corresponding
spaces (see [39] for precise results). In the setting we picked, one can easlily show that, though f
does not necessarily belong to L2, (32) still makes sense, and the convergence holds locally in L2.

We will use more compact notations for indexing wavelets: Instead of using the three indices
(i, j, k), we will use an indexing by dyadic cubes which is obtained as follows. Recall that, if
j ∈ Z, a dyadic cube of scale j is of the form

λ =

�

k1
2j

,
k1 + 1

2j

�

× · · · ×

�

kd
2j

,
kd + 1

2j

�

, (34)

where k = (k1, . . . kd) ∈ Z
d.

Each point x0 ∈ R
d is contained in a unique dyadic cube of scale j, denoted by λj(x0). We

denote by C · λj(x0) the cube of same center and orientation as λj(x0) and C times wider; i.e.,
if λj(x0) is given by (34), then

3λj(x0) =

�

k1 − 1

2j
,
k1 + 2

2j

�

× · · · ×

�

kd − 1

2j
,
kd + 2

2j

�

.

Since i takes 2d − 1 values, we can assume that it takes values in {0, 1}d − (0, . . . , 0), which
allows to use the following compact notations:

• λ (= λ(i, j, k)) =
k

2j
+

i

2j+1
+

�

0,
1

2j+1

�d

.

• cλ = cij,k

• ψλ(x) = ψ(i)(2jx− k).

In order to have a common notation for wavelets and functions ϕ, when j = 0, we note ψλ

the function ϕ(x− k) (where λ is, in this case, the unit cube shifted by k)).

Finally, Λj will denote the set of dyadic cubes λ which index a wavelet of scale j, i.e.
wavelets of the form ψλ(x) = ψ(i)(2jx − k) (note that Λj is a subset of the dyadic cubes of
side 2j+1), and Λ will denote the union of the Λj for j ≥ 0.

Remark: Indexing by dyadic cubes will prove useful for the following reason: The wavelet
ψλ is essentially localized near the cube λ; more precisely, when the wavelets are compactly
supported

∃C > 0 such that ∀i, j, k, supp (ψλ) ⊂ C · λ.

This property will play an important role in the definition of the wavelet leaders below where this
indexing by dyadic cubes is necessary for a simple and natural definition.

Pointwise Hölder regularity is characterized in terms of the following quantities.
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Definition 14 Let f be a uniform Hölder function. The wavelet leaders of f are

dλ = sup
λ�⊂3λ

|cλ� |. (35)

We note dj(x0) = dλj(x0).

The following result of [24] yields a characterization of pointwise regularity: Let f be a
uniform Hölder function; then

∀x0 ∈ R
d, hf (x0) = lim inf

j→+∞

�

log (dj(x0))

log(2−j)

�

. (36)

In this proposition and in all that follows, it is implicitely understood that one uses a “smooth
enough” wavelet basis. In the present case, it means that the wavelets are r-smooth for an r > h.

For a real-life signal f , performing the multifractal analysis of f wil be based on the com-
putation of wavelet leaders; therefore this procedure, however suffers an important restriction:
It requires the function analyzed to be locally bounded. Note that this restriction is not attached
to the particular use of of wavelet leaders: Indeed, the definition of Hölder regularity already
requires the considered function to be locally bounded. Therefore a natural preliminary question
is to wonder if signals or images which are commonly considered can indeed be modelled by
locally bounded functions. This question has to be reformulated for the following reason: In
practice real life signals are stored at a finite resolution, and therefore always appear as discrete,
hence bounded objects. The proper way to deal with this apparent contradiction is to attach to the
signal multiresolution quantities, and see how they behave through the scales which are available
on the data. The procedure proposed in [2, 45, 46] is based on the computation of the following
exponent.

Definition 15 Let f be a tempered distribution defined on R
d. The uniform Hölder exponent of

f is

Hmin
f = sup{s : f ∈ Cs

loc(R
d)}. (37)

Note that the definition of this exponent does not require any a priori assumption on f , and
it can be derived directly from the wavelet coefficients of f ; indeed, it follows from (37) and the
wavelet characterization of the Hölder spaces that, if

ωR
j = sup

λ∈Λj∩B(0,R)
|cλ|,

then

Hmin
f = lim

R→∞
lim inf
j→+∞

log
�

ωR
j

�

log(2−j)
. (38)

This formula shows that, in practice, Hmin
f ca be computed through a simple regression on

a log-log plot. The determination of Hmin
f allows to settle if f is bounded or not. Indeed, it

follows from (37) that

• if Hmin
f > 0, then f is a uniform Hölder function,
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• if Hmin
f < 0, then f /∈ L∞

loc.

Let us consider now two simple models in order to show possible numerical problems that
can appear in the practical estimation Hmin

f .
The first model is supplied by Lacunary Wavelet Series (LWS) Xα,γ of type (α, γ); they are

defined on [0, 1]d (for α > 0 and γ < d) as follows: A biorthogonal wavelet basis in the Schwartz
class is used for the construction. One draws at random (uniformly) 2γj locations λ among the
2dj dyadic cubes of width 2−j included in [0, 1]d, and the corresponding wavelet coefficients are
set to the value 2−αj the others are set to the value 0. In order to define the LWS on R

d, one
repeats this construction on all cubes of width 1. In this case it is straightforward that Hmin

f = α

and, at each scale ωR
j = 2−αj so that (38 ) yields, at each scale, an unbiased estimator of Hmin

f .
The second example falls in the general model of Random Wavelet Series, that we will

consider in details in Section ???. Let us describe the particular case that we consider now.

Definition 16 Let ψλ be a biorthogonal wavelet basis in the Schwartz class. A Uniform Random

Wavelet Series (URWS) of type β is a random field of the form

X =
�

Cj,k2
−αjXj,kψj,k,

where the Xj,k are IID with common law X , which is a non-vanishing random variable which

satisfies the tail estimate

P(|X| ≥ A) ∼ C exp(−B|A|β),

and C,B and β are positive constants.

Note that this model includes the FBM (up to a C∞ additive term). It follows from general
results on RWS (see []) that this model yields a random field, with a constant Hölder exponent
which is equal to α. Since the Xj,k are independent, one obtains that

P

�

sup
k

|Xj,k| ≤ A

�

∼ 1− C exp(j log 2−BAα);

therefore supk|Xj,k| is asymptotically equivalent to Cj1/α. It follows that

ωj = α−
log j

αj log 2
(1 + o(1));

therefore the estimator of Hmin
f supplied by log(ωj)

log(2−j)
is biased by a term equivalent to (log j)/j.

.
SJ: On pourrait faire le cas faiblement correle, qui donnerait aussi un estimateur biaise, et
fournirait le resulatt pour un FBM dans une base d’onedelttes non necessairement adapte:
poiur ca, ou sous-echnatillonne les guassiennes pour avoir de la “presuq’-independace ”
asymtotique, et on se ramene au cas precedent. Mais ca complque pas mal, pour une resu-
latt qui ne reste de toute facon qu’un exemple
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A large proportion of signals and images have been found to have a negative exponent Hmin,
see []; hence they do not satisfy the regularity properties that are required in order to define
the Hölder exponent. At this point, several options are possible. The first one, which we will
investigate in Section ??? consists in performing a fractional intgration of large enough order on
the data. Another one consists in using the p-exponent instead of the Hölder exponent; indeed,
the p-exponent allows to deal with singularities of order as low as −d/p, see [26, 27, 30]. Note
however that, in this case, one still has to check that f belongs to Lp

loc. Let us show how this
can be performed numerically, since this verification is a consequence of the computation of the
wavelet scaling function, which is an important quantity in multifractal analysis.

Definition 17 Let f be a tempered distribution. Let

SR
f (p, j) = 2−dj

�

λ∈Λj∩B(0,R)

|dλ|
p.

The wavelet scaling function of f is

∀p > 0, ζf (p) = lim
R→+∞

lim inf
j→+∞

log(SR
f (p, j))

log(2−j)
.

It follows from the wavelet characterization of Besov spaces that

∀p > 0, ζf (p) = sup{s� : f ∈ B
s�/p,∞
p,loc },

which shows that the wavelet scaling function is independent of the (smooth enough) wavelet
basis which is chosen.

