P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, and D. Veitch, Multiscale network traffic analysis, modeling, and inference using wavelets, multifractals, and cascades, IEEE Signal Processing Magazine, vol.3, pp.28-46, 1948.

P. Abry, P. Borgnat, F. Ricciato, A. Scherrer, and D. Veitch, Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail, Telecommunication Systems, vol.100, issue.472
DOI : 10.1007/s11235-009-9205-6

URL : https://hal.archives-ouvertes.fr/ensl-00338215

. Telecom and . Syst, Special Issue on Traffic Modeling, Its Computations and Applications, pp.147-165, 2009.

P. Abry, P. Gonçalvès, and P. Flandrin, Wavelets, spectrum estimation and 1/f processes, chapter 103, Wavelets and Statistics Lecture Notes in Statistics, issue.10, 1995.

P. Abry, S. Jaffard, S. G. Roux, B. Vedel, and H. Wendt, Wavelet decomposition of measures: Application to multifractal analysis of images NATO Science for peace and security, Unexploded ordnance detection and mitigation, pp.1-20, 2008.

P. Abry, S. Jaffard, and H. Wendt, When Van Gogh meets Mandelbrot: Multifractal classification of painting's texture, Signal Processing, vol.93, issue.3, p.51, 2011.
DOI : 10.1016/j.sigpro.2012.01.016

P. Abry, B. Pesquet-popescu, and M. S. Taqqu, Wavelet based estimators for self-similar ??-stable processes, WCC 2000, ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000, 2000.
DOI : 10.1109/ICOSP.2000.894512

P. Abry and D. Veitch, Wavelet analysis of long-range-dependent traffic, IEEE Transactions on Information Theory, vol.44, issue.1, pp.2-15, 1998.
DOI : 10.1109/18.650984

P. Abry, H. Wendt, S. Jaffard, H. Helgason, P. Goncalvès et al., Methodology for multifractal analysis of heart rate variability: From LF/HF ratio to wavelet leaders, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, p.74, 2010.
DOI : 10.1109/IEMBS.2010.5626124

URL : https://hal.archives-ouvertes.fr/inria-00527635

S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger et al., Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control, Science, vol.213, issue.4504, pp.213220-222, 1981.
DOI : 10.1126/science.6166045

A. Arneodo, B. Audit, N. Decoster, J. Muzy, and C. Vaillant, Wavelet Based Multifractal Formalism: Applications to DNA Sequences, Satellite Images of the Cloud Structure, and Stock Market Data, pp.27-102, 2002.
DOI : 10.1007/978-3-642-56257-0_2

A. Arneodo, E. Bacry, and J. F. Muzy, The thermodynamics of fractals revisited with wavelets, Physica A: Statistical Mechanics and its Applications, vol.213, issue.1-2, pp.232-275, 1995.
DOI : 10.1016/0378-4371(94)00163-N

A. Arneodo, N. Decoster, P. Kestener, and S. G. Roux, A wavelet-based method for multifractal image analysis: From theoretical concepts to experimental applications
DOI : 10.1016/S1076-5670(03)80014-9

A. Arneodo, S. Manneville, and J. F. Muzy, Towards log-normal statistics in high Reynolds number turbulence, The European Physical Journal B, vol.1, issue.1, pp.129-173, 1998.
DOI : 10.1007/s100510050162

A. Arneodo, S. G. Roux, and N. Decoster, A Wavelet-based method for multifractal analysis of rough surfaces : Applications to high-resolution satellite images of cloud structure, AIP Conference Proceedings, pp.80-50, 2002.
DOI : 10.1063/1.1487523

A. Arneodo, Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity, Europhysics Letters (EPL), vol.34, issue.6, pp.411-416, 1996.
DOI : 10.1209/epl/i1996-00472-2

J. M. Aubry and S. Jaffard, Random Wavelet Series, Communications in Mathematical Physics, vol.227, issue.3, pp.483-514, 2002.
DOI : 10.1007/s002200200630

URL : https://hal.archives-ouvertes.fr/hal-00012098

L. Bachelier, Th??orie de la sp??culation, Annales scientifiques de l'??cole normale sup??rieure, vol.17, issue.17, p.44, 1900.
DOI : 10.24033/asens.476

E. Bacry, J. Delour, and J. F. Muzy, Multifractal random walk, Physical Review E, vol.64, issue.2, pp.26103-26148, 2001.
DOI : 10.1103/PhysRevE.64.026103

