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Abstract. Consider an irrational rotation of the unit circle and a real continuous function.
A point is declared “maximizing” if the growth of the ergodic sums at this point is
maximal up to an additive constant. In case of two-sided ergodic sums the existence
of a maximizing point for a continuous function implies that it is the coboundary of a
continuous function. In contrast, we build for the “usual” one-sided ergodic sums examples
in Hölder or smooth classes indicating that all kinds of behaviour of the function with
respect to the dynamical system are possible. We also show that generic continuous
functions are without maximizing points, not only for rotations, but for the transformation
2x mod 1 as well. For this latter transformation it is known that any Hölder continuous
function has a maximizing point.

1. Introduction
Let (X,T ) be a topological dynamical system, where X is a compact metric space and
T : X → X a continuous and surjective transformation.

Fix a continuous function f : X → R and write Tf for f ◦ T . Introduce the ergodic
sums

fn(x) =
n−1∑
k=0

T kf(x), n ≥ 1.
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2 J. Brémont and Z. Buczolich

The optimal pointwise growth of (fn(x)) is an important question arising naturally. We
mention for example A. Cohen and J.-P. Conze [11] in a wavelet context, R. Mané [20]
on Lagrangian systems, or optimization problems in computer science and algorithms
when considering “discrete events systems”, see D. A. Carlson, A. B. Haurie and A.
Leizarowitz [8] or J. C. Lagarias and Y. Wang [17]. From these early works has emerged
a field of research now called Ergodic Optimization, see T. Bousch [3], J.-P. Conze and Y.
Guivarc’h [10] and the survey by O. Jenkinson [14]. The central question is the maximal
mean growth of (fn(x))n≥1, which is related to an optimization problem about invariant
measures.

We focus in this article on a finer type of optimal growth and consider points x ∈ X
for which the growth of the sums (fn(x))n≥1 is maximal up to an additive constant.

Definition 1. Let f : X → R be continuous. A point x0 ∈ X is “maximizing” for f if
there exists a constant C ≥ 0 such that:

∀x ∈ X,∀n ≥ 1, fn(x) ≤ fn(x0) + C. (1)

In this case, the shortfall of maximization at x0 is

SM(f, x0) = sup
n≥1, x∈T

fn(x)− fn(x0). (2)

We say that x0 is “exactly maximizing” if one can take C = 0 in (1) and “weakly
maximizing” if C is replaced by C(x). If µ is a fixed Borel probability measure, we also
say that x0 is “µ-weakly maximizing” if (1) is true for µ-a.e x with a constant C(x).

The existence of maximizing points is naturally the first question to be adressed. If
f = c+ g− Tg with g bounded and c constant then clearly every point is maximizing for
f . It is natural to ask whether this is the only situation.

The answer is negative for dynamical systems where the lemma of Mané-Conze-
Guivarc’h is valid. In this case any Hölder continuous f admits a maximizing point.
Indeed, one can decompose f = c + g − Tg + r, with g and r also Hölder continuous
and verifying the properties that r ≤ 0 and the level set r−1{0} carries a T -invariant set.
A point in this set is maximizing for f (in general the maximizing points for f are not
all contained in r−1{0}). Systems where this lemma is true (see Bousch [4] for a recent
result) satisfy some form of expansiveness and the classical thermodynamical formalism
can be developed. A standard example is Tx = 2x mod (1) on T.

For dynamical systems where such a decomposition result is not available, not much
is known on the question of maximizing points. The purpose of the present article is to
investigate this problem for an irrational rotation Tx = x+ α mod (1) on the unit circle
X = T.

We denote by Cm0(T) the set of those functions in C(T) which have zero mean. In the
same way we consider the spaces Crm0(T), r ≥ 1, and the Hölder spaces Cθm0(T), 0 < θ < 1.

In this context, we mention first an interesting rigidity result for two-sided ergodic
sums. The following lemma is taken from a manuscript of J-P. Conze, see also [9].
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Maximizing points and coboundaries for rotations 3

Lemma 2. Let f ∈ Cm0(T) and T = Tα. If for some x0 ∈ T

∀n ≥ 1,∀x ∈ T,
n−1∑
k=−n

T kf(x) ≤
n−1∑
k=−n

T kf(x0) + C,

then there exists g ∈ C(T) such that f = g − Tg.

Proof. Taking x = T kx0 with k ≥ 0, we get by cancellation of terms fk(Tnx0) ≤
fk(T−nx0) + C. Using density of (Tnx0) and continuity of f , for all k ≥ 0 and y ∈ T,
fk(x0 + y) ≤ fk(x0 − y) + C. By symmetry

∀k ≥ 0,∀y ∈ T, |fk(x0 + y)− fk(x0 − y)| ≤ C.

Using the cocycle property of (fn) (see (3)) and again the continuity, |fn(x+ y)− fn(x−
y)| ≤ 2C, for all n ≥ 0 and x, y ∈ T. This can be rewritten as

∀n ≥ 0,∀x, y ∈ T, |fn(x)− fn(y)| ≤ 2C.

Since fn has zero mean, fn(yn) = 0 for some yn and hence |fn(x)| ≤ 2C. As a result

f = g − Tg with continuous g by Gottschalk and Hedlund’s Theorem (cf [13], Theorem
14.11). 2

One deduces that continuous functions with a maximizing point x0 and presenting a
symmetry with respect to x0 show similar behaviour.

Corollary 3. Let f ∈ Cm0(T) have a maximizing point x0. If f(x0 + x) = f(x0 − x)
for all x ∈ T, then f = g − Tg for some g ∈ C(T).

Proof. For x ∈ T and n ≥ 1

n−1∑
k=−n

T kf(x) = fn(x) + fn(2x0 − x) + Tnf(2x0 − x)− f(2x0 − x)

≤ 2fn(x0) + 2C + 2‖f‖∞.

Since
∑n−1
k=−n T

kf(x0) = 2fn(x0)+Tnf(x0)−f(x0) ≥ 2fn(x0)−2‖f‖∞, the result follows
from Lemma 2. 2

The assumption of symmetry is of course very strong. We will show that the situation
can be very different. Hölder or smooth functions may not have a maximizing point and
the ones with a maximizing point are not reduced to those of the form f = c + g − Tg,
with g continuous and c constant. In fact we prove something stronger in the classes
∩0<θ<1C

θ
m0(T) and Crm0(T), r ≥ 1, supposing in this latter case that α has Diophantine

type larger than r. The following mutually excluding cases are all possible:

• There exists f with zero mean, having a maximizing point and such that f defines
an ergodic skew-product. In particular, no measurable g verifies f = g − Tg, a.e.

• There exists f = g − Tg with a maximizing point, where moreover g ∈
∩1<p<∞L

p(T)\L∞(T) (and thus g is not continuous).
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4 J. Brémont and Z. Buczolich

• There are functions without any maximizing point.

This opens perspectives of research, because the condition of having a maximizing point
seems compatible with any behaviour of the function with respect to the dynamical system.
It would be interesting in a future work to give ways of characterizing maximizing points
or sufficient conditions for their existence.

We next consider generic results. In the class C(T), we show that a generic function has
no weakly maximizing point. Adapting our method, we prove a similar result for the
dynamical system Tx = 2x mod (1) on T.

We conclude the article with some complementary results on the set of maximizing points
and finally list several open questions.

2. Notation and conventions
• Let N = {1, 2, ....}. The unit circle T is identified with R/Z. Lebesgue measure on

T is denoted by λT (or simply λ) and on R by λR.

• For f : T→ R we introduce the cocycle notation

fn(x) =


∑n−1
k=0 T

kf(x), n ≥ 1,
0, n = 0,

−
∑−1
k=n T

kf(x), n ≤ −1.

We have
fn+m(x) = fn(x) + fm(Tnx) for any n,m ∈ Z. (3)

• We say that f is a coboundary if f = g− Tg for some measurable g and that f is a
C-coboundary if moreover g ∈ C, for some class C.

• By our convention any sum
∑n
m with n < m is equal to 0.

• For x ∈ R, let ‖x‖ denote the distance from x to the nearest integer.

• Suppose we have an irrational number α ∈ [0, 1), then its continued fraction
development is

α = [a1, a2, ...] =
1

a1 + 1
a2+ 1

...

, with an ∈ N.

The convergents of α are given by the rational numbers (pn/qn) with the
terminating continued fraction development pn/qn = [a1, a2, ..., an]. We will use that
1/(2qn+1) ≤ ‖qnα‖ ≤ 1/qn+1, ‖kα‖ ≥ ‖qnα‖, for 1 ≤ k < qn+1 and qn ≥ 2(n−1)/2

(see for example [15]).
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Maximizing points and coboundaries for rotations 5

• The Diophantine type of α is

η(α) = sup{s > 0, lim inf qs‖qα‖ = 0}.

Recall that η(α) ≥ 1 for any irrational α. It is a standard result that almost-every α
has a Diophantine type equal to 1. This is the case for example for rotation angles
with bounded partial quotients.

3. Main results
Recall that if f = g − Tg for a measurable g then by ergodicity g is unique up to an
additive constant and a null set.