The embeddings between Besov and Lp spaces that if f ∈ Bs,∞
p for an s > 0, then f ∈ Lp

and conversely, if f ∈ Lp, then ∀s < 0, f ∈ Bs,∞
p . The following simple practical criterium can

therfore be used: A multifractal analysis based on the p-exponent can be performed if ζf (p) > 0
and it cannot if ζf (p) < 0.

.
SJ: Je me demande si on ne devrait pas donner cet exposant, (par exemple pour p = 2?)
pour quelques signaux ou images, histoire de donner une premiere indication de faisabilité
de la methode? (on les a deja, il n’y a pas de nouveaux calculs a faire).
Ê

Je pense qu’il y a aussi un biais dans l’estimation de la fonction d’echelle ondelettes.
c’est facile a estimer dans la cas p = 2 et le “toy model” de ??? car, la quantite a estimer
est une somme de carres de gaussiennes, donc un chi2 a 2j degres de liberte, sur lequel on
a des estimations explicites

Remarks: Pointwise regularity exponents usually have a wavelet characterization in terms of
liminfs of quantities defined on the dyadic cubes. it is the case of the p-exponent, see [26] and of
the more general exponents considered in [27]. It is important to note that a characterization given
through a liminf is a key property in order to construct a multifractal formalism and show the
corresponding upper bounds for spectra, as shown in [1] where such formalisms are constructed
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in the most general setting of exponents which are precisely defined by such liminfs. Note that
alternative quantities, based on the WTMM (Wavelet Transform Maxima Method) have been
advocated; however, though these quantities have a form similar to (35) (they are based on local
suprema of the continuous wavelet transform), no result similar as (36) holds for the WTMM,
see figure ???, and, therefore, the uper bounds stated in Theorem ?? are not expected to hold for
the WTMM.

.

S.J.: on pourrait mettre les figures ou on montre les regressions log log qui donnent l’exposant
de Hölder pour les cusps et chirps, comparant la MMTO et les leaders? il me semble qu’on
les avait faits pour une conf, mais pas dans un article?

One difficulty that we will meet in the following is precisely that the oscillation exponent,
because it is a subordinated exponent, cannot be characterized in such a way, i.e. as a liminf of
quantities defined on the dyadic cubes.

3.4 Wavelets and fractional integration

In order to estimate oscillation exponents, one has to compare the pointwise Höder regularity of
f and of fractional integrals of f . Therefore, we are led to the problem of computing fractional
integrals of different orders. Another motivation for computing fractional integrals of signals is
that very often, signals or images do not satisfy the uniform regularity assumption of Definition
13, as shown in [] where the uniform exponent of several types of signals and images has been
estimated using the wavelet method, and shown to be often negative.

In specific applications, the problem of a negative uniform Hölder exponent has sometimes
been solved by following an ad-hoc procedure which amounts to performing a fractional integra-
tion. It is the case for instance for the multifractal analysis of turbulence data using the WTMM
(Wavelet transform Maxima Method, see []) where the normalization used in the continuous
wavelet transform amounts to perform a fractional integration of order 1/2 (???). However, it is
important to understand fully the mathematical implications of such a procedure for the following
reasons:

• It allows to understand the hypotheses which are implicitely made of the signal, and there-
fore it opens the way to their correct validation (for instance by computing the uniform
Hölder exponent).

• It opens the way to more flexibility by allowing to “tune” the amount of fractional integra-
tion, depending on the particular nature of the signal

• It allows a better understanding of he quantities effectively computed, which are related
with the Hölder regularity of the function, but rather of a fractional integral, which allows
to investigate how these quantities are related.

• The uniform Hölder exponent is, by itself, an important parameter which proved useful
inclassification.
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.
SJ: Dans quels articles a-t-on trouve des Hmin negatifs? J’en trouve juste un dans [2]; si on
n’en a pas publie plus, il faudrait peut-etre mettre ici qqs exemples?

If Hmin
f is negative, the characterization supplied by (36) does not hold and, since this char-

acterization is the building block of the multifractal formalism, a multifractal analysis cannot be
directly performed. A way to turn this problem is to “preprocess” such signals by first perform-
ing a fractional integration, which increases their uniform regularity, and, if it is of large enough
order, transforms the signal or the image into a uniform Hölder function, see [2].

However, numerically, a fractional integration is difficult to realize; in practice, it is equiva-
lent to perform a pseudo-fractional integration defined as follows.

Definition 18 Let s > 0, let ψλ be an r-smooth wavelet basis with r > s + 1 and let f be a

function, or a distribution, with wavelet coefficients cλ. The pseudo-fractional integral (in the

basis ψλ) of f of order s, denoted by Is(f), is the function whose wavelet coefficients (on the

same wavelet basis) are

csλ = 2−sjcλ.

This operation is numerically straightforward, and the following result shows that it retains
the same properties as the fractional integral.

Proposition 5 Let f be a uniform Hölder function. Then,

∀s > 0, ∀x0, hIs(f)(x0) = hf (−s)(x0).

The proof of this result requires to introduce several tools; the first one is the algebras Mγ ,
which are defined as follows.

Definition 19 An infinite matrix A(λ, λ�) indexed by the dyadic cubes of Rd belongs to Mγ if

|A(λ, λ�)| ≤
C 2−( d

2
+γ)(j−j�)

(1 + (j − j�)2)(1 + 2inf(j,j�)dist(λ, λ�))d+γ
.

Matrices of operators which map an r-smooth wavelet basis onto another one belong to these
algebras, as soon as γ > r , and more generally matrices (on wavelet bases) of pseudodifferen-
tial operators of order 0, such as the Hilbert transform in dimension 1, or the Riesz transforms
in higher dimensions, belong to these algebras, see [39]. We denote by Op(Mγ) the space of
operators whose matrix on a r-smooth wavelet basis (for r > γ) belongs to Mγ . Note that this
space does not depend on the (smooth enough) wavelet basis which is chosen.

The second tool that we will need is the notion of vaguelette system.

Definition 20 A set of functions (θλ) indexed by the dyadic cubes of scale j ≥ 0, forms a

vaguelette system of order s if

30



• for any j ≥ 1 the vaguelettes θλ of scale j have vanishing moment up to order s + 1, i.e.

if, for any multiindex α satisfying |α| ≤ s+ 1, then

�

θλ(x)x
αdx = 0,

• the θλ statisfy the following uniform decay estimates: For any multiindex α satisfying

|α| ≤ s+ 1, then

∀N ∈ N,

�

�

�

�

∂αθλ
∂xα

�

�

�

�

≤
CN2(α+d/2)j

(1 + |2jx− k|)N
.

Biorthogonal vaguelette bases are couples of Riesz bases ψ1
λ and ψ2

λ which are both vaguelette
systems and form biorthogonal bases. Therefore, ∀f ∈ L2,

f(x) =
�

λ

c1λψ
2
λ, (39)

where

c1λ =

�

Rd

f(x)ψ1
λdx. (40)

Note that, as in the wavelet case, if f is uniform Hölder, then convergence also takes place locally
uniformly.
Ê

The notions we introduced are related by the following key property, proved in [39]:

Proposition 6 Let M be an operator which maps an r-smooth wavelet basis to a vaguelette

system of order r; then, for any for γ < r, M belongs to Op(Mγ).

SJ: Attention l’utilisation d’une réciproque exigerait une legere modification de la no-
tion de vaguelette (moments asymptotiquement nuls)

Proof of Proposition 5 : The proof is performed using the wavelet techniques developed in
[39], such as the function spaces characterizations; therefore, we won’t give a complete detailed
proof, but only mention the main lines.

The first point consists in noticing that the systems

ψ1
λ = 2sj(Id−∆)−s/2ψλ and ψ1

λ = 2−sj(Id−∆)s/2ψλ

are biorthogonal vaguelette systems. This property is straightforward to check on the Fourier
transform ψ1

λ and ψ2
λ, which, in this case, are completely explicit.

Note that
Is(f) =

�

2−sjcλψλ and f (−s) =
�

2−sjcλψ
1
λ.