URL : https://hal.archives-ouvertes.fr/hal-00012439

E. Bacry, L. Duvernet, and J. F. Muzy, Continuous-time skewed multifractal processes as a model for financial returns, International Journal of Theoretical and Applied Finance, vol.44, p.45, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01313843

E. Bacry, A. Kozhemyak, and J. F. Muzy, Continuous cascade models for asset returns, Journal of Economic Dynamics and Control, vol.32, issue.1, pp.156-199, 2008.
DOI : 10.1016/j.jedc.2007.01.024

URL : https://hal.archives-ouvertes.fr/hal-00604449

E. Bacry, A. Kozhemyak, and J. F. Muzy, Multifractal models for asset prices. Encyclopedia of quantitative finance, p.42, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00604441

E. Bacry and J. F. Muzy, Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws, Phys. Rev. E, vol.66, issue.8, p.45, 2002.

E. Bacry and J. F. Muzy, Log-Infinitely Divisible Multifractal Processes, Communications in Mathematical Physics, vol.236, issue.3, pp.449-475, 2003.
DOI : 10.1007/s00220-003-0827-3

URL : https://hal.archives-ouvertes.fr/hal-00012441

J. Barral, N. Fournier, S. Jaffard, and S. Seuret, A pure jump Markov process with a random singularity spectrum, The Annals of Probability, vol.38, issue.5, pp.1924-1946, 2010.
DOI : 10.1214/10-AOP533

URL : https://hal.archives-ouvertes.fr/hal-00693014

J. Barral and P. Gonçalves, On the Estimation of the Large Deviations Spectrum, Journal of Statistical Physics, vol.6, issue.89, pp.1256-1283, 2011.
DOI : 10.1007/s10955-011-0296-6

URL : https://hal.archives-ouvertes.fr/hal-00747653

J. Barral, X. O. Jin, and B. Mandelbrot, Uniform convergence for complex [0, 1]-martingales, The Annals of Applied Probability, vol.20, issue.4, pp.1205-1218, 2010.
DOI : 10.1214/09-AAP664

URL : https://hal.archives-ouvertes.fr/hal-00793058

J. Barral and B. Mandelbrot, Multifractal products of cylindrical pulses. Probability Theory and Related Fields, pp.409-430, 2002.

J. Barral and B. Mandelbrot, Multiplicative products of cylindrical pulses, Probability Theory and Related Fields, vol.124, issue.3, pp.409-430, 2002.
DOI : 10.1007/s004400200220

J. Barral and S. Peyrì-ere, Mandelbrot cascades fabulous fate, 2011.

J. Barral and S. Seuret, The singularity spectrum of L??vy processes in multifractal time, Advances in Mathematics, vol.214, issue.1, pp.437-468, 2007.
DOI : 10.1016/j.aim.2007.02.007

J. Barral and S. Seuret, On multifractality and time subordination for continuous functions, Adv. Math, vol.220, issue.38, pp.936-963, 2009.

J. Barral and S. Seuret, A localized Jarn??k???Besicovitch theorem, Advances in Mathematics, vol.226, issue.4, pp.3191-3215, 2011.
DOI : 10.1016/j.aim.2010.10.011

J. Beran, Statistics for Long-Memory Processes, p.44, 1994.

J. M. Berger and B. Mandelbrot, A New Model for Error Clustering in Telephone Circuits, IBM Journal of Research and Development, vol.7, issue.3, pp.224-236, 1963.
DOI : 10.1147/rd.73.0224

H. Biermé and F. Richard, Statistical test for anisotropy for fractional Brownian textures. Applications to full?field digital mammography, J. Math. Imaging Vision, vol.36, issue.3, pp.227-240, 2010.

P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho, Seven Years and One Day: Sketching the Evolution of Internet Traffic, IEEE INFOCOM 2009, The 28th Conference on Computer Communications, pp.48-49, 2009.
DOI : 10.1109/INFCOM.2009.5061979

URL : https://hal.archives-ouvertes.fr/ensl-00290756

G. Brown, G. Michon, and J. Peyrì-ere, On the multifractal analysis of measures, Journal of Statistical Physics, vol.59, issue.2, pp.775-790, 1992.
DOI : 10.1007/BF01055700

L. Calvet and A. Fisher, Multifractality in Asset Returns: Theory and Evidence, Review of Economics and Statistics, vol.83, issue.401, pp.381-406, 2002.
DOI : 10.1016/0304-405X(87)90009-2

URL : https://hal.archives-ouvertes.fr/hal-00478175

L. Calvet and A. Fisher, Multifractal volatility: Theory, forecasting and pricing, pp.42-45, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00671877

L. Calvet, A. Fisher, and B. Mandelbrot, The multifractal model of asset returns. Cowles Foundation Discussion Papers: 1164, pp.42-46, 1997.

