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ONE-DIMENSIONAL FINITE RANGE RANDOM WALK IN
RANDOM MEDIUM AND INVARIANT MEASURE EQUATION

Julien Brémont

Université Paris 12, février 2007

Abstract

We consider a model of random walks on Z with finite range in a stationary and ergodic
random environment. We first provide a fine analysis of the geometrical properties of the
central left and right Lyapunov eigenvectors of the random matrix naturally associated with
the random walk, highlighting the mechanism of the model. This allows to formulate a criterion
for the existence of the absolutely continuous invariant measure for the environments seen from
the particle. We then deduce a characterization of the non-zero-speed regime of the model.

Abstract

Nous considérons un modele de marche aléatoire sur Z a pas bornés en environnement
aléatoire stationnaire ergodique. Dans une premieére partie, nous détaillons les propriétés
géométriques des vecteurs propres de Lyapunov centraux pour la matrice aléatoire naturelle-
ment associée a la marche, mettant en lumiére le mécanisme du modeéle. Nous formulons alors
un critere, vectoriel dans les situations transientes, pour l’existence de la mesure invariante
absolument continue pour les environnements vus depuis la particule. En corollaire, nous
obtenons une caractérisation du régime avec vitesse non nulle.

1 Introduction

1.1 Model

We describe a one-dimensional model of random walk in random environment, called the (L, R)-
model in the sequel. Let (Q,F,u,T) be an invertible dynamical system, where (Q,F,u) is a
probability space and T is an invertible and bi-measurable transformation preserving . We assume
that (Q, F, u,T) is ergodic.

We fix integers L > 1, R > 1 and define an interval A = [—L,+R] in Z, as space of jumps. We
next assume to be given positive random variables (p,).ca on (2, F), such that for some ¢ > 0 :
Vz € A\{0}, p, > € and sz =1, u—a.s. (1)
zEA

The i#id case corresponds to (2, F,u) = (X%, A% v9%) for some probability space (X, .A,v) with
the left shift T and a vector (p.).ea depending on a single coordinate in €.

Random walk (&, (w))n>0. Fixing w € Q, for each k € Z the collection (p,(T*w)).ca defines a
transition law from k to k + 2z, z € A. To the environment [(p,(T*w)).calrez on Z we associate
the canonical trajectorial Markovian measures (Py)rez, where k stands for the departure point.
Let (&, (w))n>0 be the Markov chain with law Pg. In other words, {y(w) = 0 and for n > 0 :
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The point of view adopted in this text is quenched. More precisely we are interested in the
description of the properties of (&, (w))n>0 for p—typical w € Q.

Conventions. In the whole article, the probability measures Py are simplified into Py (omitting
the dependence in w) with corresponding expectations Ej, except when stating results. Also, if f
is a scalar or vectorial random variable on (€2, F), we write T*f for foT* k € Z.

1.2 Presentation

An essential feature of the (1, 1)-model is the possibility of explicit computations. This contrasts
with the multi-dimensional model and we refer to Sznitman [26] and Zeitouni [27] for detailed
surveys of the general model in any dimension. The (L, R)-model with max{L, R} > 2 is one step
higher in terms of complexity than the (1,1)-model. Its analysis involves random matrix products
and Lyapunov exponents.

A criterion for recurrence/transience was first given by Key [15] via a random square (L + R)-
matrix. Reformulated by Letchikov [18], it necessitates a matrix M of size d := L+ R — 1.

Definition 1.1
Let M € GL4(R) be the random matrix (the first line is (by, -+ b)) if R=1) :

—a; -+ —ap—1 by - b
M: ) (2)
0 1 0

where M j = 1i—j1 for2 <i<d and :

Li— b . _ (pPr—1—j++pP_1L R<i<d
L+R—j — PR 5 S7 > a.

When L = R =1, then M reduces to the well-known quantity p_1/p1. The matrix M is extracted
from the analysis of the Dirichlet problem in any finite interval in Z. We make it more precise now.

For integers a < b, let [a,b] be the corresponding interval in Z. As the model is not nearest-
neighbour, when starting a random walk in [a, b] we need to specify exit points.

Definition 1.2
Let integers a < b and k € [a— L+ 1,b+ R — 1]. We define boundaries 0_[a,b] = {a — l}o<i<r-1
and 04[a,b] = {b+ r}o<r<r—1 and introduce :

Py(a,b,+) = Pp{ leave Ja+ 1,0 — 1] in [b, +oo] }
Pi(a,b,—) = Pi{ leave Ja+ 1,b — 1] in ] — 00, a] }.

Py(a,b,¢) = Pi{ leave la+1,b—1[ at ¢ }, for ¢ € 0_[a,b] U d1]a,b].

The definitions are naturally extended to half-infinite intervals, when it has sense. Set mext, for

¢ €0_[a,b]Udi[a,b]U{£} :

Vi(a,b,¢) = (Peyr—i(a,0,¢) — Piyrri1—i(a,b,¢))i<i<a € R



Fixing a < b and ( as above, the Markov property is equivalent to the harmonicity of the map
k — Pg(a,b,¢) (with respect to the transition weights at each site) in [a,b]. The (k —
Pr(a,b,¢))ceo_ja.pjuo, [ab) form the canonical basis of the space of harmonic functions on [a, b].

The harmonic character of k — Py (a, b, ¢) can be reformulated via gradients. The role of gradients
is to keep only the essential information, by eliminating the trivial harmonic function equal to 1.

Lemma 1.3 (See [18], [§])
For any integers a < k < b and ¢ € 0_[a,b] U d4[a, bl U {x}, we have :

Vie(a,b,¢) =T*M Vi_1(a,b, Q). (3)

Recall that M is defined independently of any interval [a,b] and exit condition (. Iterating (3),
Vi(a, b, ) can be expressed in terms of the gradients at the boundary of [a, b], via random products
of M. The matrix M can thus be seen as a transmitting matrix. The properties of the random walk
are then naturally determined by that of M with respect to the dynamical system (Q, F, 1, T).

Introduce the Lyapunov exponents v, (M,T) > -+ > v4(M,T) of the couple (M, T). Precise
definitions are given in proposition (2.1). Due to (3), the structure of the Lyapunov spectrum of
(M, T) is rather special. Some known facts are collected in the next theorem.

Theorem 1.4 (See [18], [8] for i) and [8] for ii))
i) We always have y1(M,T) > --- > yp_1(M,T) >0 and 0 > yp1 (M, T) > -+ > v4(M,T).

ii) The Lyapunov exponent yr(M,T) is simple, namely yr—1(M,T) > yr(M,T) > yr+1(M,T).

In the sequel d = (R — 1) + 1+ (L — 1) is symmetrically understood with respect to L and R
and yr(M,T) is seen as the central exponent of (M,T). We now explain why this exponent is
particular. For example, the nature of the dynamical system plays no role in the proof of i) and
~vr(M,T) is simple for geometrical reasons.

This fact was clarified in [8] as follows. For simplicity, if 2 # 0 belongs to some space R™,
denote by Dir(z) its direction in the projective space of R™. When considering recurrence criteria,
one focuses on the exit probabilities of an interval [a,b] and this naturally leads to considering
the family (Vi (a,b,()). Fixing k, these vectors are well understood when grouped in left and right
packets, more precisely when considering the two subspaces Ly (a, b) and Ry (a,b) of R? respectively
spanned by (Vi(a,b,())ceo_[a,5) and (Vi(a, b, ())ces, [a,p)- Computations involve exterior products.

Definition 1.5 Let integers a < b and k € [a— L+ 1,b+ R — 1]. Define a global right-gradient
and a global left-gradient respectively by :

Rk(a,b) = Vk(a,b,b—i— R — 1) VANRERIAN Vk(a,b,b) € AR
Li(a,b) = Vi(a,b,a) A--- A Vi(a,b,a — L+1) € AFRY

The matrices (—1)%~1 AP M and (—1)L~1 AL M~ acting respectively on the R—vector R_1(a, b)
and the L—vector £_1(a,b), appear to be the natural objects for the study of the model. Focusing
on (—1)=Y AT M| this matrix has directional contraction properties in a non-trivial deterministic
and explicit polyhedral convex cone of ARR?, exactly in the same way as a m X m-matrix with
positive entries in the positive cone of R™.

This key property comes from the remarks that Dir(R_1(a,b)) is independent on b, for b > 0, and
that, due to its shape, the R—vector R_;(a,0) has a very rigid geometry. The edges of a cone
stable by (—1)%~! A® M can be described by R-vectors R_1(a,0) corresponding to “extremal”
environments in a left-neighbourhood of 0, in the sense that the transition at each site of this
neighbourhood is deterministic. The cone stability property of (—1)%~1 A® M naturally implies
the simplicity of the top exponent of this matrix. As the same is true for (—1)L=1 AL M1 the



simplicity of ygr(M,T) is then a relatively easy consequence. Numerical experiments show that
the other exterior powers of M do not have this cone stability property. Nothing is known on the
simplicity of the other exponents of (M,T) at such a level of generality.