If f is locally bounded, then Is(f) belongs locally to Cs (because of the wavelet characterization
of Cs);
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Assume now that Is(f) belongs to Cα(x0); the operator that maps ψλ to ψ1
λ belongs to

Op(Mγ), and therefore preserves the pointwise wavelet regularity criterium, as proved in [21].
Therefore, it is satisfied by f (−s) and, since f (−s) is uniform Hölder, the converse part of the
wavelet pointwise regularity criterium implies that it belongs to Cβ(x0) for any β < α, see
[21, 24]. The proof of the converse part is similar, using the biorthogonality of the ψ1

λ and ψ2
λ.

As regards signals and images which have a negative exponent Hmin, another possibility for
applying them multifractal analysis based on the Hölder exponent is to perform on the data a
fractional integration of sufficently large order; indeed, the uniform regularity exponent Hmin

f is
always shifted exactly by s:

∀f, Hmin
Is(f) = Hmin

f + s.

This simple property shows a possible strategy in order to perform the multifractal analysis of
a signal which is not bounded: First determine its exponent Hmin

f ; then, if Hmin
f < 0, perform

a fractional integration of order s > −Hmin
f ; it follows that the uniform regularity exponent of

Is(f) is positive, and therefore it is a bounded function. However, this strategy rises an important
problem: There is no canonical choice for the order of fractional integration, and the quantities
considered (either the spectrum of singularities, or the scaling function) may depend on this
order. This is one of the motivations for understanding how multifractal properties are modified
under fractional integration.

3.5 Wavelet characterization of the oscillation exponent

The definition of the oscillation exponent requires to compare the Hölder exponent of f and of
its fractional integrals. Therefore, it is is clear that information on the value of βf (x0) will be
deduced from wavelet characterization of the Hölder exponent. This can be performed directly
on wavelet coefficients, or using wavelet leaders; hence two possible characterizations. The first
characterization given by Proposition 7 is just a rewriting, in the orthonormal wavelet setting, of
Corollary 1 of of [6] (deducing the orthonormal case from the continuous case is straightforward).
In the following, the point x0 is fixed, and we suppose that f is a uniform Hölder function. We
introduce some notations. The first one is a weak form of the O notation of Landau: If F and G
are two functions which tend to 0, F = O(G) if

lim inf
log |F |

log |G|
≥ 1,

and the second one expresses the fact that two functions are of the same order of magnitude,
disregarding “logarithmic corrections”

F ∼ G if lim
log |F |

log |G|
= 1.

Proposition 7 Let f be a uniform Hölder function. The oscillating singularity exponents of f at

x0 are (h,β) if and only if its wavelet coefficients satisfy the following conditions:
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a) cλ = O
�

2−hj + |λ− x0|
h
�

when j → +∞ and λ → x0 (here |λ − x0| denotes the

distance between λ and x0);

b) there exists a sequence λn → x0 of width 2−jn such that

jn → +∞, (2−jn + |λn − x0|)
1+β ∼ 2−jn ; and |cλn

| ∼ 2−hjn + |λn − x0|
h (41)

c) β is the smallest number such that (41) holds.

We will call a sequence (λn)n∈N such that (41) holds a minimizing sequence for f at x0.
These exponents can be given the following interpretation: Let us call a minimizing sequence

for the Hölder exponent at x0 a sequence λn for which the liminf is attained in

log |Cλn
|

log(2−jn + |λn − x0|)
.

The exponent β is attained as a liminf of the sequence

log(2−jn)

log(2−jn + |λn − x0|)
,

where this liminf is taken on all subsequences which are minimizing for the Hölder exponent.
So we see that the minimizing sequences for β are obtained as subsequences of the minimizing
sequences for h. In this sense, we say that β is subordinated to h.

Remarks:
It is enlightening to split this condition into two subcases, depending whether β = 0 or

β > 0:

• If β = 0, then Conditions b) and c) boil down to:

|λn − x0| ∼ 2−jn and |cλn
| ∼ 2−hjn ;

this condition makes precise the heuristic following which, for cusp singularities, the large
wavelet coefficients stand in the “cone of influence” above x0.

• If β > 0, then Condition b) can be rewritten:

|λn − x0| ∼ 2−jn/(1+β); and |cλn
| ∼ |λn − x0|

h ∼ 2−jnh/(1+β) (42)

In order to rewrite Proposition 7 as conditions bearing on wavelet leaders, we need to define
the leaders associated with a pseudo-fractional integral.

Definition 21 The s-leaders dsλ are the wavelet leaders associated with the pseudo-fractional

integral of f of order s

dsλ = sup
λ�⊂3λ

�

2−sj� |cλ� |
�

. (43)

We will denote

dsj(x0) = dsλj(x0)
.
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It follows from (28) and Proposition 5 that

hsf (x0) = lim inf
j→+∞





log
�

dsj(x0)
�

log(2−j)



 , (44)

therefore, the oscillation exponent can be derived from the dsλ according to (28).

Proposition 8 Let f be a uniform Hölder function. The oscillating singularity exponents of f at

x0 are (h,β) if and only if its wavelet leaders satisfy the following conditions:

1. dj(x0) = O
�

2−hj
�

,

2. there exists a sequence jn → ∞ such that

djn(x0) ∼ 2−hjn , (45)

3. there exists a sequence λ�
n ⊂ 3λjn(x0) such that:

�

j�n = (1 + β)jn + o(jn)
|cλ�

n
| ∼ djn(x0),

4. β is the smallest number such that 3) holds.

Remarks: The last condition means that the supremum in the definition of the wavelet leader
djn(x0) is “almost” attained at a scale close to (1 + β)j.

This proposition gives a practical interpretation of the notion of subordination we already
introduced: The Hölder exponent is given by a liminf, i.e. a limit taken on particular susequences
of cubes λj(x0); and the oscillation exponent is determined by inspecting at which scales the
suprema are “almost” attained in the corresponding wavelet leaders.
Ê

Proof of Proposition 8: The first two conditions are equivalent to the fact that h is the Hölder
exponent, as proved in [24].

Let us check that 3) implies that βf (x0) ≤ β. Indeed, after a pseudo-integration of order s,
the sequence (λn,λ

�
n) yields a wavelet coefficient c̃λ�

n
of size

|c̃λ�
n
| = 2−sj�n |cλ�

n
| ∼ 2−sj�n2−hjn

which, using, (??) is larger than a quantity equivalent to 2−(h+(1+β)s)jn . Therefore the wavelet
leader dsjn(x0) satisfies

2−(h+(1+β)s)jn = O
�

dsjn(x0)
�

;

since this is true ∀s > 0, it follows that βf (x0) ≤ β.
Let us now check that Conditions 1) to 4) imply that βf (x0) ≥ β. Indeed, if 4) holds,

∀β� < β, ∃h� > h such that, for j� large enough, and ∀λ� of scale j�, we have:

∀j such that λ� ⊂ λj(x0) and j� ≤ (1 + β�)j; then |cλ� | ≤ 2−h�j .
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We now split the wavelet coefficients cλ� into two collections: The first one is composed of those
that satisfy this condition; but their contribution is Ch�

(x0) and therefore, they have no influence
on the oscillation exponent. As regards the others, they satisfy

∀j such that λ� ⊂ λj(x0), j� ≥ (1 + β�)j;

therefore, after a pseudo-fractional integration of order s,

|c̃λ� | = 2−sj� |cλ� | = O
�

2−sj�2−hj
�

= O
�

2−(h+(1+β�)s)j
�

so that βf (x0) ≥ β�. Since this is true ∀β� < β, the result follows.
Let us now prove that a), b) and c) imply 3) and 4). We denote by λn the cube of the form

λn = λjn(x0) where

jn =
�

− log2

�

2−j�n + |λ�
n − x0|

��

,

where [a] denotes the largest integer smaller than a. Then, clearly, λ�
n ⊂ 3λn

.

SJ: a finir

SJ: llustrations possibles: le calcul par integration pseudo-fractionnaire et leaders du
hsf (x0) d’un cusp, cusp + chirp, chirp, chirp + FBM plus régulier, éventuellement en 0 et en
un point non dyadique.

3.6 Uniform cusp functions

One purpose of this paper is to supply new tools that will allow to determine if a function has
oscillating singularities, i.e. if there exist points x0 where βf (x0) �= 0, and to obtain information
on the size of these sets of points. It is therefore important to start with an analysis of the functions
where no such points exist, i.e. for which βf (x0) = 0 everywhere.

We start by a characterization of a cusp at x0; it directly follows from the leader characteri-
zation of oscillating singularities by taking β = 0 in Proposition 8.