B. Castaing, The Temperature of Turbulent Flows, Journal de Physique II, vol.6, issue.1, pp.105-114, 1996.
DOI : 10.1051/jp2:1996172

URL : https://hal.archives-ouvertes.fr/jpa-00248278

B. Castaing, Y. Gagne, and E. Hopfinger, Velocity probability density functions of high Reynolds number turbulence, Physica D: Nonlinear Phenomena, vol.46, issue.2, pp.177-190, 1990.
DOI : 10.1016/0167-2789(90)90035-N

B. Castaing, Y. Gagne, and M. Marchand, Log-similarity for turbulent flows?, Physica D: Nonlinear Phenomena, vol.68, issue.3-4, pp.387-400, 1993.
DOI : 10.1016/0167-2789(93)90132-K

B. Castaing, Y. Gagne, and M. Marchand, Log-similarity for turbulent flows?, Physica D: Nonlinear Phenomena, vol.68, issue.3-4, pp.387-400, 1993.
DOI : 10.1016/0167-2789(93)90132-K

P. Chainais, R. Riedi, and P. Abry, On Non-Scale-Invariant Infinitely Divisible Cascades, IEEE Transactions on Information Theory, vol.51, issue.3, p.45, 2005.
DOI : 10.1109/TIT.2004.842570

P. Chainais, R. Riedi, and P. Abry, Warped infinitely divisible cascades: beyond scale invariance, Traitement du Signal, vol.22, issue.8, p.45, 2005.

G. R. Chavarria, C. Baudet, and S. Ciliberto, Hierarchy of the Energy Dissipation Moments in Fully Developed Turbulence, Physical Review Letters, vol.74, issue.11, pp.1986-1989, 1995.
DOI : 10.1103/PhysRevLett.74.1986

A. Chhabra, Direct determination of the f(??) singularity spectrum and its application to fully developed turbulence, Physical Review A, vol.40, issue.9, pp.1327-1370, 1989.
DOI : 10.1103/PhysRevA.40.5284

K. Cho, K. Mitsuya, and A. Kato, Traffic data repository at the wide project, USENIX 2000 FREENIX Track, p.48, 2000.

P. Ciuciu, P. Abry, C. Rabrait, and H. Wendt, Log Wavelet Leaders Cumulant Based Multifractal Analysis of EVI fMRI Time Series: Evidence of Scaling in Ongoing and Evoked Brain Activity, IEEE Journal of Selected Topics in Signal Processing, vol.2, issue.6, pp.929-943, 2009.
DOI : 10.1109/JSTSP.2008.2006663

M. Clausel-lesourd and S. Nicolay, A wavelet characterization for the upper global holder index, p.31, 2011.

S. Cohen and J. Istas, Fractional fields and applications. (preprint), p.17, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00871783

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.34, issue.7, pp.909-996, 1988.
DOI : 10.1002/cpa.3160410705

A. Dauphiné, Géographie fractale. Hermès, Lavoisier, p.42, 2011.

J. Delour, J. F. Muzy, and A. Arneodo, Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis, The European Physical Journal B, vol.23, issue.2, pp.243-248, 2001.
DOI : 10.1007/s100510170074

G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho, Extracting hidden anomalies using sketch and non Gaussian multiresolution statistical detection procedures, Proceedings of the 2007 workshop on Large scale attack defense , LSAD '07, p.49, 2007.
DOI : 10.1145/1352664.1352675

URL : https://hal.archives-ouvertes.fr/ensl-00177654

I. Dittman and C. W. Granger, Properties of nonlinear transformations of fractionally integrated processes, Journal of Econometrics, vol.110, issue.2, pp.113-133, 2002.
DOI : 10.1016/S0304-4076(02)00089-1

M. Doret, H. Helgason, P. Abry, P. Gonçalvès, C. Gharib et al., Multifractal Analysis of Fetal Heart Rate Variability in Fetuses with and without Severe Acidosis during Labor, American Journal of Perinatology, vol.28, issue.04, p.74, 2011.
DOI : 10.1055/s-0030-1268713

