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A Bit Allocation Method for Sparse Source Coding

Mounir Kaaniche Member IEEE Aurélia FraysseMember |IEEE
Béatrice Pesquet-Popesdtellow IEEE and Jean-Christophe Pesquet)low IEEE

Abstract—In this paper, we develop an ef cient bit allocation with the bit allocation problem: numerical- and analytical-
strategy for subband-based image coding systems. More specif-hased approaches. Algorithms in the rst category aim at
ically, our objective is to design a new optimization algorithm empirically estimating the R-D curves and resort to some

based on a rate-distortion optimality criterion. To this end, we . . . . N
consider the uniform scalar quantization of a class of mixed iterative techniques to nd the optimal quantization parameters

distributed sources following a Bernoulli-Generalized Gaussian [3]- For instance, Lagrangian optimization techniques have
distribution. This model appears to be particularly well-adapted been well investigated in the literature [4], [5], [6]. In these ap-

for image data which have a sparse representation in a wavelet proaches, the constrained minimization problem is transformed
basis. In this paper, we propose new approximations of the ;i an unconstrained version by incorporating the constraint

entropy and the distortion functions by using piecewise af ne and . S . . .
exponential forms, respectively. Thanks to these approximations, into the objective function. In [4], a bit allocation method

bit allocation is reformulated as a convex optimization problem. for completely arbitrary input signals (or blocks) and discrete
Solving the resulting problem allows us to derive the optimal quantizer sets is considered in the case of independent coding

quantization step for each subband. Experimental results show contexts. An extension of this work to subband coding has
the bene ts that can be drawn from the proposed bit allocation  heen proposed in [2]. Another extension to a dependent coding
method in & typical transform-based coding application. environment has also been considered in [6]. More precisely,
Index Terms—Bit allocation, sparse sources, generalized Gaus- the authors describe the R-D Lagrangian cost function in the
sian, lossy source coding, rate-distortion theory, piecewise ap-form of a trellis and use the Viterbi algorithm to nd the
proximation, convex optimization. optimal solution for coders exploiting temporal and spatial
dependencies such as MPEG and pyramidal coders. In [7],
I. INTRODUCTION the bit allocation problem is converted into the graph theoretic
problem of nding the shortest path in a directed acyclic graph.
In image and video coding systems, it is desired to achiepesides, it should be noticed that dynamic programming
the best possible image quality for a given bitrate or, comigorithms [3], [8] and descent algorithms [9], [10] have also
versely, to minimize the bitrate for a given image quality. Teeen proposed to select the optimal quantization parameters.
this respect, a great attention has been paid to the problemtofs important to note that these numerical methods may
bit allocation where a given amount of bits must be ef cientlye computationally intensive since a large number of R-D
distributed among blocks of a DCT-coded image or amongperating points must be measured for each subband in order
subbands of a wavelet-based coder [2], or among framestdnobtain R-D curves which are both differentiable and convex
a video sequence [3]. The general framework behind the bitl]. In other words, the R-D data are rst evaluated for all
allocation strategy is Rate-Distortion (R-D) theory which aimgossible quantization settings. Then, the optimal solution is
at minimizing the average distortion of the input signal subjegferived. For instance, the EBCOT algorithm of JPEG2000
to a constraint on the available global bitrate. Since both thglies on the explicit computation of several truncation points,
rate and the distortion measures in a typical transform codifigf each code-block of siz82 32 or 64 64 of the subband
scheme are controlled by the choice of the quantizers, thgef cients, and a post-optimization by selecting the best
major issue is to nd the optimal quantization steps for thR-D points for each Lagrangian parameter Generally, a
constrained minimization problem. It is thus necessary to stuiitfger number of truncation points per code-block induces
the rate and distortion functions of the source to be enCOd@higher complexity, but also better optimization results. In
Two main classes of methods have been developed to dedler to reduce the complexity, Aridet al.[12] have recently
proposed to perform the computation of a few points (i.e.
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a parametric representation of the operational R-D function ©he remainder of this paper is organized as follows: in Sec-
a scalar quantizer is derived for a uniformly distributed sourd®n Il, we de ne the probabilistic model for the considered
and a wide class of distortion measures. In [16], a distorticubband coef cients as well as the quantizer characteristics.
measure based on differential entropy has been introduced\ée introduce the resulting entropy and distortion functions. In
image coding using uniform scalar quantization. In [17], aBection Ill, we provide new piecewise convex approximations
approach for designing entropy constrained scalar quantizefghe entropy and the distortion. In Section IV, we reformu-
for exponential and Laplace distributions is proposed arate the bit allocation problem as a set of convex optimization
comparisons are made with uniform quantizers. Recently pmoblems, for which we derive the optimal solutions. Finally,
[18], the asymptotic behavior of a uniform quantizer is chaen application of the proposed method to transform-based
acterized at low resolution for a memoryless Gaussian souiggge coding is illustrated in Section V and some conclusions
and a squared error distortion measure. Other studies have drawn in Section VI.

also considered the use of Laplace and Generalized Gaussian

probability models in modern compression systems [19], [20], |I. ENTROPY AND DISTORTION OF A UNIFORMLY

[21]. QUANTIZED BGG SOURCE

While using R-D models leads to a reduction of the comy
plexity of the optimal quantization parameter selection for the
different subbands in the context of still image compression, First, we consider the problem of coding an input signal
classical high rate R-D models [22] play also a crucial rol@y Performing a wavelet (or frame-based) decomposition. Let
in the selection of the modes, for example in the context §f assume that the source to be quantized is composed of
H.264/AVC video coding standard [23]. The slope of the Rl su'b_,b?nds having; coefcients ( 2 f1;:::;Jg) so that