For Hölder continuous functions, we will prove the following result :

Theorem 4. Let Tx = x + α mod (1) on T, α 6∈ Q. Any of the following mutually
excluding conditions is realized by at least one f ∈ ∩0<θ<1C

θ
m0(T).

i) The point 0 is exactly maximizing for f , that is,

∀x ∈ T, ∀n ≥ 0, fn(x) ≤ fn(0) (4)

and there exists g ∈ ∩1<p<∞L
p(T)\L∞(T) such that f = g − Tg, a.e. In particular, g is

not continuous.

ii) The point 0 is exactly maximizing for f

∀x ∈ T, ∀n ≥ 0, fn(x) ≤ fn(0)

and the skew-product (T × R, Tf , λT ⊗ λR) defined by f is ergodic, where Tf (x, y) =
(Tx, y + f(x)). In particular f is not a measurable coboundary.

iii) Let ε(n)↘ 0 as n↗ +∞. For any x ∈ T for a.e y ∈ T

sup
n∈N

{
n−ε(n)

(
fn(y)− fn(x)

)}
= +∞. (5)

In particular f does not have any λ-weakly maximizing point.

Remark 5. The first case of the theorem is in some sense the first non-trivial situation
for a coboundary (the trivial one being here when g ∈ L∞(T), but then the identically zero
function is a good example verifying (4)). In the second case the behaviour of the ergodic
sums is much wilder. By Theorem 14.13 of [13] one may notice that the function f in i)
defines a topologically transitive skew product.
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6 J. Brémont and Z. Buczolich

Remark 6. In Theorem 4 ii), f cannot be absolutely continuous with f ′ ∈ L2 (for
example f Lipschitz) without imposing Diophantine conditions on α, since if f ′ ∈ L2

it is classical that f = g − Tg with g ∈ L2 when α has bounded partial quotients.
Indeed, defining g by its Fourier coefficients (ĝ(n)), we have ĝ(n) = f̂(n)/(1 − e2iπnα)
for n 6= 0. Thus |ĝ(n)| ≤ C|f̂ ′(n)|/(|n|‖nα‖). The claim follows from (f̂ ′(n)) ∈ `2 and
|n|‖nα‖ ≥ c > 0.

Let us mention in passing a strong obstruction for C1-regularity.

Lemma 7. A function f ∈ C1(T) has no exactly maximizing point unless it is constant.

Proof. We prove a slightly stronger version : if there are x0 ∈ T and δ0 > 0 such that
fn(x) ≤ fn(x0), for every x ∈ (x0 − δ0, x0 + δ0) and n ≥ 1, then f is constant.

Proceeding towards a contradiction, suppose that there is an n ≥ 1 such that f ′(Tnx0) 6= 0
and take the first n with this property. Since the other case is very similar, without limiting
generality, we suppose that f ′(Tnx0) > 0. We can then choose δ ∈ (0, δ0) such that for
x0 < x < x0 + δ

fn+1(x) > fn+1(x0) + (x− x0)f ′(Tnx0)/2 > fn+1(x0),

contradicting fn+1(x) ≤ fn+1(x0). As a result, f ′(Tnx0) = 0 for all n ≥ 1. As (Tnx0)n≥0

is dense in T and f ′ is continuous, f ′ is identically 0. 2

Remark 8. When f ∈ ∩0<θ<1C
θ(T) its Fourier coefficients satisfy f̂(n) = O(|n|−θ), for

every 0 < θ < 1. Proceeding for example as in corollary 3.2 of J. Aaronson, M. Lemańczyk,
C. Mauduit and H. Nakada [1], one gets ‖fqn

‖L2(T) = O(qεn), for any ε > 0. If α has
Diophantine type 1, one obtains (cf. for instance [9], section 2.1) ‖fn‖L2(T) = O(nε), for
every ε > 0. One can compare it to the rate in Theorem 4 iii).

Remark 9. About iii), in the present context of an irrational rotation on T, the notion of
weakly maximizing point reduces to that of maximizing point. Indeed, if some x0 verifies

∀y ∈ T, SM(f, x0, y) < +∞, with SM(f, x0, y) = sup
n≥1

fn(y)− fn(x0),

then for all M ≥ 0, AM := {y ∈ T | SM(f, x0, y) ≤ M} is closed and T = ∪M∈NAM .
By Baire’s theorem, some AM0 has non-empty interior. Consequently, the entrance time
τ(y) of y in AM0 is uniformly bounded in y, by some constant T0. Then clearly

∀y ∈ T, SM(f, x0, y) ≤M0 + 2‖f‖∞T0.

We next consider smooth examples. We write (an) for the partial quotients of α and
(pn/qn) for its sequence of convergents. We prove an analogous theorem for smooth
functions.

Theorem 10. If r ∈ N and supm≥1 am+1q
−r+1
m = +∞, then any of the following

mutually excluding conditions is satisfied by at least one f ∈ Crm0(T).
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Maximizing points and coboundaries for rotations 7

i) The point 0 is a maximizing point for f and f has the form f = g − Tg, with
g ∈ ∩1<p<∞L

p(T)\L∞(T).

ii) The point 0 is a maximizing point for f and the skew-product (T × R, Tf , λT ⊗ λR)
defined by f is ergodic.

iii) The function f has no maximizing point.

If supm≥1 log am+1/ log qm = +∞, then f can be chosen in C∞m0(T).

Remark 11. In the Cr-part of the theorem the Diophantine condition is verified as soon
as η(α) > r. This is close to optimal, since when f ∈ Crm0(T) and η(α) < r, then
f = g − Tg, for some g ∈ C(T), cf V. Arnold [2].

Remark 12. We discuss the case of real-analytic examples in the final section.

In section 6 generic functions in C(T) are considered. We prove the following theorem:

Theorem 13. Let Tx = x + α mod (1) on T, with α 6∈ Q. Then a generic function in
C(T) has no weakly maximizing point.

Our techniques also allow to treat the case of a dynamical system with a very different
nature. We show:

Theorem 14. Let Tx = 2x mod (1) on T. Then a generic function in C(T) has no
maximizing point.

4. Hölder continuous examples
We first consider the proof of Theorem 4. The following key lemma furnishes Lipschitz
coboundaries f = g−Tg with ‖f‖∞ small compared to ‖g‖∞ and such that 0 is an exactly
maximizing point for f .

Lemma 15. Suppose B > 0 and N ∈ N are given. Let I = [−∆,∆], where ∆ > 0 is such
that the 2I + kα, −N ≤ k < N , are disjoint on T. Define

F =
⋃

−N≤k<N

I + kα. (6)

Introduce the peak function f̄(x) = B · (1− |x|/∆)+ and set

f =
N−1∑
k=0

T−kf̄ −
N∑
k=1

T kf̄ . (7)

Notice that f = h− Th, where h is Lipschitz continuous and given by

h = Nf̄ +
N−1∑
l=1

(N − l)(T−lf̄ + T lf̄).

Then f has the following properties :
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8 J. Brémont and Z. Buczolich

|f(x)| ≤ B, 0 ≤ h(x) ≤ NB, ∀x ∈ T, (8)

if n ∈ N and x ∈ T, |fn(x)| ≤ NB, (9)

|f(x)− f(y)| ≤ (B/∆)|x− y|, ∀x, y ∈ T, (10)

if 0 ≤ n ≤ N, then fn(0) = nB, (11)

if n ∈ N, x 6∈ F, and Tnx 6∈ F , then fn(x) = 0, (12)

if n ∈ N and x 6∈ F then −NB ≤ fn(x) ≤ 0 ≤ fn(0), (13)

if n ∈ N and x ∈ T then fn(x) ≤ fn(0). (14)

Proof. Since fn(x) = h(x)−Tnh(x), 0 ≤ h(x) ≤ NB = h(0) and h(y) = 0 when y 6∈ F ,
the properties except (14) follow directly from the definition of f̄ and f .

The last one, (14), is more delicate. It is a consequence of

∀x, y ∈ T, h(0)− h(x) ≥ h(y)− h(x+ y). (15)

To show this, fix x and take y realizing the maximum of h(y) − h(y + x). As y 7−→
h(y) − h(y + x) is piecewise linear, we assume that y or y + x is an angular point for h.
Suppose also that x, y are interior to ∪|m|<NI +mα, otherwise (15) is evident. Let then
x ∈ I + kα and y ∈ I + lα, with |k|, |l| < N . Since h(0) = NB and h(x) ≤ B(N − |k|),
h(y) ≤ B(N − |l|), we suppose that |k|+ |l| < N . We distinguish two cases.

1) As h(y) > 0, if y is an angular point, then y = lα. In this case, h(0) − h(y) = |l|B,
whereas h(x)− h(x+ y) = fl(x) ≤ |l|B, so we have (15).