Roughly speaking, the R and L-dimensional random subspaces L_;(a,b) and R_;(a,b) of R?
“reflect the influences” of both sides of the environment at 0. The behavior of the random walk
is then related to the properties of the intersection of the previous two subspaces. The latter is
one-dimensional and spanned by V_;(a,b,+). When a and b become infinite, V_1(a,b,+) has a
limit direction, that of a vector with exponent +vyr(M,T) when iterating the cocycle of M in the
future or in the past. This explains the role of yg(M,T).

As a corollary, the previous analysis gave in [8] another proof, more algebraic, of Key’s theorem.
The following formulation first appeared in [18].

Theorem 1.6 (Key)
o Ifyvr(M,T) <0, then &, (w) — 400, P§ — a.s, it — a.s.
o Ifyr(M,T) > 0, then &, (w) — —o0, P — a.s, it — a.s.

o Ifyr(M,T) =0, then liminf ¢, (w) = —0co < 400 = limsup &, (w), P§ — a.s, u — a.s.

To emphasize the interest in this approach, we next discuss the efficiency of the criterion.
Recall first that matrices with positive entries, as contracting the positive cone, are praised in the
problem of evaluating a top Lyapunov exponent. See the discussion at the end of Peres [22]. Cone
contraction, measured for instance via Hilbert’s distance, simplifies the computation and provides
error estimates.

We detail a way of proceeding. Under broad hypotheses a central tool for a random matrix H
with positive entries is the existence of a main Lyapunov eigenvector, or generalized eigenvector in
the sense of Evstigneev [10]. Similar to the classical Perron eigenvector, this is a positive random
vector U with |U]| = 1 (we fix the Euclidean norm) and such that there exists some positive
random A verifying HU = ATU. In this case, necessarily [log\ du = v1(H,T). The direction
of U is uniquely determined and can be simply defined as the decreasing limit of compact sets
Dir(U) = lim Dir(T~*H---T-"H(C)), where C is the positive cone. The last convergence is
exponential, with rate given by that of the cone contraction (see for instance Hennion [13], lemma
(3.3)). A natural way of computing ~v1(H,T) is then to evaluate V, giving A. Remark that if the
(T"™H )y ez are iid, then A and V only depend on one-half of the sequence, with exponential decay
of the correlations.

Back to our problem, (—1)%~1 AR M and (—1)L~' AZ M~! contract explicit cones, also with
explicit contraction rates (see [8]), and the above remarks all apply. These matrices thus behave
like matrices with positive entries and their top exponent is as easily evaluable. As a result (see
section 7.2 in [8]), the accessibility of ygr(M,T) is ezactly that of the top Lyapunov exponent of a
positive random matrix depending on a single site. The cost of dimension due to the consideration
of exterior powers is very low, since in practice exclusively limited to the use of Gauss pivot.

Another approach to recurrence criteria is presented by Bolthausen and Goldsheid in [3]. As
the (L, R)-model can be seen as a model of random walk on a strip Z x {1,--- ,m} in a random
environment, a recurrence criterion is available in [3], via the sign of the top Lyapunov exponent
of a non-negative random matrix A. A difficulty is that the entries of A are abstract quantities.
For example in an iid setup, A involves a matrix ( whose law is the invariant measure of a rather
non-trivial Markov chain in the space of stochastic matrices and the computation of this law is at
least as complex as evaluating the top Lyapunov exponent of an iid product of random matrices.
One may observe that ¢ is an analogue of the auxiliary non-negative square matrices G and D
of respective sizes L and R, presented in [8] and used for analyzing the two subsequences of best
records to the left and best records to the right of the random walk. It would be interesting to
provide a direct link between Key’s Theorem and the recurrence criterion of [3]. Theorem (6.3) in
[8] connecting M to G and D via their Lyapunov spectrum goes in this direction.



We now discuss the validity of the Law of Large Numbers. The LLN was shown to hold for the
(L, R)-model under a rather restrictive hypothesis (as discussed in section 3) by Letchikov [20],
next under Kalikow’s condition by Rassoul-Agha [23] (in a study centered on the model on Z<)
and then in full generality in [8]. This last result is in fact a corollary of the analysis developed in
[7], via a classical hitting times approach. The LLN for the strip model in the transient case was
recently proved by Roitershtein [25] using hitting times, as well as a criterion for positive speed.
Other results were independently obtained by Goldsheid [12] via developing the methods from [3].

1.3 Content of the article

The main purpose of this text is to study in complete generality the existence of the absolutely
continuous invariant measure for “the environments seen from the particle” for the (L, R)-model
and then to characterize the situations when the average speed in the LLN is not 0. Our main
tools are relevant from exterior algebra, combined with classical arguments from Ergodic Theory.

As detailed in the next section, we use a corollary of Oseledec’s Theorem giving the existence
of a measurable basis (V;)1<;<q of R? such that ||V;|| = 1 for all i with :

1
lig 1 log | Mo Vil = £5:(M,T), 1< i <d.
n—xIroo N

where we introduce cocycle notations for a random invertible matrix H :

T"-1H ... H, n>1,
H, = 1, n =0, (4)
TrH-'..TYH, < 1.
A basis (V;)1<i<a as above is not unique. However we recall in proposition (2.6) that the simplicity
of yr(M, T) implies that Dir(Vg) is uniquely determined. In fact Vg is naturally defined as a vector
spanning the intersection of two subspaces and, concretely, is directly obtained via the canonical
main Lyapunov eigenvectors of (—1)%~1 A M and (—1)Y=1 AL M~1. As a result, the cost of this
definition is not more than that of the main Lyapunov eigenvector of a positive random matrix
depending on a single site.

An important non-trivial point detailed in proposition (2.6) is the existence of some random Ap > 0,
with log Ar bounded, verifying :

MVg = AgTVg and /1og/\R dp = yr(M,T).

These properties induce that Vg is uniquely defined up to multiplication by the constant —1.
Indeed, if § € {£1} is any random change of sign, when replacing Vg by 6Vy the positivity
condition implies § = T'§. Thus 0 is constant, as (Q, F, u, T) is ergodic.

Remark that the recurrence criterion, theorem (1.6), can be reformulated in terms of Ag. Finer
properties of the random walk will involve the couple (Ag, Vg).

We consider the invariant measure equation. Fixing w € €, define as in Kozlov [16] the Markov
chain “environments seen from the particle” as the sequence (wy,)n>0, where w,, = T @y, n > 0.
Its transition operator on € is :

Pfw) =Y p.(w)f(Tw).

z€A

A tool for proving quenched limit theorems for (§,(w))n>0 is the existence of a P-invariant prob-
ability measure v on (Q,F) equivalent to p. Writing dv = wdu, the condition v = Pv is
equivalent to the equality P*m = m, where the adjoint operator P* can be written in the form
P f(w) =3, cap(T7?w) f(T'*w). This leads to the following definition :



Definition 1.7
We call (IM) the existence of a measurable m with m >0, [7 du=1, 7 = P*mw, pu— a.s.

We now mention known results. Kozlov [16] proved that if 7 realizes (IM), then © > 0, p—a.s,
and is unique in L*(p). Then, under (IM) and using Birkhoff’s Ergodic Theorem, the (quenched)
LLN was shown to hold. A complete analysis of the equation v = P, including (IM), was given
by Conze-Guivarc’h [9] in the case L = R = 1. The study of condition (IM) when min{L, R} =1
was treated in [7]. We extend this last result as follows.

Theorem 1.8
i) If yr(M,T) =0, then : (IM) < 3¢ € L'(1), ¢ >0, u— a.s, with \g = p/Tp.

ii) If y(M,T) < 0, then : (IM) & ’ZHEO(ARWT"*U\R) T”VRH e L'(y). If (IM) is not
satisfied, then there exists a unique mon-integrable o-finite density m > 0 verifying # = P*.

iii) If vp(M,T) > 0, then : (IM) < HZnZl(T*l)\RmT*”AR)*l T-Vr| € L' (w). If (IM) is

not satisfied, then there exists a unique non-integrable o-finite density ™ > 0 verifying m = P*r.

Mention that the behaviour of a random walk on a strip in a recurrent iid medium was recently
clarified by Bolthausen and Goldsheid [4] and the previous result in the recurrent case is thus
mainly interesting for non-iid environments. In this situation, the characterization of (IM) was a
preliminary step in [7] for the analysis of the CLT when L > 1 and R = 1. Extending a work by
Letchikov [19], it was shown in [7] (theorem 4.5) that there is a non-degenerate invariance principle
if and only if Agr = ¢/T¢ for some ¢ > 0 with ¢ and 1/ in L'(u). The result was the central
tool in a delicate study for proving a CLT under sharp conditions in a recurrent environment given
by an irrational rotation on the Circle with regular data (theorem (5.7) of [7]). Providing similar
results for the general model is delicate and can be considered as a separate problem.

We focus next on the transient cases. In view of theorem (1.8), it is important to understand the
geometrical properties of Vi. Suppose for instance that yg(M,T) < 0. If min{L, R} = 1, then it
is a simple remark that Vx lies in the positive cone of R?, since M (resp. M ~!) is non-negative for
R =1 (resp. L =1). The characterization of (/M) then reduces to >, - (Ar---T" *Ag) € L*(p),
which is the condition obtained in [7]. Indeed, reminding that ||Vg||=1, it is enough to take the
scalar product of Y o (Ag---T" 'Ag) T"Vg with the vector *(1---1).