Corollary 1 Let f be a uniform Hölder function. f has a cusp at x0 if and only if its wavelet

coefficients satisfy the following condition

∃jn → +∞, ∃λ� ⊂ λjn(x0) such that

�

j� = jn + o(jn)

|cλ� | ≥ 2−hf (x0)(jn+o(jn))
(46)
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It is natural to consider a “uniform” condition corresponding to (46).
.

SJ: Expliquer pourquoi ca correspond a une version uniforme

Definition 22 Let f be a uniform Hölder function; f is a uniform cusp function if there exist

arbitrary smoooth biorthogonal wavelet bases such that the wavelet coefficients of f in these

bases satisfy the following condition:

There exist two functions g(j) and h(j) such that g(j) = o(j), h(j) = (j) and

∀λ, ∃λ� ⊂ 3λ :







j� ≤ j + g(j)

|cλ� | ≥ dλ2
−h(j)

(47)

Remarks:

• It follows immediately from Proposition 1 that a uniform cusp function only displays
cusps.

• An important feature of this definition is that, in order to be checked, is does not require
the knowledge of hf (x0). This is in sharp disctinction with Corollary 1, and, therefore,
though it is a stronger requirement than Corollary 1, it will sometimes be easier to check,
as shown by some of the examples that we will work out below.

We will see that the requirement of a uniform cusp function has many implications in multifractal
analysis. A natural question is to wonder if this requirement is strong or if many models actually
satisfy it. We start by mentioning a few examples, among standard models in turbulence or signal
processing.

Our first example is the particular model of URWS already considered in Definition 16, and
which includes the FBM as particular cases.

Proposition 9 With probability 1, the sample paths of URWS are uniform cusp functions.

Proof: We keep the same notations as in Definition 16. First, note that the tail estimates for
the Xj,k imply (by the Borel Cantelli lemma) that, for j large enough,

|Xj,k| ≤ C3j
1/β .

It follows that the coefficients 2−αj� |Xj�,k� | for j� ≥ j + (log j)2 are bounded by

C3(j + (log j)2)1/β2−α(j+(log j)2) := Aj .

Let us estimate the probability that, for a given dyadic cube λ, the supremum of the coeffi-
cients 2−αj� |Xj�,k� | for j� ≤ j + (log j)2, is bounded by Aj . This implies that for each couple
(j�, k�) such that λ� ⊂ λ and j� ≤ j, the corresponding RV Xj�,k� satisfies

|Xj�,k� | ≤ C32
−α(log j)2(j)1/β .

36



By the Borel Cantelli, lemma, this event does not occur for j large enough. But, if it is the case,
il implies precisely that the supremum in the wavelet leader is attend for j� ≤ j + (log j)2, so
that the URWS is a uniform cusp function.

We now consider the setting supplied by wavelet cascades. We start by recalling their
construction: the coefficients at the scale j + 0 are set to 1. One picks independent copies Wλ.
of a RV W . The wavelet coefficients of the cascade, are defined for j ≥ 0 by

Cλ = �λ
�

λ⊂λ�

Xλ�

where the �λ are random signs. Convergence and uniform Hölder regularity of the RWC are
proved in [] under the assumption that X > 0, log(X) has a negative expectation and under tail
estimates ???

Proposition 10 If X is lognormal, then the corresponding wavelet cascades are uniform cusp

functions.

.

S.J. Le cas lognormal est direct car on a les lois explicites. Il est assez facile de montrer
que c’est aussi vrai dans le cas sous-normal. C’est moins evident dans les cas “queues lour-
des” Des estimations du type ‘Berry-Essen” doivent permettre de traiter des cas faiblement
correles. IL faudrait voir si les queues lourdes peuvent creer des singularites oscillantes.
je suis un peu embete par l’article ABM qui ne donne pas le spectre de Holder, mais eule-
ment de Legendre, et considere le FM avec des esperances et non trajectoire par trajectoire.
Avant d’en faire plus, il faudrait savoir ce qui a ete fait de plus...

Another example of uniform cusp functions is supplied by a model of wavelet series associ-
ated with measures, introduced by Arneodo et al. in [] and by Barral and Seuret in [].

Definition 23 Assume that µ is a probability measure defined on R
d and let ψλ be a wavelet

basis in the Schwartz class. Let γ ≥ 0 and δ > 0 be two parameters. The wavelet series of

parameters (γ, δ) associated with µ is defined by its wavelet coefficients

cλ = µ(λ)γ2−δj .

Note that, in this model, the measure µ can be either deterministic or random. Clearly,
|cλ| ≤ 2−δj so that the function constructed is uniform Hölder. Moreover, if λ� ⊂ λ, then
µ(λ�) ≤ µ(λ) cλ� ≤ cλ so that we have indeed obtained a uniform cusp function.

Typical counterexamples of functions which are not uniform cusps are supplied by random
wavelet series, as shown implicitely in [] where the scales at which the maxima in the wavelet
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leader definition are attained are actually estimated. We will come back to these processes in
Section ???.

SJ Dans le cas RWS, separer deux cas: un ou les gros coefficients sont tres nombreux,
et on est dans la cas cusp uniforme; c’est par exemple la cas du FBM; et le cas ou les gros
coeff sont rares, et on a des singularites oscillantes.

4 Multifractal formalisms

The initial purpose of multifractal analysis is to relate information on the size of the sets with
a given Hölder with global quantities, which are effectively computable on real data. These
quantities, called scaling functions, should be effectively computable on experimental data;

Let f(x) be a function: R → R. The structure function of f is

S(p, l) = l
�

|f((n+ 1)l)− f(nl)|p

If
S(p, l) ∼ |l|ζf (p) when h → 0, (48)

then ζf (p) is the scaling function associated with f ; (48) means that ζf (p) can indeed be
computed by performing regressions on log-log plots, according to the formula

ζf (p) = lim inf
l→0

logS(p, l)

log |l|
.

The first example for the use of such a quantity was provided by A. Kolomogorov, in 1941,
in his seminal paper on turbulence [], who showed the relevance of ζ(2). Later, together with
????, he showed the relevance of ζ(3) in turbulence (indeed the exponent p = 3 plays a particular
role, due to the form of the quadratic nonlinearty term in the Navier-Stokes equations. As finer
models depending on more parameters were introduced, it became clear that the classification
tools should also be based on more than one or two parameters but on the whole collection
supplied by all values taken by the function ζf (p).
Ê

The seminal ideas of multifractal analysis were introduced by G. Parisi and U. Frisch: They
proposed a new interpretation for the scaling function of Kolmogorov in terms of the Hölder
exponents of f , see [41]. Let us recall the definitions related with sizes of Hölder singularities.
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Definition 24 Let f be a locally bounded function. The isohölder sets of f are

EH = {x0 : hf (x0) = H}.

G. Parisi and U. Frisch suggested that the study of the scaling function can be related with
the fractal dimension of the sets EH . Two alternative definitions of fractal dimension have been
introduced and are used in multifractal analysis.

Note however that all mathematical results concerning the validity of the multifractal formal-
ism, point to two (slight) variants of size: The Hausdorff and Packing dimensions; one additional
problem being that, in practice, one does not have a direct way to compute these dimensions
on practical data (indeed, unlike the box dimension, they cannot be computed by regressions
on log-log plots). In order to define the Hausdorff dimensions, we need to recall the notion of
δ-dimensional Hausdorff measure.

Definition 25 Let A ⊂ R
d. If � > 0 and δ ∈ [0, d], we denote

M δ
� = inf

R

�

�

i

|Ai|
δ

�

,

where R is an �-covering of A, i.e. a covering of A by bounded sets {Ai}i∈N of diameters

|Ai| ≤ �. The infimum is therefore taken on all �-coverings.

For any δ ∈ [0, d], the δ-dimensional Hausdorff measure of A is

mesδ(A) = lim
�→0

M δ
� .

There exists δ0 ∈ [0, d] such that

∀δ < δ0, mesδ(A) = +∞
∀δ > δ0, mesδ(A) = 0.

This critical δ0 is called the Hausdorff dimension of A, and is denoted by dim(A).