2) Suppose now that y+ x is an angular point for h, but y is not. If y+ x corresponds to
a peak, one can move y a little so that h(y)−h(x+ y) is strictly larger. Therefore y+x is
at the basis of a peak, whose top is at (k+ l)α, since the 2I +mα, |m| < N , are disjoint.
We have x = kα+ r, y = lα+ s, with |r| < ∆, |s| < ∆ and r+ s = ±∆ in order to satisfy
the condition on x+ y. In particular, |r|+ |s| = ∆. We get

h(x) + h(y) = B(N − |k|)(1− |r|
∆

) +B(N − |l|)(1− |s|
∆

)

≤ NB −B|k|(1− |r|
∆

)−B|l|(1− |s|
∆

) ≤ h(0).

This completes the proof of the lemma. 2

Proof of Theorem 4. We use the denominators (qn)n≥1 of the convergents of α. Recall
that for all 0 < k < qn, we have ‖kα‖ > 1/(2qn).

Case i). For m ≥ 1, set Nm = bqm/4c and Bm = m/qm. Let f1 = f2 = f3 = f4 = 0.
When m ≥ 5, we have Nm ≥ 1 and in Lemma 15 with (Bm, Nm), we choose ∆m =
e−
√
m/(8qm). We get f̄m and next fm with support Fm.
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Maximizing points and coboundaries for rotations 9

Put f =
∑∞
m=1 f

m. Since |fm| ≤ Bm, via (8) and
∑
Bm < ∞, f is continuous. By

(7) and (10), fm has the Lipschitz constant Bm/∆m = 8me
√
m. Fix 0 ≤ θ < 1. Since qm

grows at least exponentially fast, for m large enough
Bm
∆m

(τ∆m) = 8me
√
m(τ∆m) ≤ 8me

√
m(∆m)1−θ(τ∆m)θ ≤ 1

m2
(τ∆m)θ (16)

for all 0 ≤ τ ≤ 1.
Hence,

|fm(x)− fm(y)| ≤ 1
m2
|x− y|θ for |x− y| = τ∆m ≤ ∆m. (17)

On the other hand, if |x− y| > ∆m then for sufficiently large m

|fm(x)− fm(y)| ≤ 2Bm ≤
1
m2

∆θ
m ≤

1
m2
|x− y|θ. (18)

Therefore, for large m, |fm(x) − fm(y)| ≤ (1/m2)|x − y|θ, for every x, y ∈ T. Adding

these inequalities we obtain f ∈ Cθ(T). Finally, we have f ∈ ∩0<θ<1C
θ(T).

Condition (4) is true for every fm, by (14), and so is verified by f .

We next show that f = g − Tg, a.e., with g ∈ ∩1<p<∞L
p(T). Via for example [7] or

[19], it is enough to establish that for all 1 < p <∞

sup
n≥0
‖fn‖p <∞. (19)

Recall that by (6) and (7), λ(Fm) = 2∆mNm. Since
∑
m≥1 ∆mNm < ∞, we define for

N ≥ 1
AN = ∩m>N (Fm)c and RN =

∑
m>N

∆mNm <
∑
m>N

e−
√
m. (20)

Note that
∑

1≤m≤N NmBm ≤
∑

1≤m≤N m/4 ≤ N2. Setting ε = 4RN , we have
λ(AN ) ≥ 1− ε/2. If n ≥ 0, we obtain λ(AN ∩ T−nAN ) ≥ 1− ε.

Suppose x ∈ AN ∩ T−nAN . Since x 6∈ Fm and Tnx 6∈ Fm for m > N we have for these
m’s, fmn (x) = 0, by (12). Therefore, for such an x

fn(x) =
∑
m≥1

fmn (x) =
N∑
m=1

fmn (x).

Hence for all n ≥ 0, λ
{
x ∈ T : |fn(x)| ≤

∑
1≤m≤N NmBm

}
≥ 1 − ε and thus,

λ
{
x ∈ T : |fn(x)| ≥ N2

}
≤ 4RN . Using this inequality, we can write:

∫
|fn|pdλ = p

∫ +∞

0

λ{|fn| > t}tp−1dt

≤ p

1 +
∑
N≥1

∫ (N+1)2

N2
λ{|fn| > t}tp−1dt


≤ p

1 + 4
∑
N≥1

RN (1 + 2N)(N + 1)2(p−1)

 <∞,
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10 J. Brémont and Z. Buczolich

due to (20). This gives (19) and thus f = g − Tg, a.e, with g ∈ ∩1<p<∞L
p(T).

Next we prove that g 6∈ L∞(T). Proceeding towards a contradiction, suppose that
g ∈ L∞(T). Then g is uniformly bounded in a T invariant set of full measure. Therefore,
for some x the sequence fn(x) is uniformly bounded for all integers n. The theorem of
Gottschalk and Hedlund (Theorem 14.11 of [13]) implies that g = g̃, a.e, where g̃ ∈ C(T).
Thus f = g̃ − T g̃ everywhere on T and ‖fn‖∞ ≤ 2‖g̃‖, for all n ≥ 0. We establish a
contradiction by showing

sup
n∈N
‖fn‖∞ =∞. (21)

Using (13), for all m ≥ 1, n ≥ 0, we have (fm)n(0) ≥ 0. Also by (11), (fn)Nn
(0) =

NnBn ≥ n/8 for large n. Then

fNn
(0) =

∑
m≥1

(fm)Nn
(0) ≥ (fn)Nn

(0) ≥ n/8.

As n is arbitrary large, this proves (21) and completes the proof of Case i).

Case ii). We first detail a classical strategy for proving the ergodicity with respect to
Lebesgue measure λT ⊗ λR on T×R of a skew-product Tf : T×R→ T×R associated to
a real measurable f .

For such a dynamical system (where the invariant measure is infinite) the problem of
ergodicity can be reformulated using the concept of essential value, see K. Schmidt [22]
or J. Feldman and C. Moore [12]. In our setup :

Definition 16. Let f : T → R be measurable. An element c ∈ R ∪ {∞} is an essential
value for f , if for any ε > 0 and any Borel set A ⊂ T with λT(A) > 0, there is an n ∈ Z
so that λT(A ∩ T−nA ∩ {|fn − c| < ε}) > 0.

We group in the next proposition standard results about essential values, which can be
found for instance in [22].

Proposition 17. Denote by E(f) the set of finite essential values of f .

i) The set E(f) is a closed subgroup of R.

ii) The skew-product Tf on T× R is ergodic for λT ⊗ λR if and only if E(f) = R.

iii) Let the real measurable functions f , g, h verify f = g + h− Th. Then the dynamical
systems (T× R, Tf , λT ⊗ λR) and (T× R, Tg, λT ⊗ λR) are isomorphic.

A corollary of the last point is that when f = h − Th, then the dynamical system
(T × R, Tf , λT ⊗ λR) is not ergodic, because (T × R, T0, λT ⊗ λR) is not. Indeed, every
function (x, y) 7−→ ψ(y) is T0-invariant.

In order to show that E(f) = R, we will produce essential values via the following lemma.
This is a particular case of Proposition 9 in M. Lemańczyk, F. Parreau and D. Volný [18]
(see also [6] for a different proof). Recall that the vague topology on the space of signed
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Maximizing points and coboundaries for rotations 11

Borel measures uses compactly supported continuous functions as test functions and that
the set of non-negative Borel measures on R with mass not exceeding one is compact for
the vague topology.

Lemma 18. If kn → +∞ verifies ‖knα‖ → 0 and the law of fkn (under λT) converges to
a measure ν for the vague topology, then supp(ν) ⊂ E(f).

We now start the proof of the second case of Theorem 4. First of all, since f as in
Lemma 15 is a continuous coboundary, we have

Lemma 19. Let f be as in the statement of Lemma 15 and (rn) be a sequence of integers
such that ‖rnα‖ → 0. Then ‖frn‖∞ → 0.

Using this lemma, we recursively build functions (fm)m≥1, increasing sequences of integers
(Nm)m≥1, (ϕ(m))m≥1, (km)m≥1 and a sequence of reals (Bm)m≥1. We still denote by
(pn/qn) the sequence of convergents of α and write (an) for its partial quotients.
(i) When the (an) are bounded. Let f1 = 0, N1 = 0, B1 = 0, k1 = 0, ϕ(1) = 5. If

m > 1 and f1, . . . , fm−1 are given, set km = qϕ(m)−4, where ϕ(m) is chosen via
Lemma 19 so that ∥∥∥∥∥∑

l<m

(f l)km

∥∥∥∥∥
∞

< 1/m. (22)

Since for any l we have ql = alql−1 + ql−2 one can easily see that km ≤ qϕ(m)/5.
Set Bm = 1/km, Nm = bqϕ(m)/4c. We apply Lemma 15 with (Bm, Nm) and
∆m = 1/(8qϕ(m)) and obtain fm. We also impose on (km) to verify

km′

km
< 2−m−m

′
for m′ < m and km

∑
l>m

1/kl →m→+∞ 0. (23)

(ii) When the (an) are unbounded. Let aθ(n) → +∞ (with increasing (θ(n))) and choose
rθ(n) = uθ(n)qθ(n)−1 + qθ(n)−2, with 1 ≤ uθ(n) ≤ aθ(n), so that qθ(n)/10 ≤ rθ(n) ≤
qθ(n)/5, for large n. We have

‖rθ(n)α‖ ≤ aθ(n)/qθ(n) + 1/qθ(n)−1 ≤ 2/qθ(n)−1 →n→∞ 0.