D curve is directly related to the quantization parameter 8f = j=; Nj is the total number of coefcients. Since the
the macroblock, and shown to be equal to the Lagrangig@ipirical distribution of the detail coef cients shows a very
parameter for the mode selection. Furthermore, in order ligh number of small amplitude (close to zero) values, an
estimate the motion vector for each macroblock, an R-D oppPpropriate way for characterizing their sparsity in fhn
timization is performed for the different partition modes, angubband consists of modelling these coef cients with a BGG
the partition leading to the smallest R-D cost is selected. D@istribution whose probability density functidi is de ned

to complexity reasons, the mode and partition optimization B:

performed recursively from macroblock to macroblock, thus 8 2R; fi()=@ ) O)+ ;fj() (1)
leading to a (possibly) not optimal global solution. Moreove
in a multi-layer coding environment, an R-D model in the
gggﬁg;‘;?oggén developed [24] based on similar high r ensity function for a GG distribution with shape parameter
The main contribution of this paper is to design an ef cient! 2]0,2] and scale factof; 2]0;+1 [:

bit allocation algorithm in a subband coding context (typ- 1=

ically, for wavelet-based coders) by adopting an analytical 8 2R, fj()= ﬁe Hil 2)
approach. More precisely, we will consider the uniform scalar -

quantization of the different subband coefcients resultingvhere is the gamma function. Recall that the differential
from a multiresolution analysis. Moreover, in order to providentropy of such a GG variable is given [30] as:

Source and quantization models

\rA/here i 2 [0;1] is a mixture parameter, denotes the Dirac
'gtribution (i.e. point mass at 0) arfd is the probability

a general framework, we develop the theoretical part by Z, 20=) 1
considering a Bernoulli-Generalized Gaussian (BGG) made(! ;) = f7( )log,fj( )d =log, % + =
which was found to be well-suited for modelling sparse 1 ity i

wavelet coef cients [25], [26]. It must be emphasized that thE ch coef cientX .« with s 2 f1::: - n q in subband 2
developed theoretical results remain also valid for stand §J is uanj’tsized before be1i.n. : ,eéltgro coded JFor this
images which are often modeled by using a Generalized’ "’ g8 q g Py '

Gaussian (GG) distribution [27], [28]. After extending recerft . PO>€, WE assume that, for each subaradiscalar uniform

o . __guantizer with a quantization step and having a deadzone
approximation formulas for the entropy and the dlstortloﬂlc size(2; 1)q where ; > 1=2 is used [31]. Note that

OT unn‘(_)rmly quantized B.’GG Sources [29]’. WE Propose a _, corresponds to a deadzone of sgge Thus, for every
piecewise afne (resp. piecewise exponential) form of the

entropy (resp. distortion) which allows us to get ne low rate
and high rate approximations of these functions. Thanks to théj;S =r19=0; if Xjsj< % G, Where; > 1=2
proposed approximations, we are able to reformulate the bit _ _

allocation problem by making use of convex analysis tool@nd, for alli 2 Z, Xj.s = rij ,

Following this approach, we derive explicit expressions of ... +i 3 (4 1 :

the optimal quantization parameters of the subbands. FinaIIy,(ff (i . Z)lq Xjs < (i +1 .Z)qg andi _1) .
simulations are performed on natural images which can BB(f ( j +i+3)G <Xjs ( j+i+3)qg andi 1)
simply modeled by a GG distribution, and then on imag&spere the reconstruction levels are given by

with at regions (like the cartoon ones) where a BGG model

appears to be more appropriate than the former one. 8i 1 rj = ri=0C;j+i 1+ ;)g @)



. =) = H ” 9 . . . XJ
and ; 2 [ 1=2;1=2] is an "offset” parameter indicating the where 8 2 1;:::;dg; ; 2]0;+1 [ and =1

shift of the reconstruction level with respect to the center ,
of the quantization interval. Note that we will not consider =
any saturation effect. The most commonly used quantizati§Hbject to the constraint that the total bitrate is equal to or
rule corresponds to the case when = 0 (i.e. mid-point Smaller than a target bitrafmay :

reconstruction). For example, this rule constitutes the basic X

ingredient of many encoding strategies (such as EBCOT [32]) H(q) = —JHfJ. (9; ;) Rmax: @)
which have been developed in wavelet-based image compres- j=1 n

sion techniques. . . Note that, for orthonormal representations, when for every
Since the objective of the paper is to focus on the bit allocation, ¢ 1. - ::Jg,p =2 and ; = n;=n, D(q) is also equal

problem f_or the quantjzed poef cieqts, it is now necessary @ the distortion in the spatial domain. For other scenarios
study their rate and distortion functions. (biorthogonal representations or redundant frames), a good
approximation of the distortion in the spatial domain can

B. Entropy and distortion measures be obtained in a number of cases by appropriate choices of

As frequently done in the development of R-D algorithmghe constantg j)1 j s [35]. The degrees of freedom in the
we approximate the bitrate of a memoryless source by tRBoices of the constan{®;). j s and( j). ; 5 can also
zero-order entropy of the quantized coef cients [22], [33]pe exploited in order to de ne perceptual criteria [36] better
Thus, by assuming that the random variables with j 2  tting the Human Visual System (HVS) characteristics.

(1), the entropy of the associated quantized varixble with [1l. A PPROXIMATIONS OF THE ENTROPY AND OF THE
j2f1::;Jgands2f1;:::;njgis given by: DISTORTION
The objective of this section is to develop accurate ap-
He; (95 j) = pi; 109, pi; (4) proximations of the entropy and the distortion for a general
i=1 BGG source model. These approximations will allow us to
where, for everyi 2 Z, p; = P(Xjs = ri;j ) represents the reformulate the bit allocation problem in a more tractable

probability of occurrence of the;; reconstruction level. form
We also propose to express the distortion function by using ) o
the p; -th order moment of the quantization error: A. Piecewise af ne approximation of the entropy

Let Q; with a2 R, be the normalized incomplete Gamma

&(q: )= EiXjs  Xjsi”] ®) function [37], de ned as
where p 1 is a real exponent. In particulag, = 2 1 z
corresponds to the mean square error criterion whegeasl 8 2R; Qa( )= — @ le d: (8)

corresponds to the mean absolute one. Taking real values of
the exponent which depend gnprovides exibility in the A close approximation of the entropy of a quantized BGG
choice of the distortion measure. source can be obtained as follows:

It is important to note here that close approximations of the Proposition 1: For a quantized BGG random variable
entropy and asymptotic expressions of the distortion of cistributed according to(1), the entropyHy, (g ; ;) can be
quantized BGG random variable are provided in [29] for botPProximated by

low and high bitrates. However, these approximations have i} N o+ o 9

been derived in the case of log-concave distributions (more nlai)=Croji )+ | 6 (@) ®)
precisely whenl i 2) and for a quantizer with a . N . ' . '

deadzone of sizgy (i.e. ; = 1). It is worth pointing that with (poj; )= 1 (@ poj) log, 1 (1 poj)
in practice, typical values of; can be smaller than 1 and the i( poj)logy j + jpo; l0g; Poj ;

size of the deadzone can be parameterized to have a different
value for each subband (as in JPEG2000 Part 2, while in Pand IJ‘P,eJ ()= po;j log, po;  2p1j 109, Py