URL : https://hal.archives-ouvertes.fr/inria-00537788

A. Durand, Random Wavelet Series Based on a Tree-Indexed Markov Chain, Communications in Mathematical Physics, vol.41, issue.12, pp.451-477, 2008.
DOI : 10.1007/s00220-008-0504-7

URL : http://arxiv.org/abs/0709.3597

A. Durand and S. Jaffard, Multifractal analysis of L??vy fields, Probability Theory and Related Fields, vol.12, issue.2, p.17, 2011.
DOI : 10.1007/s00440-011-0340-0

G. A. Edgar, Classics on Fractals, 1995.

P. Embrechts and M. Maejima, Selfsimilar Processes, Series in Applied Mathematics, p.7, 2001.
DOI : 10.1515/9781400825103

K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, p.18, 1993.
DOI : 10.1002/0470013850

K. Falconer, Techniques in Fractal Geometry, p.18, 1997.

A. Feldmann, A. C. Gilbert, and W. Willinger, Data networks as cascades: Explaining the multifractal nature of internet wan traffic, SIGCOMM'98, pp.42-55, 1998.

A. Fisher, L. Calvet, and B. Mandelbrot, Multifractality of Deutsche Mark / US dollar exchange rate. Cowles Foundation Discussion Papers, pp.1165-1209, 1997.

P. Flandrin, On the spectrum of fractional Brownian motions, IEEE Transactions on Information Theory, vol.35, issue.1, pp.197-199, 1989.
DOI : 10.1109/18.42195

P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion, IEEE Transactions on Information Theory, vol.38, issue.2, pp.910-917, 1992.
DOI : 10.1109/18.119751

P. Frankhauser, L'approche fractale. Un nouvel outil de reflexion dans l'analyse spatiale des agglomerations urbaines, Population (French Edition), vol.52, issue.4, pp.1005-1040, 1997.
DOI : 10.2307/1534622

URL : https://hal.archives-ouvertes.fr/hal-00903351

A. Fraysse and S. Jaffard, How smooth is almost every function in a Sobolev space?, Revista Matem??tica Iberoamericana, vol.22, issue.2, pp.663-682, 2006.
DOI : 10.4171/RMI/469

URL : https://hal.archives-ouvertes.fr/hal-01119126

Y. Gousseau and J. Morel, Are Natural Images of Bounded Variation?, SIAM Journal on Mathematical Analysis, vol.33, issue.3, pp.634-648, 2001.
DOI : 10.1137/S0036141000371150

C. W. Granger, Long memory relationships and the aggregation of dynamic models, J. of Econometrics, vol.14, pp.220-238, 1980.

C. W. Granger and R. Joyeux, AN INTRODUCTION TO LONG-MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING, Journal of Time Series Analysis, vol.7, issue.1, pp.15-29, 1980.
DOI : 10.2307/3212527

T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Physical Review A, vol.33, issue.2, pp.1141-1151, 1986.
DOI : 10.1103/PhysRevA.33.1141

B. He, The Temporal Structures and Functional Significance of Scale-free Brain Activity, Neuron, vol.66, issue.3, pp.353-369, 2010.
DOI : 10.1016/j.neuron.2010.04.020

N. Hohn, D. Veitch, and P. Abry, Cluster processes: a natural language for network traffic, IEEE Transactions on Signal Processing, vol.51, issue.8, pp.2229-2244, 2003.
DOI : 10.1109/TSP.2003.814460

N. Hohn, D. Veitch, and P. Abry, Multifractality in tcp/ip traffic: the case against, Computer Network Journal, vol.48, issue.48, pp.293-313, 2005.

H. E. Hurst, Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineering, pp.770-799, 1951.

P. C. Ivanov, Scale-Invariant Aspects of Cardiac Dynamics Across Sleep Stages and Circadian Phases, IEEE Engineering in Medicine and Biology Magazine, vol.26, issue.6, pp.33-37, 2007.
DOI : 10.1109/EMB.2007.907093

P. C. Ivanov, L. A. Nunes-amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum et al., Multifractality in human heartbeat dynamics, Nature, vol.399, issue.6735, pp.461-465, 1999.
DOI : 10.1038/20924

S. Jaffard, Multifractal Formalism for Functions Part I: Results Valid For All Functions, SIAM Journal on Mathematical Analysis, vol.28, issue.4, pp.944-998, 1997.
DOI : 10.1137/S0036141095282991

S. Jaffard, Oscillation spaces: Properties and applications to fractal and multifractal functions, Journal of Mathematical Physics, vol.39, issue.8, pp.4129-4141, 1998.
DOI : 10.1063/1.532488