We have simply used that the dual cone of (R, )% is not reduced to {0} and a similar property is
valid if L = R = 2, also leading to the simplified criterion Y., (A2~ 7" 'Ag) € L'(p). In the
general case however, such a reasoning cannot occur. We shall show that if min{L, R} > 2 and
max{L, R} > 3, then there exists an example of iid environment, where the convex cone generated
by the support of the law of Vg is R?. This gives a negative answer to a conjecture by Letchikov
[18]. In such an example, the dual cone of the cone where Vg naturally lies is reduced to {0}. As a
result, the characterization of (IM) in the general transient case seems not any more to be of scalar
type and to involve some cumulative vector. It would be interesting to exhibit when min{L, R} > 2
and max{L, R} > 3 an iid environment with yr(M,T) < 0 such that :

I (g T 'Ap)T"Vg| € L' (n), but > (Ag---T"'Ag) & L' ().
n>0 n>0

Intuitively, the condition min{L, R} > 2 and max{L, R} > 3 ensures that a finite box [a, b] contains
distinct paths with jumps in A\{0}, crossing the box in opposite directions and with disjoint
supports. For example :

/’—~\\ PR L~ PRSEREN FTT~ -7 T <
I S ) A S A |
T 1T T 11T 1711717171717 17T "1T"1T"1T"T7T7

The case L = R = 2 is critical (as appears in theorem (3.15)), since such paths still exist (in
contrary to the situation min{L, R}=1) but must be exclusively composed of jumps of size two. In



a related way, the criticality of the (2, 2)-model was also transparent in the rather striking properties
of conjugation with non-negative matrices of the matrix M in this case (see [5]). Heuristics was
given in [8] that such a property was specific to the case L = R = 2.

Let us explain the strategy for understanding the geometrical constraints imposed to Vi. To
perform such an analysis, recall that Vg is seen as spanning the intersection of two subspaces of
R?. We then explicitly describe the geometrical constraints on these subspaces, represented by
the limits, as a — —oo0 and b — +oo, of Dir(R_1(a,0)) and Dir(L£_1(—1,b)). We then split
the problem in two independent parts, since the previous decomposable vectors involve disjoint
halfs of the environment. In order to get the exact constraints on Vg, we need to determine the
ezact geometrical properties of R_1(a,0) and £_1(—1,b). In other words, we shall determine the
minimal stable convex cones for (—1)%~1 AB M and (—1)Y=1 AL M~1. A subtlety is that this
study cannot be deduced from the one in [8] on minimal stable cones for the matrices (—1)%~1 Af
(‘M) and (—1)L=1 AL (*M)~!. The latter gave, by duality, stable cones for (—1)%~! A® M and
(=1)L=L AL M~ but these will be seen not to be minimal as soon as min{L, R} > 2.

We proceed symmetrically to the investigation of the exact geometrical constraints on Wg, defined
as the central eigenvector of *M. In contrast to Vg, the components of Wx always have the same
fixed sign. In fact we completely determine the structure of the vectors Vi and Wg. In this analysis,
the mechanism of the model is highlighted and appears to be intimately related to “extremal” finite
boxes (in the sense explained above) and to “exit games” defined with such boxes. As a result, M
provides a rather remarkable example of a random matrix where the geometrical features of some
central Lyapunov eigenvectors can be described with a high level of precision.

Next, the families of minimal stable cones of (—1)%~1 A% M and (—=1)£=* AL M~! and that of
(—1)E=IAR(M) and (—1)E~ AL (* M)~ are both used to understand the geometrical link between
Vi and Wg and related non-singularity results. Equation (IM) can then be studied precisely.

We also reformulate the criterion for (IM) in the case of transience to the right (yr(M,T) > 0)
via the auxiliary matrix D of size R presented in [8], associated to the subsequence of best right
records. It was defined by :

0 1
D= . .. 1 . (5)
PO{_OovlvR} PO{_OOaL]-}
Since yr(M,T) > 0, D is strictly sub-stochastic. More precisely v;(D,T~1) < 0, by theorem
(6.3) and lemma (7.1) of [8]. Introduce the unique random (bounded) vector W € (R, )# with
(W,er) =1 and the unique positive p (with log p bounded) satisfying DTW = pW. Then :

Proposition 1.9
-1
Let yp(M,T) > 0. Then (IM) < (Zi;é - Tkp|) e L' (p).

The above sum involves only d terms. When L = R = 1, the criterion is 1/Py(—o0,1,—) € L ().
Via for instance proposition (2.2) of [7], one recovers the usual result established in [9].

We finally classically deduce a characterization of the LLN with positive speed, when combining
theorem (1.8) with proposition (9.1) from [8]. For integers a < b, with at least a or b finite, denote
by 7(a,b) the exit time of the interval [a +1,b — 1].

Theorem 1.10
i) The following assertions are equivalent :

~

En(w
n( — ¢, P§ —a.s, p—a.s.
n n—-+400

1. There exists a constant ¢ > 0 such that :

2. yr(M,T) <0 and (IM) holds.

3. vr(M,T) < 0 and HZREO(AR TP AR) T"VRH e L' (p).



4 Jo Eo(m(—00,1)) dp < +00.

it) The following assertions are equivalent :

n(w)

1. There exists a constant ¢ < 0 such that : — ¢, P§ —a.s, p—a.s.

n— -+o00

2. yr(M,T) >0 and (IM) holds.
3. vr(M,T) > 0 and HZRZl(T*%\RmT*"AR)*l T*”VRH e L' (n).

4. Jo Eo(T(—1,400)) dp < +o0.
€n(w)

i) In all remaining cases : =——~ — 0, P§ —a.s, pt —a.s.
n n—-+oo

Using exit times and when the random walk satisfies the LLN with non-zero speed, then the
invariant measure v with dv = 7 du, 7 statisfying (IM), can be simply expressed (see (38)) as in
Alili [1]. A formula for the average speed is given in proposition (9.1) of [8], but an expression for
quantities such as Fy(7(—00, 1)) is not available, in contrary to the strip case (cf [25]).

Plan of the article : Section 2 concerns preliminaries, section 3 details the geometry of the
Lyapunov eigenvectors relevant for the analysis and section 4 focuses on the invariant measure
equation and the Law of Large Numbers.

Acknowledgements. We thank Patrice Le Calvez for several discussions on exterior algebra
questions.

2 Preliminary part

2.1 Algebraic conventions

We fix notations and remind a few basic facts regarding exterior algebra. On this topic, one
may consult Arnold [2] (pages 118-121), Federer [11] (chap. 1) or Karoubi-Leruste [14] (chap. 1).

e Consider R with canonical basis (e;)1<i<d. Convene that e; =0ifi & {1,---,d}. The space
R¢ is endowed with its Euclidean structure, to which L refers to.

e For any 0 < n < d, A"R? denotes the exterior power of R? of order n, which can be identified
with the set of asymmetric n-linear forms on the dual of R%. Elements of A"R? are called
n-vectors. Those of the form wuq A - -+ A u,, where u; € R and A denotes the wedge product
(see the definition in [14]), are called decomposable n-vectors. Recall that any n-vector can
be represented (not uniquely) as a finite linear combination of decomposable n-vectors. In
particular, the canonical basis of A"R? is :

{ein=1ey N---Ne;, | i€}, where I, = {i = (i1, - ,in) | 1 < i1 < -+ <y < d}.

— A decomposable n-vector ui A --- Au, € A"R?, where u; € R?, is written as VL TP

— If a decomposable n-vector appears in the form (A--- Ax 2z A---) € A"R?, the below
subscript k£ means that z is at place k.

— In the sequel A"R? is endowed with its Euclidean structure inherited from R? (see
for instance theorem (10.3), page 28 of [14]). We also use the symbol L. For any
decomposable n-vectors A"_;u; and A_;v; in A"RY, recall that :

</\:'L=1ui7 A?=1Ui> = det(<uz7 U]>)

The expression for any couple of n-vectors is obtained by bilinearity.



— Vectorial subspaces of R? can be identified with directions of decomposable vectors. If
AR_ju; is a non-zero decomposable n-vector of A"R?, write S(A™,u;) for the subspace
Vect(uy, -+ ,u,) C R%.

e For 0 < n < d, the n—th exterior power A" A of a matrix A € Mat,(R) is a matrix in
Matca (R) acting on A"R¢, whose value is defined by :

N AN i) = Ny Aug,

where A u; is a decomposable n-vector in A"R?. By linearity, this definition extends to
indecomposable elements of A"RY.

e For the sake of simplicity, any n—tuple ¢ = (i1, - ,i,) € I, is also considered as a set. Write
z€iif z =1i; for some 1 < j <n. Alsoi®=(1,--- ,d)\i. If i € I, and j € I,,,, i N j stands
for the ordered set of elements both in ¢ and j. The same holds for ¢ U j.

e A cone is here always a convex cone, that is a non-empty subset stable under non-negative
linear combinations. We say that a cone is minimal with respect to a certain property if no
strict subcone except {0} has this property. If n > 1 and B C R", write Vect(B) C R" for
the subspace generated by B and Vect(B) C R™ for the cone generated by B.