1, a typical deadzone of siZ is used) [34]. Therefore, the 1.
main approximation results given in [29] need to be extended + N ('j) 10 G 1 Qi !} j+ 3 g’

in this paper by incorporating a nontrivial deadzone in the | 1= i+ Y _

quantizer and also considering the case wher 1. + o LiTa)e e litit3) ig’. (10)
Once the entropy and distortion functions have been de ned, 1=

the bit allocation problem can be formulated. In our case, thi$e error incurred in this approximation is such that
problem consists of nding the quantization steps for each 1
subband or, equivalently, the vectqr= (qu:cp::::;q) 2 O Wi (q: ) He (g ) 2;GC(; ) (j+§)q :

[0;+1 [? minimizing the average distortion 8
X N RS
D@=  ;8(q: ) e Wih Clii=, (11)

1
. ] .
j=1 T it 2[12




Proof: See Appendix A. approximation of the entropy function by using two intervals.
It is worth pointing out that such an approximation formul®y repeating the process, we compute the remaining values
may be useful in practice in the sense that it allows us to ef(i{"™’), , . ; which allow us to deduce the constants
ciently compute the entropy for any given set of quanuzatlocg‘jk)3 « mos (€)3  me and (lj(h,k))z « mm 1. Since
steps. _ . the entropy must be a nonnegative function, the last interval
Generally, analytlcal—ba}sed R-D algorlthms use the stand%rgundl_(h;mwn is found such thaa-m(h)l-(h;m(h)) + q-“(h) -0,
Bennett formula to obtain a close approximation of the entroy:%is erJ1taiIS' 1 )

[29], [22]. This high-resolution approximation formula, which ' e

is also valid when a quantizer with a deadzone is used andgj 2f1;:::;Jg;, g(j)=0 it lj 1™ ) (14)

i 2 (0;2], allows us to express the entropy of theth

subband as an af ne function of = log ,(q ): It is worth pointing out that, in practice, the points

(I'j(h;k))1 k mm 1 (where the tangent to the graph of the
He (g5 j)=H, + j(h,;('5) 1)+ o 2 (12) entropy is computed) are determined only once (in an off-line
_ . computation step) by considering the possible values for

whereH ; = —jlog, j (1 j)logy(1 ) is the entropy 2]0;2]and ; 2 [0; 1]. Indeed, we have observed from our tests

of a Bernoulli random variable with parametés ;; ;). . hik) o
However, the approximation formula (10) is not tractable fgpat the pomts(ff )1 k mm 1 have similar values for the
avelet coef cients whose; values belong to a speci ¢ range

optimization purposes, whereas (12) is only valid at higwmin_ ma ! i
resolution (i.e. whergj is small). In order to develop a bitl j |- Based onthis observation, we have constructed

allocation strategy well-adapted for both high and low resollPok-up tables, for the selection C(ffh’k))l k mm 1, de-
tions, we propose to de ne a piecewise convex approximati@¢nding on intervals for the j; ;) pair values. In other

of the entropy function by considering a more exible functiowords, for a given interval for; values, for ; 2]1.752],

of | = (l1;12;:::;15), given by J-le ”Tjgj (I;), whereg; have we determine the optimal values(j’fh'k))1 Kk mm 1. Then,

the following piecewise af ne form: for ; 2]1:5,1:75], we determine the optimal values of
j(hi) (rj(h;k))1 k mm 1. After that, we proceed similarly for;

i 2]1:3; 1:5], and so on.

(13) Therefore, it is enough to estimate the distribution parameters
er subband of the input image, and then to use the off-

corresponding to the considered number of intervals (i.e. tlre]e computed values dﬂ-j(h;k))l « o 1 to deduce all the

number of segments chosen to approximate the emmpgg)'nstants used in the piecewise convex approximation (13).

HEEES TR 2 [ k
For every] 2 f1:::;Jg, the parametergaf); ¢ mm  prom his viewpoint, our approach can be applied in real
are nonpositive reals, and the paramet@}%)l Kk mn are applications to any input image.

re_zal_ numbers. Note that_the supersciiphas been use_d tq Fig. 1 illustrates the approximations of the entropy using two
distinguish between the intervals used for the approxmat@&ervals @M = 2) and four intervals ™ = 4). As

of the entropy and those later used for the approximation

. . gxpected, increasing the number of intervals leads to a better
the distortion.

approximation of the entropy.

. . . . . 6 T T T T T 6
B. Practical implementation of the entropy approximatior
In practice, we setj(h;o) = 1 and we choose the oth ° >
points Ij(h;k) A in such a way that the resulti 4 4
1 m > >
piecewise afnne function constitutes a good approxima ¢ g3 N
of the entropyHy, of the source. More precisely, for t 6 G
rst interval, the high resolution approximation (12) can 2 \ 2
employed, leading to L 1
8j2fL:idg  g= j oand g=H +jh (1) o

. X |
By considering an arbitrary poirﬁ‘h’ Y we derive (a?; ¢7) ' ]

such thatg on the second interval is tangent to the grapf9: 1= Approximatonsg (in dashed line) of the e?;r)"pwfj (in solid
. |'b F(h; 1) . line) of a uniformly quantized BGG source verdys m{") =2 (left side),
of the entropy function®;; at §~". The computation of ) = 4 (right side). The parameters of the BGG source are= 05,

the tangent thus relies on the approximation of the entropy=1:2and! =1.

derived in Proposition 1. The upper bound of the rst interval

Ij(h;l), which corresponds also to the lower bound of the

second interval, is then xed to the abscissis of the intersecti@ Piecewise exponential approximation of the distortion

of the lines obtained on t.q)e, rst and second intervals. AS on the other hand, a good approximation of the distortion
explained below, the poirif ™~ is de ned so as to get a small o 5 quantized BGG source can be obtained as follows:
approximation error between the entrd{?yj and the function  proposition 2: For a quantized BGG random variable
g onthe rst interval[lj(h;o);l-(h;l)]. In this way, we obtain an distributed according tq(1), the distortione; (g ; j) can be



approximated by in a less precise approximation of the distortien than
m(d) = 4 especially at low bitrate. It can also be noticed
B(G: ) from Figs. 1 and 2 that the chosen approximation interval
5 LPT (g + D)= ) P N bounds!{™ Y, 12 and 11" for the entropy differ from
o 2(1=) Qo= 1l 3)'9 thosel ', 1149 and1{*? for the distortion. This illustrates
Ci*2a _ the fact that the selection steps foi("™* and
+ jooryE()d J 1k m
(i '%})qj Ij(d;k) @ should be performed independently in order
+ iq Qi !'i(;+ }) g (15 to obtain goT)d approximations of both the entropy and the
2(p +1) = T distortion functions.