S. Jaffard, Sur la dimension de bo??tebo??te des graphes, Compt. Rend. Acad. Scien, vol.326, pp.555-560, 1998.

S. Jaffard, The multifractal nature of L??vy processes, Probability Theory and Related Fields, vol.114, issue.2, pp.207-227, 1999.
DOI : 10.1007/s004400050224

S. Jaffard, On the Frisch???Parisi conjecture, Journal de Math??matiques Pures et Appliqu??es, vol.79, issue.6, pp.525-552, 2000.
DOI : 10.1016/S0021-7824(00)00161-6

S. Jaffard, Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of Beno??tBeno??t Mandelbrot, Proc. Symp. Pure Math, pp.91-152, 2004.
DOI : 10.1090/pspum/072.2/2112122

S. Jaffard, Beyond Besov spaces, part 2: Oscillation spaces. Constructive Approximation, pp.29-61, 2005.

S. Jaffard, Pointwise regularity associated with function spaces and multifractal analysis, Approximation and Probability, pp.93-110, 2006.
DOI : 10.4064/bc72-0-7

S. Jaffard, Wavelet techniques for pointwise regularity, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.15, issue.1, pp.3-33, 2006.
DOI : 10.5802/afst.1111

S. Jaffard, P. Abry, and S. G. Roux, Function Spaces Vs. Scaling Functions: Tools for Image Classification, Mathematical Image processing, vol.5, issue.28, pp.1-39
DOI : 10.1007/978-3-642-19604-1_1

URL : https://hal.archives-ouvertes.fr/hal-00798459

S. Jaffard, P. Abry, S. G. Roux, B. Vedel, and H. Wendt, The Contribution of Wavelets in Multifractal Analysis, Series in contemporary applied mathematics. World scientific publishing, pp.51-98, 2010.
DOI : 10.1142/9789814322874_0003

URL : https://hal.archives-ouvertes.fr/ensl-00354520

S. Jaffard, B. Lashermes, and P. Abry, Wavelet Leaders in Multifractal Analysis, Wavelet Analysis and Applications, pp.219-264, 2006.
DOI : 10.1007/978-3-7643-7778-6_17

URL : https://hal.archives-ouvertes.fr/ensl-00195088

S. Jaffard, B. Lashermes, and P. Abry, Wavelet Leaders in Multifractal Analysis, pp.219-264, 2006.
DOI : 10.1007/978-3-7643-7778-6_17

URL : https://hal.archives-ouvertes.fr/ensl-00195088

S. Jaffard and B. Mandelbrot, Peano-polya motion, when time is intrinsic or binomial (uniform or multifractal), The Mathematical Intelligencer, vol.19, issue.4, pp.21-26, 1997.

S. Jaffard and C. Melot, Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents, Communications in Mathematical Physics, vol.109, issue.3, pp.513-565, 2005.
DOI : 10.1007/s00220-005-1354-1

URL : https://hal.archives-ouvertes.fr/hal-01071366

J. Kahane and J. Peyrì-ere, Sur certaines martingales de Benoit Mandelbrot, Advances in Mathematics, vol.22, issue.2, pp.131-145, 1976.
DOI : 10.1016/0001-8708(76)90151-1

A. N. Kolmogorov, The Wiener spiral and some other interesting curves in Hilbert space (russian), Dokl. Akad. Nauk SSSR, vol.26, issue.2 5, p.115118, 1940.

A. N. Kolmogorov, The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers, Comptes Rendus De L'Academie Des Sciences De L'Urss, pp.301-305, 1941.
DOI : 10.1098/rspa.1991.0075

A. N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, Journal of Fluid Mechanics, vol.30, issue.01, pp.82-85, 1962.
DOI : 10.1017/S0022112062000518

N. Kôno and M. Maejima, H??lder Continuity of Sample Paths of Some Self-Similar Stable Processes, Tokyo Journal of Mathematics, vol.14, issue.1, pp.93-100, 1991.
DOI : 10.3836/tjm/1270130491

K. Kotani, K. Takamasu, L. Safonov, and Y. Yamamoto, Multifractal heart rate dynamics in human cardiovascular model, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems, pp.340-347, 2003.
DOI : 10.1117/12.500247

S. Osher, L. Rudin, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, vol.60, pp.259-268, 1921.

B. Lashermes, P. Abry, and P. Chainais, New insight in the estimation of scaling exponents, Multiresolution and Information Processing, 2004.