2.2 Lyapunov spectrum and Lyapunov eigenvectors
An exposition on Lyapunov exponents and Oseledec’s Theorem [21] can be found in Arnold [2],
Ledrappier [17] or Raugi [24].

As a first observation, condition (1) implies that log || M || and log || M ~!|| are bounded quantities.
The Lyapunov exponents of (M, T) are then well defined and all finite. More precisely, recalling
cocycle notations introduced in (4) :

Proposition 2.1 (See [17])
i) The Lyapunov exponents y1(M,T) > -+ > v4(M,T) of (M,T) can be recursively defined by the
equalities, for 1 <i<d :

1 .
WOLT) (M T) = T [ log] A M| d (6)

ii) We have : v;(M,T) = v(*M, T7) and (M=, T7Y) = —y41 (M, T), 1 <i <d.
Given Y € R?, its Lyapunov exponent with respect to (M, T) is defined as :

1

n—+oo N

Oseledec’s Theorem [21] describes the Lyapunov exponent of vectors in terms of the Lyapunov
exponents (;(M,T))1<i<a and expresses the result using a random filtration of R? in subspaces.
A corollary in the invertible case is the existence of random bases of R? of the following form.

Theorem 2.2 (See [17])
i) There exists a measurable basis (Vi)1<i<a of R? such that |Vi|| = 1 and satisfying :

1
lim o log IMaVill = 45 (M. T), ¥1 < < d.

ii) There exists a measurable basis (W;)1<i<a in R such that |W;|| = 1 and satisfying :

1
lim — log||(*M ) _,,W;|| = £v(M,T), V1 <i <d.

n—=+oo |n‘



We call such a basis a Lyapunov basis and its elements, Lyapunov eigenvectors. We next denote
by (Vi)i1<i<q and (W;)1<i<q choices as above of Lyapunov bases. As recalled in the introduction,
the simplicity of some v;(M,T) (yi—1(M,T) > v(M,T) > ~;+1(M,T)) implies the uniqueness in
direction of both V; and W; (see [17] and proposition (2.6) of the present text). Theorem (1.4),
point #4), thus implies that Dir(Vg) and Dir(Wg) are unique.

We shall in fact show that there are natural definitions for Vi and Wg, each one as a special unit
vector spanning the one-dimensional intersection of two subspaces.

2.3 Algebraic preliminaries

We first develop calculations for finding explicitly £ N F, when two subspaces E and F of R?
verifying Dim(E N F') = 1 are represented by non-zero decomposable vectors.

Definition 2.3
i) Let 0 < n < d. Fori € I,, denote by €,(i) the signature of the permutation of [1,d] mapping i
on [1,n] and i¢ on [n+ 1,d], preserving intrinsic orders of i and i°.

ii) Let 0 < n < d and A € Maty(R). Define a matriz Com,,(A) acting on A"R? by :

Comy (A)(i,§) = €n(i)en () (N A) (i€, 5), V(i, ) € In X In.
One easily checks that if A € GL4(R), then A"A~! = (det A)~1 *Com,,(A).

iii) For all0 < n < d, define a map Ort, : A"RY — AR by Ort,(e; ) = €,(i) €ic.a—n, Vi € I,
and then extended by linearity to A"RY. If x € A"R?, we write x* for Ort,(x).

iv) Define a bilinear map Int : AER? x ALR? — R? by Int(z,y) = (x+* Ayt* .
) p y y y

The properties of Ort,, and Int used in the sequel are detailed in the following lemma.

Lemma 2.4
i) For 0 < n <d, Ort, is an isometry from A"R? on AY""R? for their Euclidean structures. If
A€ GL4(R) and x € A"R?, then :

(A"Az) =det A (AT EATY) (2. (8)

ii) If v € A"RY is a non-zero decomposable n-vector, then x-* € AY""RY is a non-zero decomposable
(d — n)-vector satisfying S(z+*) = S(x)*. If v € ABR? and y € ALR? are non-zero decomposable
vectors, then Int(z,y) € R? spans S(z) N S(y), if Dim(S(x) N S(y)) = 1, and equals 0 otherwise.

Proof of the lemma :
i) The linear application Ort,, maps the canonical orthogonal basis of A"R? onto that of A9~"R?,
up to signs. Thus Ort,, is an isometry. Next, by linearity we check (8) for any e; ., ¢ € I, :

(A" Aein)™ = Y (AN A, i)en(i)eje dn
J€In
= detA > (ATTTATY(5%i%en(i)e e an (9)
JEIn

det A €, ())(AN" PA  ee qon = det A (AT FATY) (7).

i,n

ii) If E C R? is a n-dimensional subspace, choose A € GLg(R) in such a way that its columns
from 1 to n form an orthonormal basis of F and those from n 4+ 1 to d an orthonormal basis of
EL. Since A=! = A, applying (8) proves the first claim. The second one then follows from the
remark that for subspaces E and F, one has EN F = (E+ 4+ F+)+.

O
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2.4 Choice for Vi and Wy

Using lemma (2.4), we now make explicit choices for the Lyapunov eigenvectors Vg and Wg.
Concerning for instance Vg, we show that it can be defined in such a way that there is a A > 0
verifying MVy = ARTVx. The possibility of choosing Ag > 0 is non-obvious, as even a random
scalar not necessarily admits a non-negative element in its multiplicative coboundary class. When
Yr(M,T) # 0, this result is also a consequence of proposition (8.4) in [8].

Introduce the matrices (—1)%~1 AR M and (—1)*~! A¥ M~1. Summing up the results of [8] :
Proposition 2.5 (See [§])
i) The exponent v (ARM,T) is simple. Let Vg € ABR? and ag € Ry be defined by :

R—l(_n’ 0) and ar = 1 lim PO(_n717_)
B Py(=00,1,R) n—+toc P_i(—n,0,—)"

Then (=)= AR MVp = agTVr and Vg has mazimal Lyapunov exponent for (NTM,T).

= 1'
Vi nirfw P_1(—n,0,—)

ii) The exponent v (AN"M =1, T~1) is simple. Let Vi € AR and o € R be defined by :

Vr = lim 7ﬁ_1(71,n) ap = L im 7P0(71’n’+)
LinHJroo P()(—l,n,—i—)7 LiPO(—l,—i—OQ—L) n——+oo Pl(O,n,—‘r) -

Then (—1)!=*AEM=YTVL = arVy and TVr has maximal Lyapunov exponent for (N*M~1, T—1).

iii) Let random vectors Wg € AFR? with |Wg|| = 1, Wi, € AER? with |Wi| = 1 and random
scalars Br > 0, Br, > 0 be such that :

(—DELAR (CM)TWr = BrWr

(=D P AR (M)W = BLTWr
and Wr and Wy, have mazimal exponent for (NE(*M), T~1) and (AF(*M)~1,T) respectively.

As mentioned in the introduction, Vg, Vi, Wgr and Wy can be concretely handled, using
respectively the cone contraction properties of the matrices (—1)F~1 AR M, (—1)L=1 AL M1
(=D)E-L AR M), (=1)L=1 AL (*M) ™1, as detailed in [8]. We have the following proposition.

Proposition 2.6
i) We have S(Vgr) = Vect(V1,--- ,Vr), S(VL) = Vect(Vg,--- ,Vy), Vect(Vg) = S(Vr)NS(VL) and
Vg is uniquely defined in direction. We then define :

Int(Vg, V1) and \p = PR QR [ Int(TVR, TVL)||

=~ X > 0.
[ Int(Vr, V)| p-L  ar [ Int(Vr, VL)l

R

Then MVg = AgTVg and Ag is bounded away from 0 and +oo, verifying [log Ar du = vr(M,T).

it) Similarly S(Wg) = Vect(Wq,--- ,Wg), SWr) = Vect(Wg,--- ,Wy), Vect(Wg) = SWg) N
S(Wrp) and Wg is uniquely defined in direction. We then define :

_ Ve W) - P O [ OVR WL
[Hnt(Wr, Wr)|| p-r Pr |[In(TWgr, TWL)]

Wr > 0.

Then MTWg = prWr and pg is bounded away from 0 and +o0, verifying [log pr du = vr(M,T).

ii) We have S(Vr)* = Vect(Wgyy, -+ ,Wa), SVr)t = Vect(Wy,--- ,Wr_1) and S(Wg)*+ =
Vect(Viat, -+, Vi), SOVL)L = Vect(Vy, -+, Vr_1).