where the approximation error is such that

pj +1 ‘
. . o\ i 1 ] /
8@ ) 8@ 28 (s a8 o 4
Proof: See Appendix B. 80.4 50'4
Some comments can be made about this result: 503 £03
Wheng ! 0, the classical high resolution approximai 3 02 s 02
is recovered: ' '
i ; 0.1
g(g; )= j—=q"1+0(g) @17
P+l o — o -
8 6 4 2 0 2 4 8 6 4 2 0 2 4
where j =(3+ )P* +(3 Pt b }

Whenp; = 2 (or more generally whem; is an even Fig. 2. Approximationsd; (in dashed line) of the distortio; (in solid

integer), the integral in (15) can be easily expressed Hje) of a uniformly quantized BGG source verslys m(@ =2 (left side),
using incomplete Gamma functions m(d) = 4 (right side). The parameters of the BGG source are= 0 :5,

j=1:2and!; =1.
Similarly to the approximation of the entropy, Proposition 2
will be useful to compute both fast and accurate approxima-
tions of the distortion, but the derived expressions remain too IV. PROPOSED BIT ALLOCATION METHOD

intricate for developing ef cient bit allocation algorithms. In this part, we show how the approximations of the entropy

di we _thus l\[zropose to_ uslcle a rougher approximation of g%d distortion functions proposed in the previous section allow
'S‘O”'OFT- ore specically, we propose to express th§s 15 solve the bit allocation problem in an ef cient manner.

global distortion as a function of = (IlﬁJz;:::;IJ) =
log,(ch);:::;100,(qy) under the form le idi (1),

whered; has the following piecewise exponential form: A. Optimization problem

Using the approximations; (resp.d;) of the entropy in

8] 2f1g:Jg (13) (resp. of the distortion in (18)), the bit allocation problem
2 (Kol Ky K if |(&k D o (dk) dened at the end of Section II, can be recast as follows:
d )= o ! . . L Problem 1:Find T minimizing the distortion function
i (1) > .y P= (g +1)= £ dm)
RN (1—=J) ] i X
(18) 81=(ly;:::51) 2 RY; D)= idi (1)
j=1

wherek 2 f 1;2;:::;m(@g andm(? is a given integer corre- gyer the seC de ned as
sponding to the number of intervals used in our approximation. %
For everyj 2 f1;:::;Jg, the parameterg }‘)1 K md C=fl=(l:::) 2 R j n—jg,- ()  Rmaxd: (19)
and ( jk)1 k m(d are nonnegative reals, and the parameters n

; . =1
( jk)1 k m are real numbers. While settlng1 = p and

A major dif culty for solving this problem stems from the
, . o fact that the functionsy and d; are non-differentiable and
selection procedure used with the approximation of the entroHX ; ) .
. ; . K nconvex. To de ne the different domains where the opti-
(explained in Section llI-B), the constan(sj)l K m@ T ‘ d hall ioint h i
(dK) o (d0) mization Is performed, we shall jointly sort the coef cients
(91 « mo and (KNg « m@ (with | = 1 )are (hk) (dik) . .

i . . j i | and | in ascending order for
determined in such a way thaf(lj) constitutes a good ap- ' = 1 k mm ! 1k m@ . i
proximation ofgy (2 ; ;). In particular, by taking * = o eachj 2f1; 1 Jg rTThe resultlnglsortgd coef uegts will be
and ! =0, we obtain the high bitrate approximation of thélenoted hby(l- e ") such that 17 ::: " where

) . (d:0). ((c:1) m  m®M + m(@ From the de nition of the total bitrate
distortion (see (17)) on the rst intervdl = ;1™ °]. constraint, a necessary condition foto belong toC is
Fig. 2 shows the approximations of the distortion for 2 amd0 ' y g
4 intervals. It can be observed that settim§® to 2 results 8j2f1:::;dg a'li+¢  nn Rpax:  (20)



This means that, for every 2 f1;:::;Jg, we can set the with8j 2f1;:::;J0,
lower boundIJO of the search mterval to 8

= ! T L R N L B
nn c Co(y= Coh : -
19 = min( ——— T 41y. 1) iO)=_awzn() 1y if j< <

& TN b |b1 41 j b if .

O we) gy i

Moreover, sinceg (Ij) = 0 for everyl;  If", andd; is an
increasing function of; , it is clear that the optimal value &f
will be lower than or equal t". As a result, the problem is
equwalent to minimize the dlstortlon over the dom@éh "]

Proof: See Appendix C.
The above expressions of the quantization parameters, ob-
tained for each subdomain, allow us to determine a nite set
[0:17]. In order to overcome the problem of the non of candidate distortion values. Once this has been performed,
differentiability of the functiongg or d; at points I¥ Fhe subdomain leading to the global minimum distortion value
- 1 = L)1 kem ? selected and its resulting quantization steps correspond to
we progosb?ff) su.b'd.|V|dethhebJp+rl(W|ous domain |nto .b.oxes of e optimal ones. It is worth pointing out that the computation
for.r.nl [_l_ 11 ] o 57177 whereb = (b by) 2 of the quantization parameters as well as their corresponding
fo;::;;m 1g’. On each box the entropy and dlstortlon ar§|stortion can be carried out for the subdomains independently
convex functions. Therefore, this subdivision technique lea Peach other. Furthermore, it can be noticed that the maximum

tom? subdomains where a convex optimization problem MUShmberm? of these evaluations can be reduced by checking
be solved. Conditions (i) and (ji) in Proposition 3.