B. Lashermes, S. Jaffard, and P. Abry, Wavelet Leader based Multifractal Analysis, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., pp.161-164, 2005.
DOI : 10.1109/ICASSP.2005.1415970

B. Lashermes, S. G. Roux, P. Abry, and S. Jaffard, Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders, The European Physical Journal B, vol.35, issue.2, pp.201-215, 2008.
DOI : 10.1140/epjb/e2008-00058-4

URL : https://hal.archives-ouvertes.fr/ensl-00195451

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, On the self-similar nature of Ethernet traffic (extended version), IEEE/ACM Transactions on Networking, vol.2, issue.1, pp.1-15, 1994.
DOI : 10.1109/90.282603

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, On the self-similar nature of ethernet traffic, SIGCOMM '93: Conference proceedings on Communications architectures, protocols and applications, pp.183-193, 1993.

L. S. Liebovitch and A. T. Todorov, Invited editorial on " fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations, J. Appl. Physiol, pp.1446-1447, 1996.

P. Loiseau, P. Gonçalves, G. Dewaele, P. Borgnat, P. Abry et al., Investigating Self-Similarity and Heavy-Tailed Distributions on a Large-Scale Experimental Facility, IEEE/ACM Transactions on Networking, vol.18, issue.4, pp.1261-1274, 2010.
DOI : 10.1109/TNET.2010.2042726

URL : https://hal.archives-ouvertes.fr/inria-00263634

S. B. Lowen and M. C. Teich, Fractal-Based Point Processes, p.42, 2005.
DOI : 10.1002/0471754722

S. Mallat, A Wavelet Tour of Signal Processing, p.50, 1998.

B. Mandelbrot, The Variation of Certain Speculative Prices, The Journal of Business, vol.36, issue.4, pp.394-419, 1963.
DOI : 10.1086/294632

B. Mandelbrot, Limitations of efficiency and of martingale models. The review of econometrics and statistics, pp.225-236, 1971.

B. Mandelbrot, Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence, pp.333-351
DOI : 10.1007/3-540-05716-1_20

L. Springer and C. Jolla, Statistical Models and Turbulence, Lecture Notes in Physics, 1972.

B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics, vol.15, issue.02, pp.331-358, 1974.
DOI : 10.1063/1.1693226

B. Mandelbrot, On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars, Journal of Fluid Mechanics, vol.26, issue.03, pp.401-416, 1975.
DOI : 10.1109/TCOM.1965.1089090

B. Mandelbrot, Poisson approximation of the multi-temporal Brownian functions and generalizations. Comptes Rendus de l, Académie des Sciences, vol.280, issue.A, pp.1075-1078, 1975.

B. Mandelbrot, Diagonally self-affine fractal cartoons. part 1: Mass, box, and gap fractal dimensions, local or global, Fractals in Physics, vol.15, pp.3-15, 1985.

B. Mandelbrot, Diagonally self-affine fractal cartoons. part 2: length and area anomalies, Fractals in Physics, vol.15, pp.17-20, 1985.

B. Mandelbrot, Self-Affine Fractals and Fractal Dimension, Physica Scripta, vol.32, issue.4, pp.257-260, 1985.
DOI : 10.1088/0031-8949/32/4/001

B. Mandelbrot, Limit lognormal multifractal measures, Proc. Landau Memorial Conf., Tel Aviv, pp.309-340, 1988.

B. Mandelbrot, Fractals and scaling in finance Selected Works of Benoit B. Mandelbrot, p.44

B. Mandelbrot, Multifractals and 1/f noise. Selected Works of Benoit B. Mandelbrot Wild Self-Affinity in Physics, 1998.

B. Mandelbrot, A Multifractal Walk down Wall Street, Scientific American, vol.280, issue.2, pp.70-73, 1999.
DOI : 10.1038/scientificamerican0299-70

B. Mandelbrot, Gaussian Self-Affinity and Fractals. Selected Works of Benoit B. Mandelbrot, 2002.

B. Mandelbrot, Fractals and Chaos. Selected Works of Benoit B. Mandelbrot, p.13, 2004.

B. Mandelbrot and J. W. Van-ness, Fractional Brownian Motions, Fractional Noises and Applications, SIAM Review, vol.10, issue.4, pp.422-437, 1968.
DOI : 10.1137/1010093

B. Mandelbrot, W. Wallis, . Noah, and . Joseph, Noah, Joseph, and Operational Hydrology, Water Resources Research, vol.4, issue.Part 1, pp.909-918, 1968.
DOI : 10.1029/WR004i005p00909