If m > 1 and f1, . . . , fm−1 have been chosen, by Lemma 19 take km = rθ(n(m)) so
that (22) is verified, as well as (23). Set ϕ(m) = θ(n(m)). Finally set Bm = 1/km,
Nm = bqϕ(m)/4c. We apply Lemma 15 with (Bm, Nm) and ∆m = 1/(8qϕ(m)) and
obtain a function fm.

Remark that in both cases km ≤ qϕ(m)/5, from which we deduce that for large m

Nm − km ≥ qϕ(m)/21. (24)

In case (i) the boundedness of the an’s implies that there is a constant C ′ > 0 such that
for all m

km = qϕ(m)−4 > C ′qϕ(m),
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12 J. Brémont and Z. Buczolich

while in case (ii) taking C ′ = 1/10 we obtain

km > qϕ(m)/10 = C ′qϕ(m).

Define now f =
∑
m≥1 f

m. As
∑
m≥1Bm <∞, f is continuous. Fix 0 ≤ θ < 1. Recalling

that qm grows at least exponentially fast for sufficiently large m and for all 0 ≤ τ ≤ 1

Bm
∆m

(τ∆m) ≤
8qϕ(m)

km
(τ∆m)1−θ(τ∆m)θ ≤ 8

C ′
(∆m)1−θ(τ∆m)θ ≤ 1

m2
(τ∆m)θ.

This implies again an inequality like (17). For |x − y| ≥ ∆m when m is large one can
again obtain (18).

We deduce as in Case i) of Theorem 4 that f ∈ ∩0<θ<1C
θ(T).

Condition (4) is true since by (14) each fm satisfies it.

It remains to check that the skew-product defined by f is ergodic. We would like
to apply Lemma 18. Consider the sequence (km). By construction, km → +∞ and
‖kmα‖ → 0. By compactness, after turning to a suitable subsequence, we can suppose
that the law of fkm on (R,B(R)) converges for the vague topology to some non-negative
Borel measure ν with mass not exceeding one. Next

fkm
(x) = (fm)km

(x) +
∑
l<m

(f l)km
(x) +

∑
l>m

(f l)km
(x).

Due to (22), the second term on the right side uniformly goes to 0. Due to (8), the last
term is uniformly bounded by km

∑
l>m 1/kl → 0, by (23).

Consider now the intervals [0,∆m] + kα, for 0 ≤ k < Nm − km. For x in any of these
intervals, we have (fm)km(x) = kmf

m(x). Let 0 ≤ a− ε < a < b < b+ ε ≤ 1 and take a
continuous function ψ ≥ 0 with support in [a−ε, b+ε], so that ψ ≥ 1 on [a−ε/2, b+ε/2].
Using (24), we obtain

∫
R
ψdν = lim

m→+∞

∫
T
ψ(fkm

)dλT

≥ lim sup
m→+∞

∑
0≤k<Nm−km

∫ kα+(1−a)∆m

kα+(1−b)∆m

ψ(fkm
)dλT

≥ lim sup
m→+∞

(b− a)∆m(Nm − km) ≥ (b− a)
8 · 21

> 0.

As a result [a − ε, b + ε] ∩ supp(ν) 6= ∅ and thus [a − ε, b + ε] ∩ E(f) 6= ∅ by Lemma 18.
The freedom on a, b, ε implies that E(f) is dense in [0, 1]. Since, by Proposition 17, E(f)
is an additive closed subgroup of R, we have E(f) = R. Proposition 17 implies that the
skew-product defined by f is ergodic for λT ⊗ λR. This concludes the proof of Case ii).
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Case iii). Fix ε(n) ↘ 0 as n ↗ +∞. Still writing (qn) for the denominators of the
convergents of α, choose an increasing sequence (ϕ(m))m≥1 so that qϕ(m) > 4(1 +m) and

q
1−1/m
ϕ(m) m

∞∑
l=m+1

q
−1+1/l
ϕ(l) → 0, q

−1/m
ϕ(m) m

m−1∑
l=1

q
1/l
ϕ(l) → 0, as m→ +∞. (25)

For m ≥ 1, let Bm,1 = q
−1+1/m
ϕ(m) , Nm,1 = bqϕ(m)/(4(1 + m))c and ∆m = 1/(16qϕ(m)).

Set also Bm,2 = Bm,1/
√
m and Nm,2 = mNm,1. We can impose on ϕ(m) to verify the

additional condition

q
1/m
ϕ(m) ≥ m

2 max{(bNm,1/2c)ε(bNm,1/2c), (bNm,2/2c)ε(bNm,2/2c)}. (26)

Lemma 15 with (Bm,1, Nm,1) and ∆m gives fm,1 with support Fm,1. Lemma 15 with
(Bm,2, Nm,2) and ∆m furnishes fm,2,∗ with support Fm,2,∗. Define then fm,2(x) =
fm,2,∗(x+ 1/2) and Fm,2 = Fm,2,∗ − 1/2.

A first observation is that Fm,1 ∩ Fm,2 = ∅. Otherwise there are k 6= l with
|k| ≤ Nm,1, |l| ≤ Nm,2 so that |kα − lα + 1/2| ≤ 2∆m = 1/(8qϕ(m)). This implies
‖2(k − l)α‖ ≤ 1/(4qϕ(m)), whereas 2|k − l| < qϕ(m).

We now define

F̃m,1 =
⋃

0≤k<Nm,1/2

[−∆m/2,∆m/2] + kα ⊂ Fm,1 (27)

and

F̃m,2 =
⋃

0≤k<Nm,2/2

[−∆m/2,∆m/2] + kα ⊂ Fm,2. (28)

Clearly, for large m

λ(F̃m,1) ≥ 1/(256m) and λ(F̃m,2) ≥ 1/256. (29)

Because of the equidistribution of the sequence (nα), we can also assume that the strictly
increasing sequence ϕ(m) > m verifies the following property :

∀m′,∀m < m′, ∀i, j ∈ {1, 2}, 1− 1/m′ ≤ λ(F̃m,i ∩ F̃m′,j)
λ(F̃m,i)λ(F̃m′,j)

≤ 1 + 1/m′. (30)

Define next
f =

∑
m≥1

f̄m, with f̄m = fm,1 + fm,2. (31)

As
∑
m≥1(Bm,1 + Bm,2) < ∞ the function f is continuous. Fix again 0 ≤ θ < 1. One

can easily see that 2Bm/∆m = 32q1/m
ϕ(m) is a Lipschitz constant for f̄m. Instead of (16) for

large m we have the following inequality

32q1/m
ϕ(m)(τ∆m) ≤ 32q1/m

ϕ(m)(∆m)1−θ(τ∆m)θ ≤ 1
m2

(τ∆m)θ.
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14 J. Brémont and Z. Buczolich

This again implies (17). For |x− y| > ∆m instead of (18) we can use for large m

|f̄m(x)− f̄m(y)| ≤ 4Bm ≤
1
m2

∆θ
m <

1
m2
|x− y|θ.

We obtain f ∈ ∩0<θ<1C
θ(T). In order to prove (5), let x ∈ T. As Fm,1 ∩ Fm,2 = ∅

for all m ≥ 1, choose a sequence (im) with im ∈ {1, 2} such that x 6∈ Fm,im for all m.
Because of (29) and (30), we have :

∑
m≥1

λ(F̃m,im) = +∞ and lim inf

∑
m,m′<N λ(F̃m,im ∩ F̃m′,im′ )

(
∑
m<N λ(F̃m,im))2

= 1.

Applying a generalization of the Borel-Cantelli lemma (cf A. Rényi [21], Lemma C, p.
391), we obtain that λ(lim sup F̃m,im) = 1. Take a point y ∈ lim sup F̃m,im . Let then m

be arbitrary large such that y ∈ F̃m,im . Set Pm,1 = bNm,1/2c and Pm,2 = bNm,2/2c. We
distinguish two cases :

1) Suppose that im = 1. As x 6∈ Fm,1, by (13), we have (fm,1)Pm,1(x) ≤ 0. Also y ∈ F̃m,1
implies y 6∈ Fm,2 and y + Pm,1α ∈ Fm,1 implies y + Pm,1α 6∈ Fm,2, therefore by (12),
fm,2Pm,1

(y) = 0. Thus, using (9) and (8)

fPm,1(y)− fPm,1(x) ≥ f̄mPm,1
(y)− fm,2Pm,1

(x) +
∑

l≥1, l 6=m

(f̄ lPm,1
(y)− f̄ lPm,1

(x)) (32)

≥ 1
3
Nm,1Bm,1(1/2− 2/

√
m)− 4

∑
1≤l<m

√
lNl,1Bl,1 − 4Nm,1

∑
l>m

Bl,1

(for large m, via (25) and (26))

≥ Nm,1Bm,1
7

≥
q

1/m
ϕ(m)

56m
≥ m

56
(Pm,1)ε(Pm,1).