The other notion of dimension we will use is the packing dimension which was introduced
by C. Tricot, see [42, 43] (see also Chap. 5 of [38]): The lower packing dimenson is

Dim(A) = inf

�

sup
i∈N

�

dimBAi : A ⊂
∞
�

i=1

Ai

��

(49)

(the infimum is taken over all possible partitions of A into a countable collection Ai). We will
use this alternative notion in order to bound the dimensions of some sets of singularities. The
dimensions we introduced can be compared as follows, see [38, 42, 43],

∀A ⊂ R
d, dim(A) ≤ Dim(A) ≤ dimB(A) ≤ dimB(A). (50)

.

SJ: Ne garder la definition de packing que si c’est vraiment utile a la fin pour les majo-
rations de spectre
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Definition 26 Let dim(A) denote the Hausdorff dimension of the set A. The function

df (H) = dim(EH)

is called the spectrum of singularities of f . (One agrees that dim(∅) = −∞, i.e., if H is not an

Hölder exponent present met the function f , then df (H) = −∞.)

The support of the spectrum is

supp(df ) = {H : EH �= ∅} = {H : df (H) ≥ 0}.

Note that a notion of spectrum can be attached to any local exponent. If one considers the
p-exponent instead of the Hölder exponent, one obtains the p-spectrum considered in [26, 30].
General definitions concerning pointwise regularity exponents have been considered in [27, 29].
Similarly, one can define spectra associated with the oscillation exponent.

Two options are possible: Either one is only interested in the presence of oscillating singular-
ities, in which case one associates a spectrum to the oscillation exponent only, or one is interested
in recovering the full information concerning the dimensions of the sets of points where, simul-
taneously, the Hölder exponent takes a given value and the oscillation exponent takes another
given value; then one associates a spectrum to the couple (H,β). Hence the following definition.

Definition 27 Let f be a a uniform Hölder function, and let

Fβ = {x0 : βf (x0) = β}.

The β-spectrum of f is

D(β) = dim(Fβ).

Let

GH,β = {x0 : hf (x0) = H and βf (x0) = β}.

The grandcanonical spectrum Df (H,β) is

Df (H,β) = dim(GH,β).

In the second part of this paper, we will investigate multifractal formalisms constructed in
order to yield these spectrums; In the present paper, we will only be interested in deriving some
estimates on these spectrums from the integrated spectrums.

U. Frisch and G. Parisi proposed an interpretation of the initial scaling function which yields a
relationship between the scaling function and the spectrum of singularities df (H). This formula
is backed by a heuristic argument derived from statistical physics, but does not have a general
range of validity. Indeed, standard processes, such as Brownian motion for instance, provide
“partial” counter-examples, see []. Because of this failure, which already takes place for the
simplest possible model used in signal processing, a natural direction of research consisted in
coining new scaling functions for which the range of validity of the multifractal formalism would
be wider. This line of research was initiated by A. Arneodo and his collaborators, who introduced
scaling functions based on the WTMM (Wavelet Transform Maxima Method) which indeed has
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been shown to yield experimentally the right spectra for a large collection of synthetic signals
(FBM, cascade models of turbulence,...), but is, unfortunately, not backed by theoretical results.
A variant of this idea consists in constructing a multifractal formalism based on wavelet leaders.
Indeed, (36) implies that wavelet leaders are a pertinent quantiy to use in a structure function
in order to have an intrepretation of the scaling function in terms of Hölder singularities. This
possibility started to be explored in [1, 24] and we will now recall the main results concerning it,
and also some of its limitations, which motivated the present paper.

4.1 The multifractal formalism based on wavelet leaders

SJ: mentioner que la motivation pour discriminer des modeles a toujours existe
An alternative scaling function based on wavelet leaders has been introduced in [24]. Its def-

inition is similar to the Kolmogorov scaling function, except that increments have to be replaced
by wavelet leaders. For any p ∈ R, let

Tf (p, j) = 2−dj
�

λ∈Λj

|dλ|
p.

The leader scaling function is defined by

∀p ∈ R, ηf (p) = lim inf
j→+∞

log(Tf (p, j))

log(2−j)
.

Remarks: An important property of the leader scaling function is that one can prove that
it has several robustness properties; first, it is proved in [24] that, if the wavelets belong to the
Schwartz class, then ∀p ∈ R ζf (p) is independent of the wavelet basis (and this result also holds
for a range of p > 0 if the wavelets only have a finite smoothness).

Furthermore, one can show that the scaling function does not depend on the particular dis-
cretization of the time-scale half space which is chosen and, in particular, it is invariant under
translations or dilations of f . Let us skech the proof of this point. First, one proves that the scaling
function can be equivalently defined using the continuous wavelet transform. The proof follows
similar ones of [39] where it is shown that the charactarization of Besov spaces on wavelets and
Littlewood-Paley decomposition are the same. Then, the actions of translations and dilations
on the continuous wavelet transform can be explicitely written, since they are just dilations and
translations of the wavelet transform; therefore the corresponding wavelet leaders are of the same
order of magnitude, and thus yield the same scaling function. Note that one can push this argu-
ment further and prove that the scaling function is invariant under a sufficiently smooth change
of variable if p > 0 and a C∞ change of variable for all values of p.

.
SJ: Ces demonstrations n’ont vraiment été écrites nulle part. Je peux donner un peu plus
de details. Par exemple donner l’idee en passant par la caracterisation sur la transformee
en ondelettes continue 1D de la fonction d’echelle?
Ê

Let us now show the following proposition, which shows that the wavelet leader scaling
function can be alternatively defined through the “restricted leaders”

eλ = sup
λ�⊂λ

|cλ� |.
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Proposition 11 Let f be a uniform Hölder function, and

Sf (p, j) = 2−dj
�

λ∈Λj

|dλ|
p.

Then

∀p ∈ R, ηf (p) = lim inf
j→+∞

log(Sf (p, j))

log(2−j)
.

Proof: Since
sup
λ�⊂λ

|cλ� | ≤ sup
λ�⊂3λ

|cλ� |

it follows that, if p ≥ 0, then Sf (p, j) ≤ Tf (p, j), and, if p ≤ 0, then Tf (p, j) ≤ Sf (p, j).
On the other hand, denote by µ the “father” of the cube λ (i.e. the cube twice as wide which

contains λ, and N(µ) the 3d “neighbours” of λ (i.e. the cubes of same width, whose boundary
intersects the boundary of λ). Then

sup
λ�⊂3λ

|cλ� | ≤ sup
ν∈N(µ)

sup
λ�⊂ν

|cλ� |.

It follows that, if p ≥ 0, then Tf (p, j) ≤ 3dSf (p, j − 1).
Finally, for any dyadic cube λ, there exists a “grandson” λ�� of λ such that 3λ�� ⊂ λ. Therefore

sup
λ�⊂3λ��

|cλ� | ≤ sup
λ�⊂λ

|cλ� |;

therefore, if p ≤ 0, then Sf (p, j) ≤ Tf (p, j + 2). The proposition follows from these four esti-
mates.

We denote by L(u) the Legendre transform of a concave function u, i.e.

L(u)(H) = inf
p∈R

(d+Hp− u(p)) .

The leader spectrum of f is defined through a Legendre transform of the leader scaling function
as follows

Lf (H) = L(ηf )(H).

Of course, the leader spectrum of f has the same robustness properties as the leader scaling
function. The following result, which is stronger than similar ones using alternative scaling
functions, is proved in [24].

Theorem 3 Let f be a uniform Hölder function, and assume that the wavelets belong to the

Schwartz class; then,

∀H, df (H) ≤ Lf (H). (51)
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Note that this result has the following consequence: Denote by [Hmin, Hmax] the interval
which is the support of Lf (H); Then (51) implies that

supp(Df ) ⊂ supp(Lf ).

Indeed,
supp(Lf ) = {H : Lf (H) ≥ 0,

and, if dim(A) is bounded by a negative number, then A = ∅.
Partial results concerning upper bounds for spectra can also be obtained when the wavelets

have a finite smoothness, see [24]. It is however important to note that bounds for the decreasing
part of the spectrum (i.e. obtained for negative ps in the Legendre transform) require that the
wavelets belong to the Schwartz class.

The wavelet leaders multifractal formalism holds if

df (H) = Lf (H).

Let us now show why the motivation for studying how spectra are modified under fractional
integrals which was mentioned in Section ??? meets our previous motivation of detecting the
presence of oscillating singularities.