B. Mandelbrot and W. Wallis, Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence, Water Resources Research, vol.16, issue.5, pp.967-988, 1969.
DOI : 10.1029/WR005i005p00967

C. Meneveau, Analysis of turbulence in the orthonormal wavelet representation, Journal of Fluid Mechanics, vol.30, issue.-1, pp.469-512, 1991.
DOI : 10.1017/S0022112078001846

Y. Meyer, Ondelettes et Opérateurs English translation, Wavelets and operators, p.27, 1990.

D. Monrad and L. D. Pitt, Local Nondeterminism and Hausdorff Dimension, Progress in Probability and Statistics, Seminar on Stochastic Processes, 1986.
DOI : 10.1007/978-1-4684-6751-2_12

J. F. Muzy, E. Bacry, and A. Arneodo, Wavelets and multifractal formalism for singular signals: Application to turbulence data, Physical Review Letters, vol.67, issue.25, pp.3515-3518, 1991.
DOI : 10.1103/PhysRevLett.67.3515

J. F. Muzy, E. Bacry, and A. Arneodo, THE MULTIFRACTAL FORMALISM REVISITED WITH WAVELETS, International Journal of Bifurcation and Chaos, vol.04, issue.02, pp.245-302, 1994.
DOI : 10.1142/S0218127494000204

E. A. Novikov, Infinitely divisible distributions in turbulence, Physical Review E, vol.50, issue.5, pp.3303-3305, 1994.
DOI : 10.1103/PhysRevE.50.R3303

A. M. Obukhov, Some specific features of atmospheric turbulence, Journal of Geophysical Research, vol.31, issue.no. 9, pp.77-81, 1962.
DOI : 10.1029/JZ067i008p03011

S. Orey and S. J. Taylor, How often on a Brownian path does the law of iterated logarithm fail? Proc, pp.174-192, 1974.

G. Parisi and U. Frisch, Fully developed turbulence and intermittency, Turbulence and Predictability in geophysical Fluid Dynamics and Climate Dynamics, pp.84-51, 1985.

K. Park and W. Willinger, Self-Similar Network Traffic: An Overview, Self-Similar Network Traffic and Performance Evaluation, pp.1-38, 2000.
DOI : 10.1002/047120644X.ch1

K. Park and W. Willinger, Self-Similar Network Traffic: An Overview, Self-Similar Network Traffic and Performance Evaluation, pp.1-38, 2000.
DOI : 10.1002/047120644X.ch1

V. Paxson and S. Floyd, Wide area traffic: The failure of Poisson modeling, IEEE TON, vol.4, issue.3, pp.209-223, 1995.

H. O. Peitgen and D. Saupe, The science of fractal images, 1988.

E. Perkins, On the Hausdorff dimension of the Brownian slow points, Zeitschrift f??r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.54, issue.3, pp.369-399, 1983.
DOI : 10.1007/BF00532968

E. Peters, Fractal market analysis, p.44, 1994.

S. Pietropinto, C. Poulain, C. Baudet, B. Castaing, B. Chabaud et al., Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium, Physica C: Superconductivity, vol.386, pp.512-516, 2003.
DOI : 10.1016/S0921-4534(02)02115-9

URL : https://hal.archives-ouvertes.fr/hal-00521141

V. Pipiras, Wavelet-Type Expansion of the Rosenblatt Process, Journal of Fourier Analysis and Applications, vol.10, issue.6, pp.599-634, 2004.
DOI : 10.1007/s00041-004-3004-y

V. Pipiras and P. Abry, Wavelet-based synthesis of the rosenblatt process, Sig. Proc, vol.86, pp.2326-2339, 2006.

V. Pipiras and M. Taqqu, Multifractal processes, Fractional calculus and its connexions to fractional Brownian motion, pp.165-201, 2003.

V. Pipiras, M. S. Taqqu, and P. Abry, Can continuous-time stationary stable processes have discrete linear representations?, Statistics & Probability Letters, vol.64, issue.2, pp.147-157, 2003.
DOI : 10.1016/S0167-7152(03)00146-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

V. Pipiras, M. S. Taqqu, and P. Abry, Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation, Bernoulli, vol.13, issue.4, pp.1091-1123, 2007.
DOI : 10.3150/07-BEJ6143

L. F. Richardson, Weather prediction by numerical process, 1922.
DOI : 10.1017/CBO9780511618291

R. H. Riedi, Multifractal processes, Theory and applications of long range dependence, pp.625-717, 2003.

R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, A multifractal wavelet model with application to network traffic, IEEE Transactions on Information Theory, vol.45, issue.3, pp.992-1018, 1999.
DOI : 10.1109/18.761337

P. Rieusset, Distributions dont tous les coefficients d'ondelettes sont nuls, Comptes Rendus Acad. Sci, vol.318, pp.1083-1086, 1994.