11



Proof of the proposition :

For i), proposition (2.5) gives that v1 (A" M, T) is simple. Therefore the direction of V is unique
in AfR? and the same is true for Vy in AFRZ. Also (see [17], page 325) we have S(Vg) =
Vect(Vh, -+, Vg) and S(Vr) = Vect(Vg,---,Vy). Therefore Vect(Vg) = S(Vr) N S(VL) and the
direction of Vp is then uniquely determined. Next, using repeatedly (8) and proposition (2.5) :

MInt(Ve, Vi) = M [VE* AVE]T = det M [A4 (PMTY) (VE*AVED)]
= detM [(A"7H("M )V VA ALY vE]
_ R L L)+
= detM [(/\ M VR (/\ M VL) ]
= (-1 B ()R ED SR Ty, TV,

p-r ar
Since (—1)4~1+E-1+L=1 — 1 this completes 7). Point 4i) is similar. Next, iii) is standard, but we

include the proof for completeness. Let 1 < i < j < d, with ¢ < R < j. We show that V; L W;
and V; L W;. Since for n > 0, one has I = (T""M,)M_,,, we get :

Vi, Wiy = ((T7" My ) (M) Vi, Wj)
= (ML Vi, (MY W;) = O (exp(—nl(M, T) — 5 (M, T) = ) , for all 7 > 0.
As v;(M,T) > ~v;(M,T), the conclusion follows. The reverse case is similar. O

As a summary and using point #i7) of the previous proposition, we get the following picture for
the Lyapunov eigenvectors in R¢ :

For M : For *M :
Vect((Vi)i<icr-1) = SOWVL)+ Vect(Wii<i<r—1) = S(VL)*

Vr
0 0 Wr

VeCt((Vi)RHSiSd) - S(WR)L Vect(Wi)ry1<i<a) = S(VR)L
3 Geometrical properties of Lyapunov eigenvectors

Recall that Vp is seen as spanning the intersection of the subspaces S(Vg) and S(Vy) and that
Wg is seen similarly. We first compute the minimal cones in their respective vector spaces where
lie Wg, Wi, Wgr and next Vg, Vi, Vg. In a last part we show non-singularity results.

In the analysis, we need to introduce the class M of matrices having the same form as M.

Definition 3.1
Introduce, if R > 2 :

M ={M(6,n) € Maty(R) | 6 = (6i)1<i<r-1, 1= (Mj)1<j<r, with §; >0, n; > 0},

where M(6,n);; = Lizjy1, for 2 <i<d, and :

12



—(1+51+"'+5j), 1<j<R-1
m+ -+ NL+R—js R<j<d

MG~ {
If R =1, the class M reduces to M = {M(n) | n = (n;)1<j<r, with n; > 0}.

3.1 Minimal stable geometrical cones for Wg, W; and Wy

The story concerning Wg and Wy, is contained in [8], section 3. Changing a little the notations,
we have :

Theorem 3.2 (See [8])
Introduce a set of indices, a set of edges and a cone in ANFR? :

It,+:{k:(k17"' akR) | ng] SL—L Z+k17é.]+k]; Zfl#j}
Eov ={G =N (Bjcasivnes) [ h €Ty}
Ct7+ = Vect+(5t,+).

Similarly, define a set of indices, a set of edges and a cone in AN'R? :

L - ={l=(r,,la) [0S <R—-1,i-l;#j—1 ifi #j}
& ={xa =g (5j<ssjes) [1€ L}
Ct,_ = Vect+(5t7_).

Then, the set of edges of Cy 4 is E . This cone has non-empty interior, is stable under the class
(=)L AR (! M) and is minimal with respect to this property. Also Wg € Ci 4 and for some
constant C' > 0, dist(Wg,9C;) > C. Moreover, denoting by Sxrga the unit sphere of ANFR? :

Wg = lim (=1)"E=Y AR (N ) (Cr oy ) O Sprga, non-increasingly. (10)

n—-+oo

Moreover, the limit is uniform on Q.

A by-product of the proof of proposition (3.7) of [8] is the next result :

Proposition 3.3

There ezist iid environments where the direction of Wg is arbitrary close to that of any element
of & 4+ with positive p-probability, taking e > 0 small enough (where € is defined in condition (1)).
The same properties hold for C;._, the class (—1)L=1 AL (*M)™1 and Wy, in AFRY.

Proof of the proposition :
From the proof of point iii) of proposition (3.7) of [8], matrices M*,--- , M® in M satisfying
condition (1) can be taken in such a way that uniformly in U € C; 4 the vector

((_I)Rfl /\R (tMl)) ((_I)Rfl /\R (tMR)) U

is arbitrary close in direction to that of any edge of & ., taking € > 0 small enough. Using (10)
and the fact that the limit is non-increasing, simply choose an independent medium where M is
close to each M? 1 < i < R, with positive probability. With at least the product of these R
probabilities, Wg is close to the desired edge.

O

Considering now Wg, the aim of this section is to prove the following positivity result :
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Theorem 3.4
There exist a constant C > 0 and positive random coefficients (¢; ;)i<r<; such that :

1
Wr=(-D)"" > cij| D e, with 5 < <C (11)
i<R<j i<s<j

Moreover, there are iid environments where the random vector Wg is arbitrary close in direction
to any (—1)?! > i<s<j €s with positive probability, taking € > 0 (defined in (1)) small enough.

In view of proposition (2.6), we need to compute Int(Wg, W) and by bilinearity, Int({x, xi),
for (k,1) € I + x I _. The statement of the result requires the introduction of finite algorithms.

Definition 3.5

i) Letk € I . Fizingl < j <R, let jo = j. Forn >0 and if j,+k;, < R, set jny1 = jn+kj, +1.
Define ti(j) = jn+k;,, wheren is the first index with j,+k;, > R. This definesty : [1, R| — [R,d].
it) Letl € I; _. Fizing R < j <d, let jo =j. Forn >0 and if j, —1;, > R, set jny1 = jn—1;, — 1.

n

Define si(j) = jn—1;,, wheren is the first index with j,—1;, < R. This defines s; : [R,d] — [1, R].

iii) For (k1) € I 4 x I, _, set ;= s;oty :[1,R] — [1,R] and ¢y, =ty os :[R,d) — [R,d].
As a transformation of [1, R], @i, admits attracting limit cycles in [1,R] : any 1 <i < R ends in
a limit cycle under iterations of i, . The same holds for iy in [R,d] and the limit cycles of i,
and Yy, are in bijection via t, and s;. Let my; be the number of attracting limit cycles for pp; (it
is also that of Vi1 ). The limit cycle to which R is attracted under iteration of i is denoted by
Cr,1 and its length by ng ;.

Remark. — We illustrate via examples various possibilities for ¢y ; and its limit cycles :

1. Let R=2,L=2(d=3), with kK =(1,1) and I = (1,0). Then ¢;(1) = 1, ¢x,(2) = 1.
There is only one cycle, that is my; = 1.

2. Let R=5 L =4 (d = 8), with & = (2,3,1,2,2) and | = (2,4,2,4). Then ¢, (1) = 2,
Pra(2) =3, 0ri(3) =5, pra(4) =2, r(5) = 5. Then myy = 1.

3. Let R=7,L=5(d=11), with k = (4,1,1,4,3,3,0) and [ = (0,3,6,2,5). Then ¢ (1) =3,
©r1(2) =5, ri(3) =5, pri(4) =5, pra(5) =5, LPk,z(6) =3, @k,l(7) = 7. Then my; = 2.

We have the following result :

Theorem 3.6
i) Let (k,1) € I, + x I _. Then the coordinates of Int(Cx, x1) are :

[#(CraN[Li)h<i<r
Int(Cr, x1) = (_1)(171 1mk,z=1 x e R
[#(tk(ck,l) N [ia d])}R.Hgigd

ii) The edges of Vecty {Int(Cr,x1) | (k,1) € I; + x I; _} are (—1)%~1 { _;es | I<R< j}

Proof of the theorem :
Step 1 : Let (k,1) € I; + x I; _ and define P and Q in GL4(R) by :

li<i<jtk;,, 1<J<R lizj, 1<j<R-1
P = and Q; ; =
lizj, R+1<5<d lj—lj§i§j7 R<j<d.
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From (8) and e, ((R,--- ,d)) = (=1)(B=D0=1) — (_1)(E=DL e get :

Cli_* — (/\Lfltpfl) (/\?:R+1ei) and XZJ_* _ (_1)(R71)L (/\Rfthfl) (/\R ) ez)

Introduce next :

t 1 t 1 Al IR_l
0= ([ P ol . R41,,d° Q@ eor . 1,~~~,R71) = Ay B € Matg q—1(R),
Ir—1 B

with A; € MatR_LL_l(]R), Ay € Matl)L_l(R) and By € MatLR_l(]R), B, € MatL_l,R_l(R).
Denote by O,,, the submatrix without line w. Then :

kl* N Xll* = (R 1)L Z det(Oy) Nieln d]\{w}ez) .

Finally :

Int(Cy, x1) = (—1)F=D L+d2 Y det(Oy) €w- (12)

Step 2 : We precise P! and Q7!. Let R+1<i<dand 1< j <R. Then, obviously :

(4+k;)AR
> (P is+ Licjyn, = 0. (13)

s=j
Adding repeatedly terms like (13), definition (3.5) provides Zf:j (P16 = —1li<t,(j)- Therefore :
(P™1; = { —lictyj) + Li<tig+1), L<I<R
7 —li<ty(r), J=R
Similarly, for I <i< R—land R<j<d:

(@1 -:{ 1z>sz<y> tliza -1, B<j=<d
7 7.>sl(R)v J=R.