B. Solution of the bit allocation problem V. EXPERIMENTAL RESULTS

In the following, we provide a closed form expression |n this part, we study the performance of the proposed bit
of the optimal quantization parameters. Suppose Bat= allocation method in the context of transform-based coding ap-
(351974 2o [ ;19 1] corresponds to a given subdomairpjications. We employ the 9/7 biorthogonal wavelet transform,
and let us denote b{Py,) the convex minimization problem selected in the lossy coding mode of part | of the JPEG2000
on this subdomain. For concision purposes, let us introdugeémpression standard. The decomposition is carried out over

the following notation, for every 2 1;:::;Jg, three resolution levels (i.€l = 10) since the test image size
N ad N (512 512 is not very large. Note also that the weights
Nj = ’b_J : = J?’i In2; (22) (j)1j g for the different wavelet subbands are computed
I j by using the procedure presented in [38]. Our experiments
bj b bj b +1 have been performed for various standard test imagsth
o A (23)  jifferent characteristics as shown in Fig. 3.
The solution to the ProblertPy) is given below. We should note that the wavelet transform is kept the same in
Propo|§|t|on 3: all the experiments, and we are mainly interested in computing

the optimal quantization parameters of the resulting wavelet

[ If Ng (1P ) > R max, then there is no solution. ;
W1 g i1 76 () > R max subbands. As mentioned before, the rst step of our method

J n b
(i) 1 b j=1 bj g (') Rma, then the solution i€ = . oo of modelling the resulting wavelet coef cients. For
(75 0y7), this purpose, we consider the two following models: the GG
(Ill) Otherwise, the SOIUtison is the VeC@ de ned by one and the more genera| BGG one.
317 ifj2l
..... = lig, ° Wi23 (o A. GG-based model
8 2112500 Ko = 3 02 (24) In this case, the parameters and!; for each subband
: |jbj 1 if j 2K are estimated directly from the corresponding coef cients,
by using the maximum likelihood technique. Afterwards, we
where compute their corresponding entropy and distortion approx-
Z(P D c,-hj NR max ) Y imations and deduce their optimal quantization steps using
ey = ST LT i’ (25) Proposition 3. Figs. 4(a), 4(b) and 4(c) show the in uence of
XZ( izl iz Nl ) g, the choice of the parametens™) andm(? used for approxi-
N; = N; (26) mating the entropy and distortion functions. The plotted curve
i23 using the “circle' symbols corresponds to the quadratic distor-
I=fj 2f1::::g] O(,,-) 0g; 27) tion (i.e.p; = 2) resulting from an uniform scalar quantization
e o— of the GG model. The rate-distortion curve plotted using the
=fj2f1::5J9) () > 0g (28) “star' symbol is obtained by performing a similar quantization
J=1f1: Jg n(I [ K) (29) of the wavelet coefcients of the image with the derived
8 2 R+, optimal quantizers. More precisely, we consider the cases
0 % m = md =2 mt = Mm@ =3 gndm™ = m@ =4,
()= U R () (@30)

_ n i _ Lhttp://sipi.usc.edu/database/
i=1 =1 and http://homepages.cae.wisc.edete533/images/



It can be noticed that the difference between the plots cortee interest of the statistical BGG model with respect to the
sponding to the theoretical GG source model and the imaG& one for very sparse representations.

wavelet coef cients is reduced when the number of segments

increases. In addition, one can observe from Fig. 4(d) th@nally, in order to measure the relative gain of the
the image rate-distortion curves behave similarly when 3 proposed method, we used the Bjontegaard metric [40].
4 approximating intervals are used. Based on this observatibine results are illustrated in Table | for low and high
(which was con rmed by tests performed on other images), hitrates corresponding respectively to the four bitrate points
can be concluded that there is no need to increase the numiti®l; 0:2; 0:3; 0:4g and f0:7;0:8;0:9; 1g bpp. Table | gives

of segments, and therefore, it is suf cient in practice to use 3 tre gain of our method compared with the improved version
4 intervals to approximate the entropy and distortion functionsf the Lagrangian based optimization technique [12]. Note
Finally, we propose to compare the proposed bit allocatidhat a bitrate saving with respect to the reference method
method with state-of-the-art methods based on Lagrangiemrresponds to negative values. It can be observed that the
optimization techniques [4]. More precisely, we consider theroposed approach outperforms in average the state-of-the-art
improved version of these methods, proposed recently in [LBethod by about -13 % and 0.7 dB in terms of entropy
where a spline interpolation method for rate-distortion curvébitrate saving) and PSNR. As it can be seen in Table I, the
is introduced. Fig. 5 shows the variations of the PSNR curvesding gain at low bitrate depends on the image, and it is
versus the entropy for different images. It can be observetbse to that obtained at high bitrate for some images like
that our method outperforms the state-of-the-art method tstraw”, “castle” and “cartoon”. However, for other images,
0.2-1.2 dB. While the deadzone parametgris set to 1 in it can also be observed that the coding gains are higher at
Fig. 5, Figs. 6(a) and 6(b) illustrate the performance of olnigh bitrates than at low bitrates. This may be due to the fact
method when the size of the deadzone is increased @). that the resulting approximation error has more impact at low
Thus, it can be noticed that the proposed method achietban at high bitrate.

a signi cant improvement compared with the state-of-the-aRor completeness sake, we have implemented our rate

method. allocation scheme with two arithmetic entropy coders: one
without context modeling (denoted by AC-1) and another one
B. BGG-based model exploiting the previously encoded symbol as context (denoted