4.2 Spectra of fractional integrals

The purpose of this section is to investigate how spectra are transformed under fractional inte-
gration.

Definition 28 Let f be a locally bounded function. The integrated spectra of singularities of f
are

dsf (H) := df (−s)(H) = dIsf (H).

The pointwise Hölder exponent of any locally bounded function f is shifted by an amount
larger than or equal to s under a fractional integration of order s, see []:

if s > 0, hIs(f)(x0) ≥ hf (x0) + s;

however, if f has a cusp singularities, at x0 then

∀x0, ∀s > 0, hIs(f)(x0) = hf (x0) + s.

Therefore, if a function f only displays cusps, then its integrated spectra of singularities are
shifted according to:

dsf (H) = df (H − s). (52)

This formula suggests one way to detect the presence of oscillating singularities in signals;
recall that, for real-life data, the only access one has to their spectrum is through the multifractal
formalism. Assume that f only has cusp singularities; then (52) will hold. Therefore, if we also
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assume that f and its fractional integrals satisfy the multifractal formalism, then the Legendre
spectra of f and Is(f) will deduce from each other by a simple shift, according to (52). Therefore
checking how the Legendre spectra behave under fractional integration will give an indication
on the presence of oscillating singularities in a signal. These remarks motivate the following
definition.

Definition 29 The Integrated leader scaling function ηsf (p) is defined for any p ∈ R as

ηsf (p) = ηf (−s)(p) = lim inf
j→+∞

log



2−dj
�

λ∈Λj

|dsλ|
p





log 2−j
,

The integrated Legendre spectrum of f is

Ls
f (H) = inf

p∈R

�

d+Hp− ηsf (p)
�

The following proposition shows that, in practice, one does not require to compute explicitely
fractional integrals in order to derive Legendre spectra; indeed the pseudo-fractionals integrals
will lead to the same scaling functions.

Proposition 12 Let f be a uniform Hölder function;

• If the wavelet basis is sufficiently smooth, then, for p > 0, ∀s > 0, the leader scaling

functions of Is(f) and f (−s) coincide,

• if the wavelets used belong to the Schwartz class, then the result is true for any p ∈ R.

Proof: l’argument est le meme que pour l’exposant de Hölder, mais il faut citer cor-
rectement le resultat de robustesse en distinguant p > 0 et p < 0; ca vaut sans doute le
coup de donner la regularite exacte des ondelettes et de preciser la technique pratique: on-
delettes de + en + regulieres.

4.3 Conditions satisfied by Integrated Legendre Spectra

The Legendre spectrum of a function f is supported on an interval which is of the form [Hmin, Hmax],
see [29]; we won’t discuss here the interpretation of Hmax; on the other hand, the interpretation
of the first point of the spectrum as being precisely the exponent Hmin defined in (37) has an
important consequence: As a consequence of the definition of Hmin in terms of uniform Hölder
regularity this exponent is exactly shifted by s under a fractional integration of order s, see [29].

We will see that more is true: For any function f , (55) identifies a whole portion at the
beginning of its Legendre spectrum which is exactly shifted by s. Note that no such result holds
for Hmax: The example supplied by Lacunary Wavelet Series below shows that it can be shifted
by an arbitrary amount. In order to obtain the general conditions satisfied by lntegrated Legendre
Spectra, we need to recall the function space interpretation of the Leader Scaling Function.
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Definition 30 Let p > 0, and s, s� ∈ R
d; a function f belongs to Os,s�

p (Rd) if f ∈ Cs�(Rd) and

if its integrated wavelet leaders satisfy

sup
j∈N

2(sp−d)j
�

k

sup
λ�⊂λ

|cλ�2s
�j� |p < ∞. (53)

The space Os,0
p is simply denoted by Os

p.

It follows from the comparison we performed between fractional integration and pseudo-
fractional integration that

f ∈ Os,s�

p (Rd) ⇐⇒ I−s�f ∈ Os
p.

We will need the following wavelet characterization of the Besov spaces (see []) :

f ∈ Bs,∞
p if ∃C > 0, ∀j,

�

k

|Cλ|
p2(sp−d)j ≤ C.

Since supλ�⊂λ |Cλ�2j
�s� | ≥ |Cλ2

js� | it follows that

Os,s�

p �→ Bs�+s,∞
p .

On the other hand,
if sp− d > 0, then Os

p = Bs,∞
p ,

see [24]; it follows that

if sp− d > 0, then Os,s�

p = Bs+s�,∞
p .

These embeddings will allow us to express a part of the leader scaling function in terms of
the wavelet scaling function. It follows from the wavelet characterization of Besov spaces and
definition ??? that

∀p > 0, ζf (p) = sup{s� : f ∈ Bs�/p,∞
p }.

and, similarly, it follows from the definition of Oscillation spaces that

∀p > 0, ηsf (p) = sup{s� : f ∈ Os�/p,−s
p }.

Since Besov spaces satisfy the property

f ∈ Bs,∞
p ⇐⇒ Is

�

f ∈ Bs−s�,∞
p ,

It follows that
∀p > 0, ∀s ∈ R, ζIsf (p) = ζf (p) + sp,

therefore, a similar property will also hold for the leader scaling function, but only when the
corresponding oscillation spaces coincide with Besov spaces: The condition sp − d > 0 means
that ηsf (p) > d. Let us introduce the following definition.
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Definition 31 Let f be a uniform Hölder function; the index pc is defined by the condition

ηsf (pc) = d,

and

Hc = (ηsf )
�(pc).

Then,
if p > pc, then ηsf (p) = ζf (p) + sp. (54)

This condition translates as follows on the Legendre transforms; denote by δ(H) the Legendre
Wavelet spectrum defind by

δf (H) = inf
p>0

(d+Hp− ζf (p)) .

Then the following result follows from (54). It shows a remarkable asymptotic property of the
Legendre wavelet spectrum: It is the asymptotic limit of the increasing part of the integrated
Legendre spectrum.

Proposition 13 Let f be a uniform Hölder function.

If H < Hc, then dsf (H) = δf (H − s); (55)

Let H1
s be the abscissa of the point where the gaph of Lf (H − s) is tangent to the line going

through the origin.

∀s ≥ 0 if H ≤ H1
s , then Ls

f (H) = Lf (H − s). (56)

This means that a whole portion at the beginning of the spectrum is translated under fractional
integration. Let us now identify geometrically which portion it is. For that, note that, since
dsf (H) = infp(d+Hp−ηsf (p)), and since ηsf (pc) = d, it follows that dsf (Hc) = Hcpc; therefore,
the portion of the spectrum which is shifted can be geometrically determined as the part before
the point (Hc, Hcpc) where a line starting from the origin is tangent to the Legendre spectrum.
Not that this part increases as the order of integration increases. At the limit when s → +∞ one
recovers the whole increasing part of the spectrum, which then coincides with the whole wavelet
Legendre spectrum. As mentioned before, no such result holds for the decreasing part of the
spectrum. The following properties also hold in all generality.

Proposition 14 Let f be a uniform Hölder function. Then ηsf (p) and its Legendre transform are

both concave in each variable. Furthermore

Hmax(f
−s) ≥ Hmax(f) + s.

The last condition implies that the support of the Integrated Legendre Spectrum widens under
fractional integration. Note that, if f is a uniform cusp function, it is shifted, so that checking
how the quantity Hmax−Hmin behaves under fractional integration can also be used as evidence
of the presence of oscillating singularities.
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Proof:

Another motivation for introducing alternative scaling functions is to construct new multi-
fractal formalisms which would yield informations on other quantities than the Hölder exponent.
One possibility is to replace the Hölder exponent by the p-exponent already mentioned in Section
3.1. Another possibility is to take into account the oscillation exponent.

.
SJ a mettre ailleurs

The following result shows that the integrated Legendre spectra behave as expected for uni-
form cusp functions.

Proposition 15 Let f be a uniform Hölder function, which is also a uniform cusp function. Then

the Integrated Legendre Spectra Ls
f (H) of f satisfy the shift property

∀s ≥ 0 Ls
f (H) = Lf (H − s). (57)

.
Ê Mettre ici une illustration de spectres se translatant bien (FBM et/ou cascades?