Step 3 : Fixing 1 < w < R, we compute det(O,,,). First, column operations give :

Ir1 — A1B
_(_1yd(L=1) R—1 181
det(O,y) = (1) det ( By — AyB, >*w. (14)

Next, for 1 <i,j < R—1:

d
(AiB1)i; = Y (P iu('Q uy
u=R+1
i (1) ty(i41)
= = > (“Lsa@ T Usa@-0)+ Y (g + Lizs@-1)
u=R+1 u=R+1

= Lizeni) = Lizeri(ivl):

Similarly, for 1< J<R-1: (BQ — AzBl)(]) = (tP_l)R’j — ZZ:RJrl(tQ_l)u,j = _1jZLPk,z(R)'
Introduce X; € R, with X(i) = 1;>;. Thus Xg41 = 0. Set also X, ,(g+1) = 0. Transposing in

(14), we obtain :
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det(Ouy) = (=1 HEDFRFCAR o (X = X1 = (X () — Xpri(41)) Aw €R

(—1)HE DR > (1) HRE Y (4,5, (15)
1<j<w<j’<R+1

with (4, J') = Al o2 (Xs = Xy () Aw eR/\fzti_FLS#, (Xs =Xy, . (s))- Observe that Y'(j,5") = 0,
if j/ <R+ 1. Then :

Y(-?? R =+ 1) = Ag’:l,s;ﬁj (XS - Xipk,z(s)) /\u) €R A?:w+1 (XS - Xsﬁk,l(s))

R—-1
Z(_l)t Z (_l)wfj Nseo tik-,z(s) Ns'eu Xs' Nj XR.
t=0 v€l,vC[1,RI\{j}

u=[1,R\v\{s}

Non-zero contributing subsets v in the right-hand side check R € vU{j} and ¢ ;(v) = (vU{j})\{R}.
In particular ¢y, ; is injective on v. If j = R, then ¢y is a bijection of v and thus v is any union of
limit cycles for ¢y, ; that do not contain j. If j < R, then R € v and v is the union of a sequence
{R, pr1(R), -+, (pr1)* 1 (R)}, with j = (pg,1)*(R), for a smallest s > 1, and any collection of
limit cycles that do not contain j. Let m; be the number of limit cycles that do not contain j and
(Cs,j)1<s<m; be these cycles. Write Orb(R) for the orbit of R under ¢ ;. Then :

YG,R+1) = (D)7 (Y 3 (1) (Brsnsa #000)+ (Bacns #C-D)

q=0(Ci, ,j)1<n<q
XA D Limgs (my et (Rpes (1) (Z1)° |
s>0
= (_1)w_j1mj:01j60rb(R) = (_l)w_j lmk,l:17 JECK,1*
Using (15), we obtain :
det(Oy) = (_1)d(L—1)+R+w Z Lingi=1, jeCri-
1<j<w

Since (—1)UE—D+R+w(_1)(R=D)Ltdtw — (_1)d=1 the coefficient of Int(Cy, x;) in (12) with respect
to €y is (=1)% 1, ,=1#(Cky N [1,w]). The conclusion therefore holds for 1 < w < R. The result
for R < w < d is proved similarly, using the limit cycle defined by vy, namely ¢4(Cl,;). This
concludes the proof of 7).

Step 4 : We prove ii). Consider (k,l) € I; + x I; . For 1 <i <mnyy, let :

a; =min{l <s < R | #([1,s] N Cy,) =i}

Bi =max{R < s <d| #([s,d] Ntx(Ck,)) =i}

Then :
Tk, Bi
t(Ge 1) = (—1) % T 1 3 [ D e | € (DT WVeety | Y e |i<R<
i=1 J=ay 1<s<j

Next, observe that all Zi:z es, with + < R < j, are extremal in the cone they generate.
We now verify that such a vector is some (—1)4~Int((x, ;). Indeed, take k = (0,---,0,j — R)
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and | = (R —14,0,---,0). Then ¢ (2) =i, for 1 < z < R. Thus t,(i) = j, mi; = 1 and
(=14 nt (¢, x1) = > i<s<;€s- This concludes the proof of the theorem.
- U

We can now prove theorem (3.4) on Wg.

Proof of theorem (3.4) :
From theorem (3.2), there is a constant C' > 0 such that Wg and Wy, can be written as :

1
Wr = Z ay Cx and Wi, = Z B xi1, with — < oy, 8 < C.

c
kel 4 lely, -

Bilinearity of Int provides Int(Wg, Wy) = Zkelt_+,lelt., B Int(Ck, x1)- The definition of W
(proposition (2.6)) and theorem (3.6) give (11). '

Finally, recall from theorem (3.2) that Wy is built only via the matrices (T*M)g>o and Wy,
using only (T*M) k<—1. Since taking € > 0 small enough, there exist iid environments where Wg
and Wy, are close in direction respectively to any (; and any x; with positive probability, there
also exists an #id environment where Int(Wg, Wry) is arbitrary close in direction to any non-zero
Int((x, x1), with positive probability. Since any (—1)4~! > _i<s<j€s is of this form, this concludes
the proof of the theorem.

O

3.2 Minimal stable geometrical cones for Vi and V|,

We next turn to Vg and Vy, and determine the minimal stable cones where respectively lie these
decomposable vectors, focusing on Vg.

It was shown in [8], proposition (6.2), that Vi belongs to the algebraic dual cone (C;4)* of
Ci+ and that this cone is stable under the linear action of the class (—1)%~1 Af M. However
the following study reveals that (C; 1 )* is not minimal for this property, for instance as soon as
min{R, L} > 2. We exhibit below the minimal stable cone, which is intimately related to the
mechanism of the random walk. The description of such a cone is required when studying the
geometrical properties of Vz. Mention that the key point in this section is lemma (3.10).

We first make a change of basis for the matrix M which eases the study of (—1)%~1 A% M.
Mention that it is dissymmetric in L and R and that another one is natural when considering the
matrix (—1)F~1 AL ML

Definition 3.7

Z) Deﬁne U e GLd(R) by Ui,j = 1i§j§R—17 fOT’ 1 S ) S R—1 and Ui,j = 11'2]'2}{, fO’f’ R S ) S d. If
R =1, only the second part remains. Define then the class M' = UMU™L. If M(6,1) € M, the
matriz M'(8,n) = UM (5,n)U " is :

—(14+6p_y), i=1j=R-1,
M'(8,n)i; = NR+L—j> i=1, R<j<d,
Lizjt1, 2<i<d, j#R—1,

lisp — Licr—1, 2<i<d, j=R-1.
i) For integers a < k < b, set R},(a,b) = (—1)F AR UR(a,b).

An essential remark, already pointed out in the introduction, is that for a < k and b > k + 1,
then the direction of R}, (a,b) is independent on b (see lemma (5.2) in [8]). We shall then focus on
Ri(a, 1), a < 0. Observe that, due to the change of basis, R{(a, 1) can be written as :

d d
Ry(a, 1) = </\f_11 lej - Z eip_r_ila,1,R+1 —j)]) A (Z ei p—r—i(a,l, —)) ) (16)
i=R i—R

17



When a < 0, we will show that R{(a,1) belongs to an explicit polyhedral minimal cone, whose
edges are indexed by “left-extremal boxes” of length L, namely graphs in [-L+1, -, 0] built with
deterministic transitions at each site of [-L + 1,0]. We give the definition below.

Definition 3.8

i) A left-extremal box B is a graph obtained by choosing at each site of [—-L + 1,0] a transition
among {—L} U {+1,--- ,+R}. FEach path leaves [-L + 1,0] in (—oo,—L] or in [1,400). Let
I;(B) C [-L+1,0] be the subset of sites i, such that starting at ¢ and following the graph, the exit
isat j, 1 <j <R, and I_(B) be the subset of sites where the exit is on the left side. The set of
left-extremal boxes is denoted by By, .

it) A right-extremal box B is defined similarly as a graph in [1, R] resulting from the choice at each
site of a transition among {—L,--- ,—1}U{+R}. Denote by J;(B), 0 < j < L—1, and J;(B) the
exit sets. The set of right-extremal boxes is written as Bg.

An example of left extremal box is the following one :

_|T+1 K>‘\_\\ (\ /\w

We next introduce families of edges and cones.
Definition 3.9

i) Let Py = {(R— In(B),--- R — Iy(B),R — I_(B)) | B € By, I_(B) # o} and define €, C
54’*,’1 C 84’2 as !

—Zei /\Ze”(*) ,

i€l iel_
where (%) is :
(Il," IR 1,1-) € Py, for &y and £\ if R =1,
(I1, s Ir—1,1-) € Py, #I_ = for &, if R > 2,
(Iy, - - ,IR,hI,) disjoint subsets of [R, d] I_#9, for &, ,.