Although the GG model is well adapted to a large clagsy AC-2). The results, compared with JPEG2000 coder, are
of natural images, we have observed that this model is nejported in Table Il. We remark that our approach, followed
the best suited for the class of images witht regions by an arithmetic coder, can achieve better performance than
separated by smooth contours. Examples of such imagd¥G2000 on some images (“straw” and “marseille”), while
include cartoon ones and depth maps. To conrm thi9PEG2000 does better on other images (“lena”, “goldhill”
we illustrate in Figs. 7(a) and 7(b) the histogram of thand “einst”). The main reason for this is the high number
diagonal detail wavelet subband of the “cartoon” image af contexts used by JPEG2000 for the arithmetic coder,
the rst resolution level as well as the distribution use@nd this at each bitplane, not only on the nal quantized
for modelling its coefcients. To nd the best model, wecoef cients. Moreover, due to the three passes per bitplane
propose to use a statistical goodness-of-t test such #&s the arithmetic coding, JPEG2000 performs actually a
the Kolmogorov-Smirnov (KS) test which is based on thgquantization with a fractional step size, which can be
comparison of the cumulative distribution functions (cdfilifferent in each code-block of siZ2 32 or 64 64, while
[39]. Figs. 7(c) and 7(d) display these functions for botthe current implementation of our method provides only one
models with their resulting KS measure (the smallest measuyeantization step per subband.
value corresponds to the best t). Hence, it can be notic&bncerning the complexity of the proposed method, we rst
that the cdf associated with the BGG model is very close tecall that the main steps behind our approach consist of
the cdf associated with the subband wavelet coef cients. Thismputing the R-D curves for each subband and solving the
illustrates the fact that the BGG model is more appropriat®nvex optimization problem. Thus, thanks to Propositions 1
than the GG one for modelling vergparserepresentations. and 2, the convex approximations of the entropy and distortion
Based on this model, we have also employed the propodedctions are extremely fast. However, the solution of the
bit allocation method for this class of images. Compared wittonvex optimization problem depends on the used number
the improved version of the Lagrangian based optimizatiaf intervals (since the maximum number of subdomains
technique [12], Figs. 8(a) and 8(b) show that the propos&d equal tom’ as mentioned at the end of Section V).
method achieves an improvement of about 0.3-1 dB. For instance, for an image of siZ#l2 512 and using a
Fig. 8, the deadzone parameteris set to 1. Figs. 9(a) and non-optimized Matlab implementation with an Intel Core 2
9(b) illustrate the performance of our method when the siZ2.93 GHz) computer, our optimization approach requires
of the deadzone is equal 8g (; = 2). It can be concluded an execution time of about 2 and 30 seconds when 2 and
that the proposed method outperforms the state-of-the-arintervals are respectively employed, while the Lagrangian
method in all these experiments. In addition, Fig. 10 show&D optimization approach [12] takes about 15 seconds.
the performance in terms of rate-distortion for the testa®/hen four or more intervals are used, the execution time
“cartoon” image when GG and BGG models are adopted. Thecomes more important. It is worth pointing out that
obtained results con rm our previous observation concernirtbe computation of the quantization parameters as well as



their resulting distortions can be carried out inparallel and the probability;; of ther;; reconstruction level, 1,
way for all the possible subdomains. Thus, much moig

ef cient implementations on multicore architectures shouldZ (,; 1)q

signi cantly reduce these execution times. €()d =
All these results, obtained with different images, conrm the (j+i 3)q
effectiveness of the considered probabilistic models and of

the proposed bit allocation method.

o1
Q= !y (j+i é)q

NI =

.3 .
Qi L (i 3)a)

In the following, in order to prove the desired result, it is
VI. CONCLUSION suf cient to show that the following approximation formula

of the discrete entropy of a quantized GG random variable
In this work, we have proposed to reformulate the biiolds:
allocation problem as a set of convex programming problems He(g)= M, (g)+ (34)
: N . e (G e (G
which can be dealt with in parallel. For this purpose, we have
rst proposed new piecewise convex approximations of the . 1 _
entropy and the distortion functions. Then, we have derived “Where 0 2CCH P G+ 35)g & (39
explicit expressions of the optimal quantization paramete ‘ ] .
which are valid in a given subdomain. This study has be('a(rﬁOte _that the case; 2 [1,2] was _addreised in [29] for a
; 2 - ) uantizer with a deadzone of sige (i.e. j = 1). Let us now
carried out by considering two probabilistic models: the welf
. .. .proceed to the general case.
known GG model and its more general BGG form, which i3, : . .
: ; incef§ is a decreasing function oR. , we have
particularly well-adapted for vergparsesources. Finally, we
have illustrated through expe_rlm_ental results the bene ts Whl(é"li >0 gf (;+i 1=2)q by G (;+i 3=2)g
can be drawn from the application of the proposed technique
in transform-based coding application. The proposed approd noticing that

can be further investigated in compression applications using Z( +i 1=2)q

other transforms, and the ne high rate and low rate approxi- pij log, pij + ( )log, € ( )d

mations for the R-D curves could also be useful for the mode (j+i 3=2)q

selection in video applications. Z(j+i 1=2)g

It is worth pointing out that the proposed scheme has been = et e € ( )(log, & () log,pij)d  (36)
J - Il

developed in the context of uniform scalar quantization which
is retained in many embedded coders such as SPIHT, EBC®# get the inequality:

and Tarp lter [41]. Furthermore, our approach can be used Z (+i 1=2)q

with different sizes of deadzone which is an interesting feature pij log, pij + ( )log,®( )d

in JPEG2000 Part 2 where the deadzone can be parameterized (j+i 3=2)q

to have a different width per subband. In our future work, Z(i+i 122 _

we plan to extend this new promising scheme to various ‘ §() log () log,f (;+i 1=2)g
embedded coding systems. In addition, it should be noticed (i+i =2

that our method can also be useful in the context of stereo log, g d: (37)

image compression where the rate allocation process between o )
the two views is not always well addressed in the literature©On the other hand, from the positivity of the Kullback-Leibler
divergence [42],

APPENDIXA
APPROXIMATION OF THE ENTROPY (j+i 3=2)q P

Z(y+i 12q

|ng 1ej( )=pi;j d 0
1=
We recall that the entropy of a quantized BGG randowfter developing (38) and using (37), we obtain for all 1

variable distributed according to (1) is given by [29]: Z +i 1=2)g

0 i l0g, P + f€()log,€()d
@i D= ( Pogs )+ He(@) (3 P logepy + o, 100
Z(j+i 1=2)g
X +log, g _ f§()d
where H1ej ()= pojlog,po; 2 pij logpij  (32) i+l 3=2)q
=1 log, §((; +i 3=2)q) log,f§ (j+i 1=2)q)
is the entropy of a quantized GG random variable with Z(+i 1=2)q
probability density functionf§. The probability of the zero €()d
level is (j+i 3=2)q
qu(J%) 1 =!qu‘(j+i 1=2)1 (j+i 3=2)1
j =2 () =Qi-. !'i(; =)ig’ (j+i 1=2)q
Po;j o 7() Qi=; !'j(; 2) 9 ] lﬂ?()d: (39)

(33) ( j+i 3=2)C|j



Now, two cases shall be considered:

If ; <1, then, foreveryi 1,
(j+1 1=2)1 (j+i 3=2)1 (;+i 3=2)1 1
where the upper bound follows from the fact that! i is
a concave function when; < 1. In this case, we have