Proof:

5 Integrated spectra of functions displaying oscillating singularities

If the uniform cusp asumption does not hold, then Ls
f (H) may change with s in a way which

indicates the presence of oscillating singularities. We will first check that it can indeed be the
case, by studying two examples of random processe which are known to dispaly oscillating sin-
gularities: Lacunary Wavelet Series (LWS) , and Random Wavelet Series (RWS).

.
Ê Ajouter des resultats generaux , majorations de spectre, y compris dans le cas de fonc-
tions de type cusp, et traiter les cas particuliers des RWS et LWS
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5.1 Lacunary wavelet series

Recall that the definition of Lacunary Wavelet Series (LWS) Xα,γ was given in Section ???.
Note that, in [23], orthonormal wavelet bases are used in the construction; however one easlily
checks that all results of [23] hold in the slightly more general setting supplied by biorthogonal
wavelet bases. We will need this setting in order to prove additional results on LWS, because
some arguments will be developped on fractional integrals of LWS, which are LWS only if we
work the birothogonal setting.

Let us first recall the main results proved in [23]:

Theorem 4 The spectrum of singularities of almost every sample path of the lacunary wavelet

series Xα,γ is supported by the interval [α, dα/γ], and

∀h ∈

�

α,
dα

γ

�

, d(h) =
hγ

α
.

The chirp spectrum of almost every sample path of Xα,γ is supported by the segment h =
α(β + 1), h ∈ [α, dα/γ], and on this segment

d(h,β) = γ(β + 1).

We will prove a remarkable property of LWS: At each point, their chirp exponent and their
oscillation exponent coincide (therefore, the chirp spectrum and the oscillation spectrum also
coincide) as a consequence of the following proposition.

Proposition 16 For each j let Fj denote the set of points k2−j such that one of the C
(i)
j,k is not

vanishing. Let δ ∈ [0, 1]. Denote by Bδ
j,k the ball centered at k2−j (k ∈ Fj) and of radius 2−δj .

Let

Eδ = lim sup
j→∞

�

k

Bδ
j,k, Gδ =

�

δ�<δ

Eδ� −
�

δ�>δ

Eδ� if δ < 1, and G1 =
�

δ�<1

Eδ� .

Note that the Eδ are decreasing (in δ).

If δ < γ/d, Eδ = T a.s.

If x ∈ Gδ, the chirp exponents and the oscillation exponent of the LWS Xα,γ at x coincide

and are given by (h,β) = (α/δ, 1/δ − 1).

Proof: It has been proved in [23] that the Hölder exponent at a point x ∈ Gδ is h = α/δ.
After a pseudo-fractional integration of order s, the LWS of type (α, γ) is transformed in another
LWS of type (α + s, γ), using the biorthogonal wavelet basis generated by the wavelet ψ−s.
Therefore the same result, applied to this new LWS, implies that its Hölder exponent at x is
given by h = (α + s)/δ. Since this resut holds for any s ≥ 0, it follows that the chirp and
oscillation exponent both take the value 1/δ − 1.
Ê

As a corollary the first part of the following theorem holds.
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Theorem 5 The oscillating singularity spectrum of almost every sample path of the lacunary

wavelet series Xα,γ is supported by the segment h = α(β + 1), h ∈ [α, dα/γ], and on this

segment

d(h,β) = γ(β + 1).

The β-spectrum of Xα,γ is supported by the interval
�

0, dγ − 1
�

on which it is given by

∀β ∈

�

0,
d

γ
− 1

�

, D(β) = γ(β + 1).

The second part of the theorem follows directly from the fact that dim(Gδ) = γ/δ, see [23].

The following proposition shows how the spectra of LWS evolve through fractional integra-
tion. Such processes display oscillating singularities and, as expected, this feature is reflected in
their integrated spectra: These spectra are not derived form each other by a shift.

Proposition 17 Let Xα,γ be a Lacunary Wavelet Series. The Legendre and Hölder integrated

spectra of Xα,γ coincide and are given by

dsα,γ(H) = Ls
α,γ(H) =

γH

α+ s
if H ∈

�

α+ s,
d(α+ s)

γ

�

= −∞ else.

(58)

Proof: First, note that the spectrum of singularities of Xα,γ has been computed in [23] and
shows that (58) yields the correct value for dsα,γ(H) if s = 0. A fractional integration of order s
transforms a wavelet basis, into a vaguelette basis and multiplies the coefficients by 2−sj ; since
one passes from a wavelet basis to a biorthogonal wavelet basis by applying an operator in M∞,
and since this operation does not alter the values taken by the Hölder exponent, it follows that
the result of [23] which yields the spectrum of a LWS also applies to each fractional integral,
but with a new LWS of parameters (α + s, γ); and, therefore (58) yields the correct value for
dsα,γ(H), for any s > 0.

Let us now consider the leader scaling function. Since the wavelets used belong to the
Schwartz class, this scaling function is independent of the wavelet used, and therefore the wavelet
used in the construction of the LWS can also be used as analyzing wavelet. Let us estimate

Tf (p, j) = 2−dj
�

λ∈Λj

|dλ|
p.

We first obtain an upper bound for this quantity:

• At the scale j there are exactly 2γj leaders of size 2−αj .

• The scale j + 1 adds at most 2γ(j+1) new leaders of size 2−α(j+1).

• ...
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We can continue this enumeration untill we reach the scale l such that l = dj/γ+log j, at which,
by standard results of random coverings of the cube, we obtain that all leaders have been com-
puted.

SJ: on a le choix entre donner l’argument de recouverments aleatoires marteau pilon, ou
faire un calcul non optimal, mais qui suffit et rend ce morceau autosuffisant

We have therefore obtained an upper bound for Tf (p, j):

Tf (p, j) ≤ 2−dj

dj/γ+log j
�

l=j

2γl
�

2−αl
�p

We note that we sum geometric sequences, which are either increasing or decreasing depending
whether p > γ/α or p < γ/α. Recall that the leader scaling function is

∀p ∈ R, ζf (p) = lim inf
j→+∞

log(Tf (p, j))

log(2−j)
.

We obtain that

ζf (p) ≥ inf

�

d− γ + αp,
dpα

γ

�

Let us show how to obtain lower bounds for Tf (p, j). First, we note that

Tf (p, j) ≥ 2γj
�

2−αj
�p

(59)

(by restricting the sum to the 2γj indices corresponding to nonvanishing wavelet leaders at scale
j) . We also note that, for l ≤ dj/γ − log j at most one half of the wavelet leaders have been
attained; therefore, by restricting the sum to the other dyadic cubes, where the supremum will be
attained between the scales dj/γ − log j and dj/γ + log j, we obtain that

Tf (p, j) ≥ 2−dj

dj/γ+log j
�

dj/γ−log j

2γl
�

2−αl
�p

≤ 2−djjA2dj
�

2−αdj/γ
�p

.

It follows from this lower bound, together with (59) that

ζf (p) = inf

�

d− γ + αp,
dpα

γ

�

. (60)

By taking a Legendre transform, we obtain that the Legendre leader spectrum of LWS has the
required form stated in Proposition 17.

All the above computations remain valid in the biorthogonal setting, and therefore when per-
forming a pseudo-fractional integral instead of a fractional integral. Since a pseudo-fractional
integral amounts to replace α by α+ s in the definition of LWS, therefore, after performing this
shift, all results proved aboce also holds for integrated spectra.
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5.2 Random wavelet series

We now consider the setting supplied by Random wavelet series, introduced in [9].

Definition 32 A Stochastic process X : R → R is a Random Wavelet Series (R.W.S.) if its

wavelet coefficients Cj,k in a birothogonal wavelet basis in the schwartz class satisfy the follow-

ing requirements:

1. ∀j, the Cj,k (k ∈ 0, . . . , 2j − 1) are identically distributed random variables; the proba-

bility distribution of −
log2(|Cj,k|)

j is denoted by dρj; it is defined on R ∪ {+∞};

2. the Cj,k (j ∈ N, k ∈ 0, . . . , 2j − 1) are independent;

3. there exists γ > 0 such that

ρ(α) := inf
�>0

lim sup
j→+∞

log2

�

2j
� α+�
α−� ρj(t)dt

�

j
(61)

is strictly negative for α < γ,

4. there exists α such that ρ(α) > 0.