2) If im = 2, then this time, by (13), (fm,2)Pm,2(x) ≤ 0. As above we also have
fm,1Pm,2

(y) = 0. Via (9) and (8)

fPm,2(y)− fPm,2(x) ≥ f̄mPm,2
(y)− fm,1Pm,2

(x) +
∑

l≥1, l 6=m

(f̄ lPm,2
(y)− f̄ lPm,2

(x)) (33)

≥ 1
3
Nm,2Bm,2(1/2− 2/

√
m)− 4

∑
1≤l<m

Nl,2Bl,2 − 4Nm,2
∑
l>m

Bl,1

(for large m and when using (25) and (26))

≥ Nm,2Bm,2
7

≥
q

1/m
ϕ(m)

56
√
m
≥ m3/2

56
(Pm,2)ε(Pm,2).

This finally shows (5), which ends the proof of Case iii) and of Theorem 4. 2
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5. Smooth examples
By taking advantage of the extra assumptions about the partial quotients of the rotation
angle we now prove Theorem 10, with a different strategy. We still write (an) for the
partial quotients of α and (pn/qn) for the sequence of convergents.

Recall that for f ∈ C∞m0(T) the semi-norms ‖f (l)‖∞ form a non-decreasing function of
l ≥ 0. This will be used implicitly.

We fix for the whole section an even function ψ ∈ C∞(R) verifying ψ(x) = 0 for
x 6∈ [−1, 1], ψ(x) > 0 for x ∈ (−1, 1), ψ′(x) < 0 for x ∈ (0, 1) and

∫
ψ = 1. Introduce the

constants Ar = max1≤l≤r ‖ψ(l)‖L1 , r ≥ 1.

For B,∆ > 0, introduce the linear peak bB,∆(x) = B · (1 − |x|/∆)+ with support
[−∆,∆] as well as smooth versions:

bB,∆,δ(x) = (∆δ)−1

∫
R
bB,∆(x− t)ψ(t/(∆δ)) dt

with support [−∆(1 + δ),∆(1 + δ)]. We have ‖b(r)B,∆,δ‖∞ ≤ ArB(∆δ)−r, r ≥ 0, and also
‖b′B,∆,δ‖∞ ≤ B/∆.

Proof of Theorem 10. Step 1. We first treat a common part of i) and ii). For i) define
an increasing sequence (ϕ(m))m≥1 so that

aϕ(m)+1 ≥ 4r+1Ar+1m
3r+6e(r+1)

√
mqr−1

ϕ(m), for the Cr case,

aϕ(m)+1 ≥ 4m+1Am+1m
3m+6e(m+1)

√
mqm−1

ϕ(m), for the C∞ case

and define parameters

Bm = m/qϕ(m), ∆m = e−
√
m/(4qϕ(m)), δm = m−3.

Concerning ii) impose on ϕ the following conditions
aϕ(m)+1 ≥ 8r+1Ar+1m

3r+5qr−1
ϕ(m), for the Cr case,

aϕ(m)+1 ≥ 8m+1Am+1m
3m+5qm−1

ϕ(m), for the C∞ case

and let

Bm = 1/qϕ(m), ∆m = 1/(8qϕ(m)), δm = m−3.

Now for both cases i) and ii) fix m ≥ 1 and let hm = bBm,∆m,δm
and also

fm =
qϕ(m)−1∑
k=0

T−k(hm − T qϕ(m)hm). (34)
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16 J. Brémont and Z. Buczolich

By our assumptions about aϕ(m)+1 the value of qϕ(m)+1 = aϕ(m)+1qϕ(m)+qϕ(m)−1 � qϕ(m)

and the points 0, α, ..., (qϕ(m) − 1)α are “almost equally” spaced on T. The supports of
hm and T qϕ(m)hm almost completely overlap and the T−k(hm−T qϕ(m)hm), 0 ≤ k < qϕ(m),
have disjoint supports for large m. Also fm is a coboundary fm = Hm − THm, with
Hm = Km + Lm where Km and Lm are given by

Km = qϕ(m)

qϕ(m)−1∑
k=0

T khm, Lm =
qϕ(m)−1∑
l=1

(qϕ(m) − l)T−l(hm − T qϕ(m)hm). (35)

By definition, hm ∈ C∞(T). For r′ ≥ 0, we have

‖(hm)(r′) − T qϕ(m)(hm)(r′)‖∞ ≤ ‖qϕ(m)α‖‖(hm)(r′+1)‖∞ (36)

≤ Ar′+1
Bm(∆mδm)−r

′−1

aϕ(m)+1qϕ(m)
.

Using (34) and (36) with r′ = r, or r′ = m we get

‖(fm)(r)‖∞ ≤ 1/m2 (Cr-case), ‖(fm)(m)‖∞ ≤ 1/m2 (C∞-case). (37)

From (36) with r′ = 0 ≤ r−1 and the definition of ϕ(m), one deduces from (35) and from
the disjointness of the supports of T−k(hm − T qϕ(m)hm) that

‖Lm‖∞ ≤ 1/m2. (38)

Consider next the shortfall of maximization (cf. (2)) of the point 0 for fm. Via (38) we
have

SM(fm, 0) ≤ SM(Km − TKm, 0) + 4/m2. (39)

We turn to SM(Km−TKm, 0). Using (Km−TKm)n = Km−TnKm, the density of (Tm0)
and continuity of Km we obtain with ξm(x, y) = Km(x)−Km(x+ y)−Km(0) +Km(y)
that

SM(Km − TKm, 0) = sup
x, y∈T

ξm(x, y). (40)

By definition of hm and Km we have Km ≥ 0 and Km(0) ≥ Km(y) for all y ∈ T. Also
hm is even and (hm)′ is negative on (0,∆m(1 + δm)), decreasing on [0, δm∆m], equals
−Bm/∆m on [δm∆m,∆m(1− δm)], increasing to zero on [∆m(1− δm),∆m(1 + δm)].

Fix now y and take xmaximizingKm(x)−Km(x+y). We can assumeKm(x) > Km(x+y),
because otherwise ξm(x, y) ≤ 0 whereas SM(Km − TKm, 0) ≥ 0 by (40). In particular,
Km(x) > 0 and for some 0 ≤ k < qϕ(m) we have x ∈ −kα+ [−∆m(1 + δm),∆m(1 + δm)].
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If x ∈ −kα+ ([−∆m(1 + δm),−∆m(1− δm)] ∪ [∆m(1− δm),∆m(1 + δm)]) then

ξm(x, y) ≤ Km(x) ≤ 2qϕ(m)δm∆m ·
Bm
∆m
≤ 2/m2. (41)

Next we suppose that x ∈ −kα + [−∆m(1 − δm),∆m(1 − δm)]. If x 6∈ −kα +
[−δm∆m, δm∆m], observe that Bm/∆m = |(Km)′(x)| ≥ |(Km)′(x + y)| and the distance
between x + y and any −lα, 0 ≤ l < qϕ(m), is at least | − kα − x| since we assumed
Km(x) > Km(x + y). When moving x towards −kα, the quantity Km(x) −Km(x + y)
does not decrease until x reaches −kα± δm∆m. As a result, one can always assume that
x ∈ −kα+ [−δm∆m, δm∆m]. Writing x = −kα+ s, with |s| ≤ δm∆m we have

ξm(x, y) ≤ Km(y)−Km(x+ y)

≤ |Km(y)−Km(y + s)|+ |Km(y + s)−Km(y + s− kα)|.
(42)

For the first term on the right-hand side, we have

|Km(y)−Km(y + s)| ≤ qϕ(m)|s|‖(hm)′‖∞ ≤ qϕ(m)δm∆m ·
Bm
∆m
≤ m−2.

(43)

For the second term write y + s = −lα + t, with 0 ≤ l < qϕ(m) and |t| < 1/qϕ(m). Since
Km is nearly “α-periodic”, we have

|Km(−lα+ t)−Km(−(k + l)α+ t)| ≤ qϕ(m)‖qϕ(m)α‖‖(hm)′‖∞
≤ a−1

ϕ(m)+1 ·Bm/∆m

≤ 1/m2. (44)

From (41–44) we obtain ξm(x, y) ≤ 2/m2. Using now (39) and (40)

SM(fm, 0) ≤ 6/m2. (45)

We can now set f =
∑
m≥1 f

m. By (37) and the monotonicity of the semi-norms,
f ∈ Crm0(T) in the Cr-case and f ∈ C∞m0(T) in the C∞-case. Using

∑
m≥1 1/m2 ≤ 2 and

(45) we obtain

∀n ≥ 0, ∀x ∈ T, fn(x) ≤ fn(0) + 12.

As a result 0 is a maximizing point for f .