Define then C. = Vecty(EL), Cy 1 = Vect (€} 1) and C 5, = Vect (£ 5). Finally, let £, =
ANRUTYE!L and Cy = Vecty (E1). Precisely, if R > 2 (omitting the last condition if R=1) :

64. = /\;{:—11 €j —€j—1— Z(@z - 61_;,.1 A Z 61_;,_1 Il, IR 1, ) S ’P+, #I_
iel; iel_

it) Set P_ = {(J+(B),J_1(B), -+ ,J_p+1(B)) | B € Br, J.(B) # 0} and C_ = Vecty(E_), where
if L > 2 (omitting the last condition if L =1) :

E- = > (ei—ei) | Afepi (€5 —ejp1— D (ei—eimn) | | (Jpo Jrya,-+- 5 Ja) € P, #J, =1
i€J 4 icJ;
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The following lemma details the linear action of a matrix in (—1)#~1 AR M’ on decomposable
R—vectors of Af'R? having “the same form” as R} (a, 1).

Lemma 3.10
Let A = {A = (@ij)r<i<d, je{t, . r-1,-} | @ij 20, Yjep g1y @ij <1, for R<i < d} - Set :

d d
Z(A) = (/\f_ll [ej — Zel Oél,j‘|> AN (Z €] Oél’> , Ae A
I=R I=R

Let A€ A and M'(6,n) € M, with § = (8;)1<i<r—1 and n = (n;)1<j<r. Then :

R-1 d d
()R IARM(6,m)Z(A) = Z (5j + ZnL+Rlal,j> Z(Aj)-i-(Z UR+Llal,> Z(A_)+Z(Ao),
I=R

j=1 I=R

where A_ and (A;)o<j<r—1 are defined by :

i) For 1 < j < R — 2, where the singular column is at place j +1 :

0 0 0 .- 1 0 0
A = . a1 agz - (1- Z#j QRrs) t  QRR-2  OR—
6 Oéd;l,l Oéd;l,Q (1- Zs%j Qg—15) Qd—1,R—2 OQg—1,—
i)
0 0 e 0 0
Apy = 041:2,1 QRR-2 QR
6 Qd—1,1 dd—1,R—2 OQd—1,—
iii)
0 0 0 1
A - QR arr—2 (1= agrs)
6 ag_1,1 ag-1,r-2 (1=, a-15)
i)
1 0 0 0
ag— | T o
(1 - ZS ad—l,s) Oéd—'1,1 : : Oéd_l.,R_Q ozd_'L_

Proof of the lemma :
Recall the expression for M’(d,7) (definition (3.7)). With A = (o j) r<i<d, je{1,-- ,R—1,—}> We get :
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NEM'(8,1)Z(A)

d d
ANEM'(8,7) (/\f‘__l1 [ej - Zel al,j]> A (Z e oq7_> )
I=R I=R
d
= (Af—_f [_5j€1 +ejpn— Y (MryL—ter + 6l+1)az,jD

=R
R-1 d d
A ((5R—1 +1)e; — er + Z e — Z NR4+L—1€1 + 61+1)041,R—1>
k=2 =R =R
d
A (Z(nR+L—z€1 + 3l+1)al,—> .
=R

Therefore :

R—2 d d
NEM'(6,1)Z(A) = <_5j - ZnL+Rlal,j> F; + (—531 - ZUL+Rlal,R1> Fr
j=1 I=R I=R
d
(Z 77R+L—loél,—> F_ + Fy,
I=R

where we now detail each I, F'r_1, Fy and F_ :

1. For1<j<R-2:

d
Fy = ( =1 lez+1 Zal,ielH]) Ney </\1 —j41 [ez+1 ZalzezH])
I=R
d

R—1
( Zek+zel ZOCZR 161+1> A <Zaz,€z+1>
d
(_1)Rel< ';1 [ezﬂ Z%ﬂlﬂ]) €j+1 — Z@-&-Z Zals €l+1

=R \ s#j
d d
/\1 ]H €it+1 — Zal,ielJrl A Zalﬁezﬂ .
I=R I=R

2.
d d
Fr1 = </\f{__12 |fi+1 — Zal,i€l+1]> Nep A <Z Oéz,—61+1>
I=R
d
= (—1)R*261 ( -:1 l62+1 Za“elH]) A (Z al,elH) .
I=R
3.

d R—
. = </\ZR_12 |fi+1 - Zaz,iezH]) < Z er + Zel Zaz R— 1€l+1> Aeq
=2 =R

=R
d d
LR (@1 [+ ZWMDA Sea-3 (Yo an
I=R I=R \s#—
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Fy

I=R

=R =R

This concludes the proof of the lemma.

We next detail the geometrical properties of the cones introduced in definition (3.9).

Proposition 3.11
i) Let A € A and (M'")1<i<r, be in M'. Then (— )(R’l)L AR (M'E - M) Z(A) € Clq
particular, (—1)E=DL AR (M'E ... MY (C) 2) CCL

ii) The cone C4 1 is stable under (—1)7~1 /\R M and is minimal for this property.

iii) The cone Cy 1 has non-empty interior. Any cone in ARR? stable under (—1)%=1 AR M and
with non-empty interior contains either C4 1 or (—C41).

) One has C'y =C! ;. The edges of Cy are the elements of £,.
v) One has C!, C C'y 5, with equality if and only if L = 1.

vi) Introduce the cone :

D= Vect: S Micj<r | > ei| [k >0, itk #j+kj, fori#jpc AR
J<i<jtk;

Then C+ C (D)*. In particular C4 C (Cy.4)* and equality holds if and only if L = 1.

Proof of the proposition :

i) Let A € Aand M'(6,n) € M', with 6 = (§;)1<i<r—1 and n = (9j)1<j<r. As a first step,
we interpret the multiplication (—1)%~1 A% M’(8,7) x Z(A) in terms of an evolution on a graph.
Define, as in definition (3.8) and for each 1 <1 < L, an extremal box in [—] 4+ 1,0] as a graph
resulting from the choice at each site of a transition among {—L} U {+1,--- ,+R}. Recall also
definitions (1.2) and (3.7), and expression (16) for R{(a,1), a <0.

We shall prove by induction on 1 <[ < L : “The lines from R to R+ 1 —1 of any decompos-
able R—vector obtained from Z(A) (when written as a matriz as in lemma (3.10)) by successive
applications of lemma (8.10) with (—1)F=Y AR M, .. (=1)F=1 AR M are the ones of some
Ru(—L,1), for some extremal box in [—1 + 1,0].”

Recall that the exit sets of a left-extremal box intervening in definition (3.9) are indexed by
{2,---,R,—}. Then:

1. Let I = 1. Considering line R of Z(A;), it corresponds to an extremal box in {0}, if choosing
the transition at 0 to be to R — j, if 0 < j < R, and to —L, if j = —. One then completes
arbitrarily the medium in [—L + 1, 0], so that Z(Aj) is some Ry(—L, 1).

2. Passage from [ to [+ 1. Start with some Z(A), whose lines from R to R+ — 1 correspond to
an extremal box in [~ + 1,0], and apply (—1)%~1 AR M'*1. Using lemma (3.10), ones gets
a positive linear sum of Z(A;). Fixing j, let us check that lines from R to R + [ correspond
to an extremal box in [—[,0], choosing at 0 the same transitions as in the case [ = 1 and
shifting the medium in [—{ 4 1, 0] to [—I, —1]. The case of line R is clear (as above). Next :

21

d d
< s legﬂ Zemaz,gb <—e1 Z e + Zez Zez+1az,R_1> A <Z ery10,—
d - d d
(_I)Rfl <61 — Zel + Z (Z al,s> €l+1> ( ?:_1 leﬁ_l Z€l+1al7j‘|> A <Z €410y,
=R s I=R
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o If starting from a departure point in [—I + 1,0] and following the graph, the exit was at
u, with 3 < u < R, then in the new medium in [—[,0] the exit isat 2 <wu—1< R— 1.
This corresponds to a down-shift and a right-shift in A; with respect to A. The case
when the path ended with a final jump of —L is treated in the same way.

o If the exit was at 2, the new exit is at 1. Such a departure site does not appear in Z(A;)
and it corresponds to the fact that the column (o g—1); disappears.

o If the exit was at 1, one then now passes to 0 and the exit is the same as that of 0.

This proves the first assertion of 7). Next, any element in £ , is some Z(A), with A € A, giving
the second claim. Remark also that any element in &, ; is some Z(A), with A € A corresponding
to a left-extremal box. The second part of the proof gives that C/, ; is stable under (—1)#~1 AF M’

i) Stability was proved above, using €/ ; and (—1)%~* A® M’. Concerning minimality, observe
first that Ai<i<r—1€; A (er + - +eq) € C), for the left-extremal box in [-L + 1,0] that consists
in jumping of —L at each site (see (16)). Fix an element in & ;, defined by a left-extremal
box B. Apply successively lemma (3.10) to Ai<i<r—1€; A (er + -+ + eq), with the matrices
(=) B AR MG By, o (=) B AR M(89,1°), where for 0 § I<L-1:

§l:( —R— ) <i<R—1, 77 —(0)1§i§L7ifthejumpatlinBis +7, 1<j<R-1,
st = (0 )i<i<R—1, nt = (0)1<i<r, if the jump at [ in B is + R,
(5l = (0)1§i§R—1a ’/]l = (Hli:1>1§i§La if the jump at lin Bis — L.