Remarks:

• The third requirement is necessary in order to be sure that the series
�

cj,kψj,k is conver-
gent and that its sum has some uniform Hölder regularity.

• LWS are not exactly a subcase of RWS, since the histograms of wavelet coefficients of
LWS are deterministic at each scale, while their are random for RWS.

• The function ρ thus defined is called the spectrum of large deviation of the process X .
It is an upper semi-continuous function, but needs not be monotonous nor concave. By
definition, the support of ρ is

supp(ρ) = {α : ρ(α) ≥ 0}.

• We do not make any assumption on the probability measures dρj ; Note that ρj({+∞}) is
the probability that Cj,k = 0.

.

IL faudrait dire ce qui a ete fait autour du spectre de grande deviation: Riedi? Levy-
Vehel? autres depuis?
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Let us define
hmin := sup {α, γ < α ⇒ ρ(γ) < 0}

and

hmax :=

�

sup
α>0

ρ(α)

α

�−1

.

The following result of [9] yields the spectrum of singularities of R.W.S.

Theorem 6 Let X be a R.W.S. The Hölder exponent of X is almost-surely almost-everywhere

hmax.

The spectrum of singularities of X is supported by [hmin, hmax] and

∀h ∈ [hmin, hmax], d(h) = h sup
α∈(0,h]

ρ(α)

α

Since it is shown in [9] that the multifractal proerties of X only depend on the function ρ
(and not on the particular sequence ρj), with a slight abuse of notations, from now on, we will
denote RWS by Xρ.

We will check the following proposition which shows how the spectra of RWS evolve through
fractional integration. Such processes display oscillating singularities and, as expected, this fea-
ture is reflected in their integrated spectra, which are not derived form each other by a shift.
Let

hsmax :=

�

sup
α>0

ρ(α− s)

α

�−1

.

Theorem 7 Let Xρ be a R.W.S. Almost-surely, for all s > 0, the integrated spectrum of singu-

larities of Xρ is supported by [hmin + s, hsmax] where it satisfies

∀h ∈ [hmin + s, hsmax], dsX(h) = h sup
α∈(0,h]

ρ(α− s)

α
; (62)

Note that the starting point of the spectrum hmin is shifted by s, but it is not the case with the
largest possible Hölder exponent hsmax, which is usually shifted by more than s.

This theorem follows immediately from the previous one by noticing that a fractional integra-
tion of order s transforms a wavelet basis, into a vaguelette basis and multiplies the coefficients
by 2−sj ; since one passes from a wavelet basis to a biorthogonal wavelet basis by applying an
opertator in M∞, and since this operation does not alter the values taken by the Hölder expo-
nent, it follows that the result which yields the spectrum of a RWS also applies to each fractional
integral, but with a new RWS whose large deviation spectrium is ρ(α − s); and, therefore (62)
yields the correct value ofr dsα,γ(H) for any s > 0.

Since the spectrum of singularities of a RWS is, in general, not a concave fuction, we cannot
expect that the multifractal formalism will hold. However, we will show that a weaker result
holds.
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Theorem 8 With probability 1, for every s, the integrated Legendre spectrum of a RWS is the

concave hull of the Hölder spectrum dsX(h).

Proof: Let us compute the leader scaling function of a RWS. Since the wavelets used belong
to the Schwartz class, it it is independent of the wavelet used, this scaling function and therefore
we can use the wavelet used in the the definition of the LWS as analyzing wavelet.

SJ: A finir

We now consider the spectra of oscillating singularities of R.W.S.

Theorem 9 Let f be a random wavelet series With probability one, f has the following proper-

ties:

The spectrum of oscillating singularities of a RWS Xρ is supported by the domain

Aρ =

�

(h,β) : h ∈ [hmin, hmax], β ≥ 0 and
h

β + 1
∈ supp(ρ)

�

.

and, if (h,β) ∈ Aρ,

d(h,β) = (1 + β)ρ

�

h

1 + β

�

. (63)

The β-spectrum of a RWS Xρ is supported by the interval
�

0, d
γ
− 1

�

on which it is given by

∀β ∈

�

0,
d

γ
− 1

�

, D(β) = γ(β + 1).

The first part of the theorem, which yields the scillating singularities spectrum was proved in
[9].

Let us now come back to the problem of determining when the presence of oscillating sin-
gularities can be inferred from the inspection of integrated spectra. First, note that Proposition
15 does not allow to conclude that, if Integrated Legendre Spectra satisfy (57), then the signal
only displays cusp singularities. We will now study simple counterexamples of this where the
integrated spectra of functions displaying oscillating singularities are exactly shifted by s. They
are obtained as a perturbation of the previous example: One considers the superposition of a
lacunary wavelet series and a Fractional Brownian Motion (FBM).
Ê

Let a > 0 be such that a /∈ N; denote by Ba the FBM of order a; let us make precise the
definition that we use outside of the classical case where d = 1 and 0 < a < 1. If d = 1 and if
a > 1 and a is not a integer, Ba is defined by induction on [a] as the primitive which vanishes
at the origin of Ba−1. If d > 1, we use the following definition for the Fractional Brownian
Sheet: The Gaussian white noise is defined as the random distribution

�

χnen(x) where en
is an orthonormal basis of L2(Rd); a famous theorem of P. Lévy states that this construction
is independent of the particular orthonormal basis chosen, so that we will pick we will pick
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a wavelet basis. The Fractional Brownian Sheet of exponent a is obtained formally by taking
fractional integral of this expansion, (and substractiong the values at 0 when one meets the range
of functions). Note that this definition is coherent with the usual definition of the FBM in 1D and
a ∈ (0, 1) since, in this case, the sample paths of FBM also deduce from each other by tractional
integrals. Let us now consider

Ya,α,γ = Xα,γ +Ba

where the two processes Xα,γ and Ba are independent. The spectra of these processes and of
their fractional integrals can be determined as a consequence of the following general result
concerning the pointwise regularity of superposition of FBM and deterministic functions, see
[29]: if f is a uniform Hölder function and a > 0, then,

a.s., ∀x0 ∈ R, hf+Ba
(x0) = inf(a, hf (x0)).

The integrated spectra of singularities of Ya,α,γ follows directly from this result.

Corollary 2 If a ∈ [α, dα
η
], then the spectrum of singularities of Y

(−s)
a,α,γ is

dsa,α,γ(H) =
ηH

α+ s
if H ∈ [α+ s, a+ s]

= d if H = a+ s

= −∞ else.































(64)

.

SJ:

donner la forme
f =

�

χj,k2
dj/2ψ(2jx− k).

Faire de meme pour les RWS

Il faudrait faire des dessins pour illustrer ces differents spectres

On peut ici encore montrer que le hsf (x0) est dans ce cas le raccord de fonctions affines
formant un coude .

Furthermore, the singularities of Ya,α,γ for H ∈ [α, a] are oscillating singularities, since they
correspond to the superposition of an oscillating singularity (the LWS) and a process which is
strictly smoother (the FBM).
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Corollary 3 T he Legendre spectrum is a straight segment between the points (α + s, η) and

(a+ s, d).

Proof: It is a straightforward consequence of the lemma.

Lemma 3 If f and g are two uniform Hölder functions, and if p > 0, then

ηf (p) �= ηg(p) =⇒ ηf+g(p) = inf(ηf (p), ηg(p)).

This lemma follows directly from the function space interpretation of ηf (p), see [], and the
fact that this interpetation is either based on a normed space if p ≥ 1 or a semi-normed space if
0 < p < 1.

.

SJ: le faire

.

il reste la cas p < 0 Il faut se placer dans la base qui diagonale le FBM et utiliser le fait
que la gaussienne decentree est plus grande que la gaussienne

Zuhai disait que si f est gaussienne centree et g est deterministe, hf+G = min(hf , hg)
On doit avoir qqc de similaire sur les fts d’echelle
A FAIRE

Mettre ici une illustration de ces processus? a defaut on peut aussi faire la fonction de
Riemann + FBM ou Riemann + Weierstrass.

Therefore the integrated Legendre spectra satisfy the shift property (57). It follows that
one cannot detect the presence of oscillating singularities on Ya,α,γ by inspecting its integrated
Legendre spectra; this observation supplies a motivation for a method, whose purpose is to detect
the presence of oscillating singularities in such situations. This will the subject of the second part
of the present paper.
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