Step 2. We complete the proof of i). First, since Hm = Km + Lm, we deduce from (35)
and (38) that ‖Hm‖∞ ≥ m/2 for large m. Since fm = Hm − THm and Hm(x) = 0 for
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18 J. Brémont and Z. Buczolich

some x ∈ T we get supn≥0 ‖(fm)n‖∞ ≥ ‖Hm‖∞ ≥ m/2, for large m. Also, using (45) and
since (fm)n(x) = 0 for some x ∈ T, we get (fm)n(0) ≥ −6/m2. For any integer m ≥ 1,
we obtain via (45)

sup
n≥0

fn(0) ≥ sup
n≥0

(fm)n(0)− 6
∑
l 6=m

1/l2

≥ sup
n≥0
‖(fm)n‖∞ − 6

∑
l

1/l2 ≥ m/2− 12,

for arbitrary large m. We deduce that supn≥0 fn(0) = +∞, which implies that f is not a
continuous coboundary.

We now show that f = g− Tg, for some g ∈ ∩1<p<∞L
p(T). Let m ≥ 1. The support Um

of Hm has measure less than e−
√
m/2. Let N ≥ 1 and VN = ∪m>NUm. If both x and

Tnx lie outside VN , then |fn(x)| ≤
∑

1≤m≤N m ≤ N2. Hence for all n ≥ 0 and N ≥ 1

λ
{
x ∈ T : |fn(x)| ≤ N2

}
≥ 1−

∑
m>N

e−
√
m.

From this we infer as in Theorem 4 that (fn) is bounded in Lp(T) for all 1 ≤ p <∞. Via
[19] this concludes the proof of i).

We next complete the proof of ii). Let km = baϕ(m)+1/3cqϕ(m). We will use the
property that 2∆m < ||kmα|| < 5∆m and hence Km and T kmKm have disjoint supports.
One can impose on ϕ to verify also the following conditions∥∥∥∥∥∑

l<m

(f l)km

∥∥∥∥∥
∞

≤ 1/m, km
∑
l>m

1/qϕ(l) ≤ 1/m. (46)

Remark that ‖kmα‖ ≤ 2/qϕ(m) → 0. We wish to apply Lemma 18 with the sequence
(km). We have

fkm =
∑
l<m

(f l)km + (fm)km +
∑
l>m

(f l)km .

Using (46), the first and third terms on the right-hand side are both bounded by 1/m.
Consider the middle term

(fm)km
= Km − T kmKm + Lm − T kmLm.

By (38), ‖Lm‖∞ ≤ 1/m2, so we focus on Km − T kmKm.

Recall that Km =
∑qϕ(m)−1

k=0 qϕ(m)T
khm; moreover Km and T kmKm have disjoint

supports. The maximum of qϕ(m)h
m tends to one. Let 1/4 < a < b < 3/4. Take

ε > 0 small enough and a continuous function κ(x) ≥ 0 with support [a, b] so that
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κ(x) ≥ 1 for x ∈ (a+ ε, b− ε). Also qϕ(m)h
m is linear on [−∆m(1− δm),−δm∆m] and on

[∆mδm, (1− δm)∆m] and the absolute value of the slope is between 1/(2∆m) and 2/∆m.

Up to considering a subsequence, suppose that the law of fkm
converges to a measure ν

for the vague topology. Then

∫
R
κdν = lim

m→+∞

∫
T
κ(fkm)dλT = lim

m→+∞

∫
T
κ(Km − T kmKm)dλT

≥ lim sup
m→+∞

∑
0≤k≤qϕ(m)−1

∫
T
κ(qϕ(m)T

khm)dλT

≥ lim sup
m→+∞

qϕ(m)

∫
T
κ(qϕ(m)h

m)dλT ≥ qϕ(m)
(b− a)
2/∆m

=
(b− a)

16
> 0.

As a result supp(ν) intersects [a, b] and we conclude that [1/4, 3/4] ⊂ supp(ν). Lemma 18
then says that E(f) = R. By Proposition 17, the skew-product defined by f is ergodic.
This concludes the proof of ii).

Step 3. We turn to iii). Define an increasing sequence (ϕ(m))m≥1 so that
aϕ(m)+1 ≥ 8r+1Ar+1m

4r+7qr−1
ϕ(m), for the Cr case,

aϕ(m)+1 ≥ 8m+1Am+1m
4m+7qm−1

ϕ(m), for the C∞ case

and introduce parameters

Bm =
√
m/qϕ(m), ∆m = 1/(8mqϕ(m)), δm = m−3.

Set also B′m =
√
mBm and ∆′m = m∆m. Let hm = bBm,∆m,δm

and h̃m = bB′m,∆′m,δm
(. −

xm), where xm = 1/(2qϕ(m)).

Put fm as in (34) and f̃m similarly via h̃m. We have fm = Hm − THm, with
Hm = Km + Lm, and f̃m = H̃m − TH̃m, with H̃m = K̃m + L̃m, as in (35).

Using as before (34) and (36) with r′ = r or r′ = m we get (37) for both fm and f̃m.
Setting f =

∑
m≥1 g

m, with gm = fm + f̃m, we deduce that f ∈ Crm0(T) in the Cr-case
and that f ∈ C∞m0(T) in the C∞-case.

We now check that f has no maximizing points. This will require some further
assumptions on ϕ. Let bm = baϕ(m)+1/(16m)c and Nm = bmqϕ(m) so that ‖Nmα‖ ∈
[1/(20mqϕ(m)), 1/(10mqϕ(m))] for large m. Then

fNm
(0)− fNm

(x) =
∑

1≤l<m

((gl)Nm
(0)− (gl)Nm

(x))

+ (gm)Nm(0)− (gm)Nm(x) +
∑
l>m

((gl)Nm(0)− (gl)Nm(x)).
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As ‖Nmα‖ ≤ 1/qϕ(m), one can choose ϕ so that ‖
∑
l<m(gl)Nm

‖∞ → 0 and in this case
the first term on the right-hand side uniformly goes to 0. The third term is bounded
by 2Nm

∑
l>m ‖qϕ(l)α‖max{Bl/∆l, B

′
l/∆

′
l} ≤ 2Nm

∑
l>m 1/qϕ(l) and ϕ can be chosen so

that this uniformly goes to 0.

It remains to focus on the middle term. Remark that (38) is valid for both Lm and L̃m.
We first have, using that 0 6∈ supp(K̃m) ∪ supp(TNmK̃m):

(gm)Nm
(0) = Hm(0)− TNmHm(0) + (H̃m(0)− TNmH̃m(0))

≥ Km(0)− TNmKm(0) + (K̃m(0)− TNmK̃m(0))− 4/m2

≥ Km(0)− TNmKm(0)− 4/m2

≥ ‖Nmα‖(qϕ(m)Bm/(2∆m))− 4/m2 ≥
√
m/5− 4/m2.

Making now the hypothesis that x 6∈ supp(Km) ∪ supp(TNmKm), we have

(gm)Nm
(x) ≤ K̃m(x)− TNmK̃m(x) + 4/m2

≤ ‖Nmα‖(qϕ(m)2B′m/∆
′
m) + 4/m2 ≤ 8/5 + 4/m2.

As a result, the previous discussion entails that for large m and if x 6∈ supp(Km) ∪
supp(TNmKm), then fNm

(0)− fNm
(x) ≥

√
m/10.

In a symmetric way, define b′m = baϕ(m)+1/7c and N ′m = b′mqϕ(m). We consider this
time

fN ′m(xm)− fN ′m(x) =
∑

1≤l<m

((gl)N ′m(xm)− (gl)N ′m(x))

+ (gm)N ′m(xm)− (gm)N ′m(x) +
∑
l>m

((gl)N ′m(xm)− (gl)N ′m(x)).

Since ‖N ′mα‖ ≤ 1/qϕ(m) and the third term is bounded by 2N ′m
∑
l>m 1/qϕ(l), as above

ϕ can be chosen so that the first and third terms uniformly go to 0. We now have, using
that xm 6∈ supp(Km) ∪ supp(TN ′mKm) ∪ supp(TN ′mK̃m):

(gm)N ′m(xm) = Hm(xm)− TN
′
mHm(xm) + (H̃m(xm)− TN

′
mH̃m(xm))

≥ Km(xm)− TN
′
mKm(xm) + (K̃m(xm)− TN

′
mK̃m(xm))− 4/m2

≥ (K̃m(xm)− TN
′
mK̃m(xm))− 4/m2 ≥ m/2− 4/m2.

Supposing now that x 6∈ supp(K̃m) ∪ supp(TN ′mK̃m), we get

(gm)N ′m(x) ≤ Km(x)− TNmKm(x) + 4/m2 ≤ 2
√
m+ 4/m2.

As a consequence of the preceding inequalities, for large m and if x 6∈ supp(K̃m) ∪
supp(TN

′
mK̃m), then fN ′m(xm)− fN ′m(x) ≥ m/4.

To conclude, we only have to remark that supp(Km)∪supp(TNmKm) and supp(K̃m)∪
supp(TN

′
mK̃m) are disjoint. This completes the proof of iii) and the theorem. 2

Prepared using etds.cls



Maximizing points and coboundaries for rotations 21

6. Generic behaviour
6.1. Rotations. Recall that {c+g−Tg, c ∈ R, g ∈ C(T)} is dense in C(T), for instance
since trigonometric polynomials with zero constant term are C(T)-coboundaries and are
dense in Cm0(T).