G. Samorodnitsky and M. Taqqu, Stable non-Gaussian random processes. Chapman and Hall, 1994.

D. Schertzer and S. Lovejoy, Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes, Journal of Geophysical Research, vol.2, issue.D8, pp.9693-9714, 1987.
DOI : 10.1029/JD092iD08p09693

S. Seuret, On multifractality and time subordination for continuous functions, Advances in Mathematics, vol.220, issue.3, pp.936-963, 2009.
DOI : 10.1016/j.aim.2008.10.009

URL : https://hal.archives-ouvertes.fr/hal-00272365

Z. S. She and E. Lévêque, Universal scaling laws in fully developed turbulence, Physical Review Letters, vol.72, issue.3, pp.336-339, 1994.
DOI : 10.1103/PhysRevLett.72.336

N. R. Shieh and Y. Xiao, Hausdorff and packing dimensions of the images of random fields, Bernoulli, vol.16, issue.4, pp.926-952, 2010.
DOI : 10.3150/09-BEJ244

J. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach, p.42, 1998.
DOI : 10.1017/CBO9780511564352

S. Stoev, V. Pipiras, and M. S. Taqqu, Estimation of the self-similarity parameter in linear fractional stable motion, Signal Processing, vol.82, issue.12, pp.1873-1901, 2002.
DOI : 10.1016/S0165-1684(02)00317-1

M. S. Taqqu, W. Willinger, and R. Sherman, Proof of a fundamental result in self-similar traffic modeling, ACM SIGCOMM Computer Communication Review, vol.27, issue.2, pp.5-23, 1997.
DOI : 10.1145/263876.263879

A. H. Tewfik and M. Kim, Correlation structure of the discrete wavelet coefficients of fractional Brownian motion, IEEE Transactions on Information Theory, vol.38, issue.2, pp.904-909, 1992.
DOI : 10.1109/18.119750

G. Teyssì-ere and P. Abry, Wavelet analysis of nonlinear long range dependent processes . Applications to financial time series, Long Memory in, p.44, 2007.

D. Veitch and P. Abry, A wavelet-based joint estimator of the parameters of long-range dependence, IEEE Transactions on Information Theory, vol.45, issue.3, pp.878-897, 1999.
DOI : 10.1109/18.761330

D. Veitch and P. Abry, A statistical test for the time constancy of scaling exponents, IEEE Transactions on Signal Processing, vol.49, issue.10, pp.2325-2334, 2001.
DOI : 10.1109/78.950788

H. Wendt, Contributions of Wavelet Leaders and Bootstrap to Multifractal Analysis: Images, Estimation Performance, Dependence Structure and Vanishing Moments. Confidence Intervals and Hypothesis Tests, p.40, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00333599

H. Wendt and P. Abry, Bootstrap tests for the time constancy of multifractal attributes, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, p.41, 2008.
DOI : 10.1109/ICASSP.2008.4518397

URL : https://hal.archives-ouvertes.fr/ensl-00181030

H. Wendt, P. Abry, and S. Jaffard, Bootstrap for Empirical Multifractal Analysis, IEEE Signal Processing Magazine, vol.24, issue.4, pp.38-48, 2007.
DOI : 10.1109/MSP.2007.4286563

H. Wendt, P. Abry, S. Jaffard, H. Ji, and Z. Shen, Wavelet Leader multifractal analysis for texture classification, 2009 16th IEEE International Conference on Image Processing (ICIP), p.50, 2009.
DOI : 10.1109/ICIP.2009.5414273

H. Wendt, S. G. Roux, P. Abry, and S. Jaffard, Wavelet leaders and bootstrap for multifractal analysis of images, Signal Processing, vol.89, issue.6, pp.1100-1114, 2009.
DOI : 10.1016/j.sigpro.2008.12.015

URL : https://hal.archives-ouvertes.fr/ensl-00365041

A. M. Yaglom, Effect of fluctuations in energy dissipation rate on the form of turbulence characteristics in the inertial subrange, Dokl. Akad. Nauk. SSR, vol.166, pp.49-52, 1966.