Lig! (;+i 1=2)1
J J
(}«m 1=2)g

(i+i 3=2)q

(j+i 3=2)/

5()d

;1L (i 1=

1
itig g(i+i 3) q f()d;
(j+i 3=2)q
Z(+i 1=2)q
and0 pij log, pij + € ()log, & ()d
(j+i 3=2)q
Z(i+i 1224
+log,q f()d
él+i 3=2)q;
(j+i 1=2)q o
itig ( g)' "f()d:
(j+i 3=2)q
It can be deduced that
X1 Z 4
0 pij log, pij + € ( )log, G ( )d
i=2 (it 3
+1
+log, g f()d 11 (40)
(j+ Dy
Z+1
where 1;= j!iqg ( q)' '€()d:
(i+ g
Since (; +1=2)q , g @2; 1)=(@2;+1),
it can be concluded that
Z
2; 1 ;171
i lig 5 PR ()d
2j+1 (i+$a
= j!Jl:jq 2; 1.4 i+ gl (41)
T 2(1=y) 2;+1 '
If ; 2[1;2] then, for everyi 1,
(j+i 1=2)1 (j+i 3=2)i=(;+i 1)
1 , 1 ,
o+ e )
i(p+io i ho@2
Consequently,
, Z(i+i bg
Lig' (j+i =221 (j+i 3=2)7 7()d
(j+i %)QJ
) 3 g i 1&g+ H)g
. . = Ll
i'ig g+ 2)+ 5 2 ()d

Z(;+i 12q
and0 pij log, pij + €( )log, & ()d
(j+i 3=2)q
Z (+i 1=2)g
+log,q B()d
éi*" 3=2)q
(i+i 1=2)q q.
i'ig (+5) KfO)d:
(j+i 3=2)q
Thus,
X1 Z+1
0 pij log, pij + € ( )log, & ( )d
=2 (x5
+1
+log, g () 1, (43)
(i+3)q
Z.,
where 1= !ig (+q§)" 'fR()d:
(i+3)g
Since (;+1=2)q, +1 (2;+2) =2;+1),it
can be concluded that
Z
2;+2 17+t
| il J . ()d
2 itiG 2, +1 (v ba ()
1=

_a'p g 2542 0t
T 2(1=y) 2;+1
By combining (40) and (41) (resp. (43) and (44)) when< 1
(resp. j 2 [1;2]), we get the following result:

e it iq’.

(44)

X1 Z
0 pij log, pij + € ( )log, G ( )d

i=2 (i*3)a

+1

+log, g G ()d
(i+3)
1=
ity g

21 e .;.e!i(i"'%)quj 45

where C( j; j) is given by (11). Furthermore, it can be

checked [29] that we have:
+1

1 . )
2 1e d :1 _ | P J ] 46
(i+Ha () Q=) tiitg g (49)
Z+l
and 2 f§( )log, f§( )d
(i+3)q
i 1,
= h) 1 Qe ty g5 g
=50 41 j
HOGrRa o Gen gl gy

1=9)

Therefore, the approximation formula of the entropy of the
guantized GG random variable, given by (34)-(35), follows
from (32), (45)-(47). Finally, the approximation formula for
the discrete entropy of the quantized BGG random variable
can be easily deduced from (31).

Concerning the high bitrate approximation of the entropy;, it
can be rstly noticed that = O(q ). We further know [43,
p.891] that for alla > 0,

Qa( )= 0O(?); as ! O (48)
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Therefore, wherg, | 0, we have and, for everyi 2,
Y4 i3
= (1. : (ji+i 3)g
He(g)=h (!j) log G + O(g) (49) qf (+i g)q ey @)
Moreover, according to (33) and (48), we get Ci+i 3o

(Pog: )= logy ;| (A plogyd ) We deduce from (53), (54), (55), (56) and (51) that

1= j Pi

b i 1 . ' 1
) RN G 1= L 1 0 +)iqgl Lfe 4T
+ 11(0;1)(1)2(17:1)@92(!]' 'g)+ O(q) 2(p +1) Qi= jZ-J(J 2) G p+1 ) (i Z)Ci
=H, + O(q log, q) (50) XSGt Da .
7T DA S PR
wherel .y is the characteristic function of the interv@\, 1). =2 (i+i g
Consequently, a high resolution approximation of the entropy jqu | 1,
of a quantized BGG random variable is given by (12). 20 +1) 1 Qu= H(5+ é) 'q
) qu +1 1
APPENDIXB + 13 (;+2)g : (B7)
1 1 Ui T 54
APPROXIMATION OF THE DISTORTION P

If X;s is distributed according to (1), the distortion evalud "€"efore, the approximation error satis es

ated through the; -th order moment of the quantization error g+l

atec | 1
is given by [29]: Zj;_q+11ej(j+§)q &(%; ;) B, ;)
1
Z(; ba ‘ gh ! 1
e@in=2, _  "E()d 2,28 (v 69
1 Z (j+i L)qv pJ
+ X oA i ryj"@()d :  Whichyields the desired approximation of the distortion.
o1 (i+i Bg ' Let us now focus on the expression of the distortion at high

bitrate. Wheng; ! 0, according to (48), the rst term in the

By noticing that left hand side of (15) is such that

z 1 =
(i 329 1 PiE . = 1, +
P (e = 22@3“ ) Quen-; il 3 'q" =o@™): (59
0 —
1, Moreover, using (53) and (54), we obtain
Qp+n=; (5 3)'q" (51)
the approximation error can be expressed as jqu 1 1 Z(i+ b
— =5 (i+3)q joory & ()d
Xt Z(+i Pa _ 12 (i b .
a(q; i) B(g;)=2 G ] rij iP5 ( )d i 1
- i) oz
iq" co pe1n (24 (€0
2(p +1) 1 Qe=, 5 Gra 0 (52 which shzows that
. . (i*+ 3 )
First, for everyi 1, we have i P e()d = O(qpJ 1y, 61)
1 Z(5+i ba (i D
& (;+i é)q i orijPd In addition, we have
( |+i %)qi
Z Lo AP
Ci*i g ) i 1,
oo iPf()d 20, + 1) 1 Q= NG+ 3) g
(j+i %)QJ qu
.3 G+l Da . =3 _1+0(q): (62
BG*H o o wPd 69 2 +p OO 2
ith 2)q
Since (16) shows that (g, ;) B (g, j) = O(qpj +1), it
Z (4 g ,qu +1 can be deduced from (59), (61) and (62) that (17) holds.
with j rgjPd = - : (54)
Ci+i o b+l APPENDIXC
In addition, we have the following inequalities: SOLUTION OF THE BIT ALLOCATION PROBLEM
Z( +is Lyg 1 _ For s_implicity, _for everyj 2f1;:::;Jg, we Will drop the
€ ( )d g% (j + i 2)g (55) indexk inthe variables!, ¢, ¥, ¥, and ¥, which are used
(i+i g 2 in (13) and (18).
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As g (lj) is a decrea5|nq3functlon of for everyj 2 of Section IV-B. Thusf can be rewritten as