Proof of Theorem 13. Choose cl ∈ Q and gl ∈ C(T) such that {cl + gl − Tgl}∞l=1 is
dense in C(T).

Given n we will select a dense open set Gn in C(T), using the functions defined during
the proof of Case iii) of Theorem 4 in (31) as perturbation functions. We denote these
functions by f l,n with parameters Bm,(l,n), B′m,(l,n) and Nm,(l,n), N

′
m,(l,n) appearing in

their construction. By a suitable choice of the bounds Bm,(l,n) and B′m,(l,n) we can always
achieve that ‖f l,n‖∞ < 1.

Take now m(l, n) so large that Nm(l,n),(l,n), N
′
m(l,n),(l,n) > n, (32) and (33) are both

applicable and (using that q1/m
ϕ(m)/m→ +∞, by (25))

q
1/m(l,n)
ϕ(m(l,n))

16nm(l, n)
− 4‖gl‖∞ > n. (47)

Set f̃ l,n = cl + gl − Tgl + f l,n/n. Then by (32), (33) and (47) for any x ∈ T

max{f̃ l,nNm(l,n)
(0)− f̃ l,nNm(l,n)

(x), f̃ l,nN ′
m(l,n)

(1/2)− f̃ l,nN ′
m(l,n)

(x)}

≥
q

1/m(l,n)
ϕ(m(l,n))

16nm(l, n)
− 4‖gl‖∞ > n.

Since Nm(l,n) and N ′m(l,n) are fixed numbers one can choose εl,n > 0 such that for all

f ∈ B(f̃ l,n, εl,n) we have for all x ∈ T

max{fNm(l,n)(0)− fNm(l,n)(x), fN ′
m(l,n)

(1/2)− fNm(l,n)′ (x)} ≥ n− 1. (48)

Set
Gn = ∪∞l=1B(f̃ l,n, εl,n) and G = ∩∞n=1Gn. (49)

Clearly, Gn is dense and open in C(T) and if f ∈ G then for any n there exists ln such
that we have (48) with ln instead of l. Therefore f does not have a weakly maximizing
point. 2

6.2. The transformation Tx = 2x mod (1) A modification of the above methods can
be applied for the transformation Tx = 2x mod (1) on T. It is a significant difference that
the continuous functions of the form c + g − Tg do not give us a dense subset in C(T).
We denote by M the set of T -invariant Borel probability measures on T. A function
f ∈ C(T) is called a weak coboundary if

∫
fdµ = 0 for all µ ∈ M. Lemma 3 of [5] states

that f ∈ C(T) is a weak coboundary if and only if it is a uniform limit of coboundaries.
The set of weak coboundaries is nowhere dense and closed in C(T), while coboundaries
form a non-closed proper subset of weak coboundaries (see [5]).
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We select a dense set {hl}∞l=1 in C(T) which consists of Lipschitz continuous functions,
that is

|hl(x)− hl(x′)| ≤ Ll|x− x′| for all x, x′ ∈ T.

As it was mentioned in the introduction each hl has maximizing points. Choose and
denote one such point by zl. This means that

∀x ∈ T, ∀n ∈ N we have hln(x) ≤ hln(zl) + Cl. (50)

We will use the dense set {hl}∞l=1 to prove Theorem 14. The perturbation functions
used in the proof of this theorem are given by the following lemma:

Lemma 20. Suppose z ∈ T, m ∈ N are given. There exist f̄m ∈ C(T), xm, ym ∈ T such
that if Nm = 2m2, N ′m = 200m2 = 100Nm then

‖f̄m‖∞ < 1, |xm − z| < 2−Nm , |ym − z| < 2−N
′
m , (51)

∀x ∈ T, max{f̄mNm
(xm)− f̄mNm

(x), f̄mN ′m(ym)− f̄mN ′m(x)} > m2. (52)

Proof. Let f̄u,∆,B(x) = B(1−|u−x|/∆)+, Bm = 1/2, B′m = Bm/10 = 1/20. Denote by
Su,m (resp. S ′u,m) the support of f̄u,∆m,Bm

(resp. f̄u,∆′m,B′m), where ∆m,∆′m are chosen
below. The sets {0, 1/2}, {T−k(1/4) : k = 0, ..., 3Nm}, and {T−k′(3/4) : k′ = 0, ..., 3N ′m}
are disjoint. Therefore, we can choose ∆m and ∆′m such that the sets

{0, 1/2}, T−k(S1/4,m), k = 0, ..., 3Nm, and (53)

T−k
′
(S ′3/4,m), k′ = 0, ..., 3N ′m are all disjoint.

Set

fm =
Nm∑
k=1

(T kf̄1/4,∆m,Bm
− T k+Nm f̄1/4,∆m,Bm

).

and

gm =
N ′m∑
k′=1

(T k
′
f̄3/4,∆′m,B

′
m
− T k

′+N ′m f̄3/4,∆′m,B
′
m

).

We have fm = vm − Tvm and gm = wm − Twm with vm =
∑2Nm−1
l=1 (Nm − |Nm −

l|)T lf̄1/4,∆m,Bm
and wm =

∑2N ′m−1
l=1 (N ′m − |N ′m − l|)T lf̄3/4,∆′m,B

′
m

. By (53) we have
‖fm‖∞ = Bm = 1/2 and ‖gm‖∞ = B′m = 1/20.

Choose im, jm ∈ N such that xm = (im + 1
4 )2−Nm and ym = (jm + 3

4 )2−N
′
m satisfy (51).

Then
fmNm

(xm) = NmBm, |gmNm
(x)| ≤ 2NmB′m = Nm

Bm
5
, ∀x ∈ T, (54)

and if x 6∈
3Nm⋃
k=1

T−k(S1/4,m) then fmNm
(x) = 0.

Similarly,

gmN ′m(ym) = N ′mB
′
m = 10NmBm, |fmN ′m(x)| ≤ 2NmBm, ∀x ∈ T, (55)
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and if x 6∈
3N ′m⋃
k=1

T−k(S ′3/4,m) then gmN ′m(x) = 0.

Let f̄m = fm + gm. Then ‖f̄m‖∞ < 1 and from (54) and (55) it follows that for all
x 6∈ ∪3Nm

k=1 T
−k(S1/4,m)

f̄mNm
(xm)− f̄mNm

(x) ≥ NmBm
2

> m2

and for all x 6∈ ∪3N ′m
k=1 T

−k(S ′3/4,m)

f̄mN ′m(ym)− f̄mN ′m(x) ≥ 5NmBm > m2.

By (53) we infer (52). 2

Proof of Theorem 14. We will use the dense set of Lipschitz continuous functions
{hl}∞l=1 introduced at the beginning of this subsection.

Given l, n ∈ N choose
m(l, n) ≥ (2 + 2Cl + 2Ll)n. (56)

By applying Lemma 20 with z = zl and m = m(l, n) we choose f̄m(l,n) which will
be denoted by f l,n. We have ‖f l,n‖∞ < 1 and there exist integers Nm(l,n), N

′
m(l,n) >

(m(l, n))2 and points xl,n, yl,n satisfying |xl,n− zl| < 2−Nm(l,n) , |yl,n− zl| < 2−N
′
m(l,n) and

such that for all x ∈ T

max{f l,nNm(l,n)
(xl,n)− f l,nNm(l,n)

(x), f l,nN ′
m(l,n)

(yl,n)− f l,nN ′
m(l,n)

(x)} > (m(l, n))2. (57)

By the Lipschitz properties of hl we have

|hl(T kxl,n)− hl(T kzl)| ≤ Ll2−Nm(l,n)+k for k = 0, ..., Nm(l,n)

and
|hl(T kyl,n)− hl(T kzl)| ≤ Ll2−N

′
m(l,n)+k for k = 0, ..., N ′m(l,n).

Therefore, by (50) for all x ∈ T we have

hlNm(l,n)
(x) ≤ hlNm(l,n)

(xl,n) + Ll + Cl (58)

and
hlN ′

m(l,n)
(x) ≤ hlN ′

m(l,n)
(yl,n) + Ll + Cl.

Set now f̃ l,n = hl +
f l,n

n
. By (56), (57) and (58) we have for all x ∈ T

max{f̃ l,nNm(l,n)
(xl,n)− f̃ l,nNm(l,n)

(x), f̃ l,nN ′
m(l,n)

(yl,n)− f̃ l,nN ′
m(l,n)

(x)} > m(l, n)
2

≥ n.

Choose εl,n > 0 such that for all f ∈ B(f̃ l,n, εl,n) we have

max{fNm(l,n)(xl,n)− fNm(l,n)(x), fN ′
m(l,n)

(yl,n)− fN ′
m(l,n)

(x)} ≥ n.

We define Gn and G as in (49) and this concludes the proof of the theorem. 2
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7. Complementary results and questions
Coming back to the case of an irrational rotation, for f ∈ C(T), introduce the Borel set
of maximizing points

Pmax(f) =
{
x ∈ T | sup

y∈T,n≥1
fn(y)− fn(x) < +∞

}
.

First we have the following result:

Proposition 21. Let f ∈ Cm0(T) be such that λ(Pmax(f)) > 0. Then f = g − Tg for
some g ∈ C(T).

Proof. As f is bounded, Pmax(f) is T -invariant. By ergodicity, a.e x is then maximizing
for f . For M ≥ 0, let AM = {x : SM(f, x) ≤ M}. Since λ(AM ) → 1, as M → +∞, we
choose M such that λ(AM ) > 1/2. Fix now y ∈ T. We have λ(AM ∩ (AM − y)) > 0,
therefore there exists x ∈ AM such that y + x ∈ AM . As a result

∀z ∈ T, ∀n ≥ 1, fn(z)− fn(x) ≤M and fn(z)− fn(y + x) ≤M.

Taking z = x+ y in the first inequality and z = x in the second one, we obtain

∀n ≥ 1, |fn(x)− fn(y + x)| ≤M.

Using the cocycle property and the continuity of f , we arrive at

∀z ∈ T, ∀n ≥ 1, |fn(z)− fn(y + z)| ≤ 2M.

As M is independent of y, we obtain that |fn(z)− fn(t)| ≤ 2M , for all n ≥ 1, (z, t) ∈ T2.
Since fn(tn) = 0 for some tn, we have |fn(z)| ≤ 2M , for all n ≥ 1, z ∈ T. By Gottschalk
and Hedlund’s Theorem (cf [13], Theorem 14.11), f is a continuous coboundary. 2

Corollary 22. For all the f in Theorems 4 and 10, Pmax(f) has Lebesgue measure zero.

From the T -invariance of Pmax(f), if x ∈ Pmax(f), then its orbit Orb(x) is contained
in Pmax(f). We show below that Pmax(f) can be restricted to a single orbit.

Proposition 23. Let α 6∈ Q and T = Tα. Then there exists f ∈ C(T) of the form
f = g − Tg, with g ∈ ∩1≤p<∞L

p(T)\L∞(T) such that 0 is exactly maximizing for f and
Pmax(f) = Orb(0).

Proof. Set Bm = ρm, with 0 < ρ < 1 small enough so that for all m ≥ 1∑
l>m

Bl ≤ Bm/100. (59)

Set next Nm = 1/(ρmδm) ∈ N, with 0 < δ < 1 small enough so that for all m ≥ 1∑
l<m

NlBl ≤ NmBm/100. (60)

We will determine the sufficiently small ∆m later.
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As in the proof of Theorem 4, case i), let us define f =
∑
m≥1 f

m, where for each
m ≥ 1, fm is given by Lemma 15 via quantities Nm, Bm and ∆m. By Lemma 15, f will be
continuous. Fix C > − log(ρδ)/ log((1+

√
5)/2). Let now Fm = ∪−Nm≤l<Nm

[−∆m,∆m]+
lα, where ∆m > 0 is such that the intervals forming Fm are disjoint and ∆m is small
enough so as to ensure that f = g − Tg with g ∈ ∩1≤p<∞L

p(T)\L∞(T) (as in the proof
of Theorem 4 i)). We also assume that

0 < ∆m < inf
l∈[Cm,C(m+1)]

1
8
‖qlα‖. (61)

If x 6∈ Fm, via Lemma 15, we have fmNm
(0) = NmBm = δ−m, fmNm

(x) ≤ 0 and, using
(59) and (60) ∣∣∣∣∣∑

l>m

(f lNm
(x)− f lNm

(0))

∣∣∣∣∣ ≤ 2

(∑
l>m

Bl

)
Nm ≤ NmBm/50,

together with ∣∣∣∣∣∑
l<m

(f lNm
(x)− f lNm

(0))

∣∣∣∣∣ ≤ 2
∑
l<m

NlBl ≤ NmBm/50.

As a result, fNm
(x) − fNm

(0) ≤ −NmBm/2 = −δ−m/2. Consequently, if x 6∈ Fm for
infinitely many m, then x is not maximizing for f .

In order to conclude, it therefore remains to show that lim inf Fm ⊂ Zα mod 1. Let
then x ∈ lim inf Fm. There exists then m0 such that for all m ≥ m0, x ∈ Fm and thus
we can find km with |km| ≤ Nm such that x ∈ kmα+ [−∆m,∆m]. Fix now l ≥ Cm0 and
choose m ≥ m0 such that l ∈ [Cm,C(m+ 1)]. Using (61), we have

‖qlx‖ ≤ km‖qlα‖+ ql∆m ≤ Nm‖qlα‖+
1
8
ql‖qlα‖ ≤

(
(ρδ)−m +

1
8
ql

)
‖qlα‖.

For some m1 ≥ max{m0, 8} for any m ≥ m1 we have (ρδ)−m ≤ ((1 +
√

5)/2)Cm/m ≤
((1 +

√
5)/2)l/8 ≤ ql/8, we deduce that for all l ≥ Cm1, ‖qlx‖ ≤ ql‖qlα‖/4. Applying a

result of C. Kraaikamp and P. Liardet [16], we obtain that x ∈ Zα mod 1. 2

We now list some questions concerning maximizing points:

• The present results should naturally extend to the context of an ergodic translation
on a compact group. What can be said for distal dynamical systems? Interval
exchange transformations?

• For (T, Tα), with α 6∈ Q, it would be interesting to investigate the genericity problem
for some natural non-separable subspaces of C(T ), such as Hölder or Lipschitz.

• Let us discuss the existence of real-analytic examples for (T, Tα), with α 6∈ Q.
For a dense set of Liouvillian angles α one can find a real-analytic f of the form
f =

∑
m≥1 f

m such that 0 is maximizing for f , but f is not a continuous coboundary.
Indeed, one may recursively build together the (fm) and the partial quotients (am)
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of α. As in the proof of Theorem 10, i) and using the same notation (taking m ≥ m0

and then ϕ(m) = m), for each m start with some fm = Hm − THm and next take
a trigonometric polynomial approximation of the peak hm so that ‖Hm‖∞ and
SM(Hm − THm, 0) = supx,y∈T H

m(x)−Hm(x+ y) +Hm(y)−Hm(0) do not vary
much. Then the key estimates like (45) are uniform on all α such that (ak)k≤m are
fixed and am+1 is large enough. Successively, one may then take for each m a huge
am+1 such that f is finally real-analytic. However one has a priori no control on the
degree of Liouvillianness of α. Can one build some f with the same property for
any α verifying for example supm(log am+1)/qm = +∞ ?

• In Theorem 10 i), can one produce an example with an explicit upper-bound on
SM(f, 0) in terms of the norms ‖f (l)‖∞ ?

For lower bounds, let us make the following remark for C2(T)-coboundaries.

Lemma 24. Let f ∈ C2(T) and x0 ∈ T be such that f ′(x0) = 0. Then

‖f ′‖2∞
4‖f ′′‖∞

≤ SM(f − Tf, x0).

Proof. We use that SM(f−Tf, x0) = supx,y∈T f(x)−f(x+y)−(f(x0)−f(x0 +y)).
Let x ∈ T be fixed and |y| ≤ 1/2. By using Taylor’s expansion

f(x)− f(x+ y) ≥ −yf ′(x)− (y2/2)‖f ′′‖∞,

as well as
−f(x0) + f(x0 + y) ≥ −(y2/2)‖f ′′‖∞.

Taking y = −sign(f ′(x))‖f ′‖∞/(2‖f ′′‖∞) ∈ [−1/2, 1/2] gives the lower bound
|f ′(x)|‖f ′‖∞/(2‖f ′′‖∞)− ‖f ′‖2∞/(4‖f ′′‖∞). We maximize in x to conclude. 2

• If f ∈ C(T) admits a maximizing point x0, can one approximate f by some
coboundary fm = gm − Tgm, gm ∈ C(T), in such a way that SM(fm, x0) ≤
SM(f, x0) ? Similarly, can one write f =

∑
gm − Tgm with

∑
‖gm − Tgm‖∞ <∞

and
∑
SM(gm − Tgm, x0) <∞ ?
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preprint.

[5] T. Bousch and O. Jenkinson, Cohomolgy Classes of Dynamically non-negative CkFunctions,

Invent. Math. 148 (2002), no. 1, 207–217..
[6] J. Brémont, Ergodic non-abelian smooth extensions of an irrational rotation, J. of the London

Math. Soc. (2010), 81: 457-476.

[7] F.E. Browder, On the iteration of transformations in noncompact minimal dynamical systems.
Proc. Amer. Math. Soc. 9 (1958), 773–780.

[8] D.A. Carlson, A.B. Haurie and A. Leizarowitz, Infinite horizon optimal control: deterministic

and stochastic systems, Springer (1991).
[9] J.-P. Conze, Recurrence, ergodicity and invariant measures for cocycles over a rotation,

Contemporary Mathematics, vol. 485 (2009), 45-70.
[10] J.-P. Conze and Y. Guivarc’h, Croissance des sommes ergodiques et principe variationnel,

unpublished manuscript, Rennes I.
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