fl """ Jg, it is clear that, if J_, T ,(Ib'+1)>Rmax , %
J N ET 1" + ¢) > R max, then Problem(P,) admits 812R’; f(l)= i(j) (68)
no solution sinceE\ ([0 1241 [1% ;1% 1) is empty. j=1
Another particular case is when where, for everyj 2 1;:::;Jg,
¥ _ T T _
T@l +6) Rue 3 °NZR I GREE T e 1) 69
i=1 Using the separability of the convex conjugatef ofwe get
Since, for everyy 2f1;:::;Jg, d; is an increasing function, X
the solution to(Py) is obwously?b = (Ibl;::"IbJ) =(ly;:y) 2 R? f ()= i () (70)
In the following, we will discard these two trivial cases by j=1
assuming that For any givenj 2f 1;:::;Jg andl; 2 R, let us de ne
X . - .
J(aJ J+Cj)>Rmax 8|j2R, J(IJ)_lilj jj(j2”+ j). (71)
j=1 We can write
X
and @™ +6) R (64) ()= sup () (72)
L |PJ’ I |‘bJ' 1
j=1 i U
Under these assumptions, sin@*!;:::;12*1) 2 ¢\ Furthermore,
by . by +1 by . by +1 N
(k! 1551521, the mtersectlon set is nonempty8| 2R -°(I-)= I @) j2j|j _ IJ— i Nj il
and the problerr(Pb) has a solutiorf,. In order to nd
this solution, we will apply the Fenchel-Rockafellar d“a“tyl'hus i 0, then 0(| )< 0and ;(I;) = J(|bj)
theorem [44]. turn, if | '> 0, then it can be checked thaf(l ) < 0if and
Theorem 1:Let f and g be two lower-semicontinuous only if
convex functions fromR’ to] 1 ;+1 ]. Then, provided 1 nl;
thatdom(f )\ dom(g) is nonempty, we have lj > T|092 N : (73)
|i2an M+ g)= rlntzaéj( g( 1) f () (65) Three cases have then to be considered:
@) If Ijbj L log, ,r,'q"' - which is equivalent to
wheref (resp.g ) is the convex conjugate df (resp.g).? | ! SR b o
In our case, we takg = ¢ where ¢ is the indicator functioh 270 ', 7)) <0
of the closed convex sé&& de ned by (19). Takingl 2 C is and
equivalent to také 2 R’ such that by b Y
! )= @=L G2 ) 74)
> X] n] 1 .. .. . nl. ) |bi +1
e’ | q Rmax; with e = ﬁ(nlal;:::;nj ay) (i) Similarly, if ,-N; j 217 then, for everyl; 2
i= b; b +
- 66 I P0)> 0and
Thus, the conjugate df satis es by +1 by +1 bj +1
i) =) =51 P20+ ) (75)
81 2RY; g(l)=supl”l =sup( I"e+1”1,); (67) b o b 1
l2c e (iiiy Otherwise, if21 < —gi— < 21! then,
wherel, belongs tovectf eg® , the orthogonal subspace ef 1 nl.
and 2 R. From (66), we see thatlf, 6 0,g (I )=+ 1. j(j)=j —log, NJ
Furthermore, ifit = e with > 0, the supremum over of | i i I i
I> e is in nite. Finally, we obtain for alll 2 R’ — nlj .
_ g ﬂq Rmax if | = e with 0 Now, by recalling thatdom(g) = f e; Og, the dual
g()= > =t n problem can be reexpressed as
41 else
max( g (1) f )= mx (g(l) fQ)
On the other hand, we take, for evety2 R, f(l) = = max ) 77)
D)+ p,(l), wherePy is the box de ned at the beginning 0
2Recall thatdom(f) = fl 2 RYjf(l) < +1g andf is dened as: where
81 2RI, f (1)=suppp (171 T(1). X X n;
3The indicator function ofC is dened as:8 x 2 R?, c(x) =0 if 8 2R:; ( )= 4 q R max J L
x 2 C; +1 otherwise. n

j=1 j=1



According to (74)-(76) and the notation introduced in (22) and4]
(23), is the function de ned in (30). The derivative of this
function is given by

(5]

X n X
8 2R.; )=  2Lg Rma ') (78)
j=2 " j=1
(6]
where ' ¥ corresponds to the derivative of the function

de ned in Proposition 3. Thus, it can be checked that, for
every 2 R,,wehave () 0. The inequality being strict 71

if and only if miny J< < omaxg jog g, is strictly
concave on this interval. In addition, if ming j 3 s
then [8]
0 XJ nj b
( ): F(aj IjJ + C]) Rmax > 0 (79) [9]
j=1
and, if  max; ; 5 j,then [10]
XJ n; b +1
V= @7 +¢) Rux 0 (80) B
j=1

where the assumptions given by (64) have been used. 112

As Cis strictly decreasing ofminy j ; _j;maxy j 5 ],
we deduce that there exists a unique vafum this interval
such that 4©) = 0. Thus,® corresponds to the maximizer
of overR.. From the de nitions of the sets in (27), (28)[14]
and (29), we get:

(13]

821, € (81) [19]
8§23 <& (82)
, - [16]
8] 2 K; e (83)

Finally, it can be deduced from (78) thaf(€) = 0 implies [17]

that

[18]
X e X b X b +1
Njlog, — +  Nj I +  Nj gl
j23 J i21 i2K [19]
X
= NiG nNRmax (84)
i=1

(20]

which yields the expression & in (25).
[21]

given by the critical point off . This means that, for every

j 2f1,:::;39, § 1 is the maximizer of j over [IJ-bi ;Ijbj 1 22
= & a =n. Therefore, we get the optimal valuesm]
£ given by (24).
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