Observe that until applying the last step, the coefficient o, — is always 1. Thus, if the third case
occurs, lemma (3.10) only gives HZ(A_) + Z(Ap). Making H — 400, the direction of the result
tends to that of the given element of &’ ;.

Consider now a cone ¢ # C C C} ; stable under (—1)%~1 AR M’. Take 0 # 2 € C and write
it asx = ZfeF cgf, where ¢ # F C &\ ; and ¢y > 0, f € F. With 0 = (Hl;=r-1)1<i<r—1 and
n = (0)1<i<rL, apply enough times lemma (3.10) with (—1)%#=2 A M’(8,7) to the previous equality,
so that any term Z(A), A = («a; ;), appearing in the sum with a coefficient H™ (with n > 1) in
front of it, checks ag— =1 and o; — =0, for R < ¢ < d — 1. Taking then H large, the remaining
terms are negligible.

Remarking that in the dominating terms, ay; = 0, 1 < j < R—1, set § = (0)1<i<pr—1 and
n = (H1lj=1)1<i<r. Apply next (—1)%~1 AR M'(§,n) to the equality. The dominating R-vectors
Z(A), with A = (a; ;), then verify ag; =0,1 < j < R—1, and ag,— = 1. Finally, apply L — 1
times (—1)B=1 AR M'(8,n) with 6 = (0)1<i<p—1 and 7 = (Hli:L)1§i§L~ Taking H large, the
direction of the sum is arbitrary close to that of Ai<;<g—1€; A (eg + -+ + eq4). Since the sum
belongs to C, the first part of the study implies that Ciq C C.

i41) We prove the statement for the cone C', ; and the class M’. In view of point i), with invertible
matrices in M’, and since an invertible linear map is open, it is enough to show that C’, , has non

empty-interior. Let then w € ARR? verify w L C! 5 and fix i = (i1, ,ig) € Ir.

Ifi=(1,---,R), then e; r € &, 5 and w L e; g, otherwise let u be such that i, < R < iy41.
Choose A € A so that lines in A with index ¢ & {i, | u+ 1 < v < R} are zero and for each
u+1 < v < R, then line i, is zero except one element equal to 1 and placed at a column with index
in (1,---, R)\(i1,--- ,4). Then Z(A) € &, ,. Note that the quantity eqr) — €, appears in the
wedge product expression of Z(A), for some 1 < g(R) < R. Define next Z(A’) € &} ,, replacing
€q(R) — €ir DY €q(r) in the expression of Z(A4). Then w L (Z(A) — Z(A')). The last quantity
contains only e;,, at place ¢(R) in its expression. Recursively, we get w L e; g. As this holds for
all i € IR, finally w = 0.

Take next a cone C c ABR? stable under (—1)%~1 A M’ and with non-empty interior. Let x
be interior to C. Since C!y ; has non-empty interior, write x = Zfef;,l ¢y f. Up to adding some
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1 ey A--- Aeg, suppose that C := Zfes’ rer’ Cf # 0, where (I]f) € P, are associated to each
4,10 .

f € &, 1. Using the stability of C under (—1)%~1 A% M’ and lemma (3.10), apply (L — 1) times to
the above equality the matrix (—1)F=* AR M’(8,7), with § = (H1,= R 1)1<1<R 1and 7 = (0)1<i<L-
Taking H > 0 large, the deduced sum is equivalent to CH*~1 x A% =1 'e; Aeg € C. From point ii)

and since /\j:1 ej Neq € Cy 1, we deduce that Cly 1 Csign(C) C.

iv) If R = 1, then C, = C ,, by definition (3.9). In this case, one clearly has £ = {e;+---+eq |1 <
i<L}cC RL, which is also the set of edges of C',. Suppose then that R > 2. We show below that
&', is the set of edges of C’, and that any element of £ ; is a non-negative linear combination of
elements of & . In view of definition (3.9), write any element f € £ ; in the form :

F=n e =D e | Ad e (17)

iGij ier’

Observe that :

f= Z (71)R71,u Njekej Nje[1,R—1]\k Z e | A Z €;.
ﬂ

u=0 ke ,R—1] ier! ier’

Suppose then that there exist fo € £, and a subset ¢ # F' C £, with fy = ZfeF crf, where

each cy is > 0. Since I ]f C [R, d], the above decomposition implies that this equality is equivalent
to the fact that, forall 0 <u < R—1landall1<i; < ---<i, <R—1:

Nizq Zei A Zei :Zcf Nizq Zei A Zei . (18)

ieI,ifJQ ierfo fer iet], ier!

In particular, Zielfo € = jer Cf (Zz‘elf ei) . As #I'° =1 and ¢y >0 for all f € F, there exist
R <w < d such that I”° = I7 = {e,,}, f € F. Another case of (18) gives, for 2 < j < R :

Zei /\ew:Zcf Zei A ey, and thus Zei:Zcf Zei ,

ierlo feF ier! ierfo feF ier’

as w does not belong to any ij. Since ¢y > 0 for all f € F, it is necessary that ij = I]fo, fEeF.
Thus & is the set of edges of C.. We next check that the elements of £ ; are positive linear
combinations of elements in & . Take f € &, ;, with #I > 2, and recall that f corresponds to
some left-extremal box in [—L + 1, 0] with exit sets I1,--- ,Ig and I_, as in definition (3.8). Then
f can be written as in (17), with I]f =R—Ip41—; and I' = R—1I_. Let u > v be the two greatest
indices of I_ and w be the smallest index of Ui<;<rl;. Suppose that w € I, € {1,--- R}.

There is then a path in [w, 0] made of jumps among {+1,--- ,+R} leaving [-L+ 1,0] at 2 and the
whole path belongs to I,. Suppose that z = 1 and write :

f:/\jz_l1 ej — Z €R—i /\eR_u+/\;‘?‘:_11 ej — Z er_i | A Z €R_i. (19)

t€lRy1—j 1€lRy1—j el _\{u}

We claim that the above two R—vectors belong to £ ;. Considering the first term, it is obtained
by adding I_\{u} to I, = I;. Indeed, there is at least one element z of the path defined by w in
I, including +1, that verifies v < z < v + R. Remark we use that R > 2. Link then v to z by a
jump of size < R. More generally, the ordered sequence defined by I_\{u} decomposes into blocks
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of consecutive elements. The top element of each block is such that some point of the path defined
by w that is at distance < R. Connect these two elements by a positive jump of size < R and
make a jump of +1 at each non-top element of a block. This connects I_\{u} on I; and the first
term is an element of £ ;. Similarly, the second term in (19) is treated by adding a connection
from wu to I.

If 2 > 1, the same reasoning holds, using the following decomposition instead of (19) :

[= /\fz_ll €j — Z er—i | | N Z er—i + /\;»1_11 €j — Z er—i | | Ner—u, (20)

1€JRy1—j i€l _\{u} t€EKR41—;

where J; = K; =1, for j € {2,--- , R}\{z} and J, = [, U{u}, K, = [, U(I_\{u}). Finally, either
with (19) or (20), the cardinal of I_ decreases at each step of at least of one unity, so the desired
decomposition follows recursively.

v) If L = 1, we have C/, = C, , = Ry (Ai<i<rei). If L > 2 and R = 1, then C|, = Vect(e; +

e |1 <i<d) # C;)Q = Vecty(e; | 1 < i < d). Let then min{L, R} > 2 and denote
by &) 5 the subset of £ 5, corresponding to elements defined with #7_ = 1. A simple corollary
of decompositions (19), (20) and of the first part of the proof of iv) is that £} 5 is the set of
edges of C! 5. To show that C/ # C/, ,, we exhibit an element in &\ ;\&\. Let us check that
(e1 — eq) AJLy e € &, 5 convenes.

If some ¢ € & 3 were colinear to (e; —eq) /\R * e, since the first part in the proof of 4v) implies
uniqueness of the representation, there would be equality and there would be a left-extremal box
n [—L+ 1,0], where the jump at 0is —L, all —L +2 <1i < —1 exit at 1 and —L 4 1 exits at R.
This requires a jump from —L+1to R, but R+ L —1 > R, since L > 2, which is impossible. Thus
(e1 - ca) Ny ; 2 €.

vi) Observe first that C; + C D. If L = 1, then C4 = C; 4 = Rt and thus Cy = (Ct ) =R .
Suppose next L > 2. Point v) glves C\. C C+ 9, with strict inclusion. We show ARU~L(C), ,) C (D)*,
giving Cy = ARUTL(CL) Cc ARUTY( +2) C (D).

Let ¢ = Af:l(zj‘gsg]q-kj es) be a generator of D and ¢’ be an edge of ARU~(C), ,), written as
follows (see definition (3.9)), with disjoint sets (I;)1<j<r—1 and I_ in [R,d] :

C/ = /\;»%;11 €j —€j—1 — Z(el — €i+1 AN Z P — 61+1
i€l; iel_
Set Ay =5, A ={j—1}Ul; for 2 <j<R-—1,and Ag = I_. The (A;) are all disjoint.
One checks that ((, (") arga = det [(Lizj — Liskea;)i<i<r, 1<j<r—1 (Litk,ean)1<i<r] - Develop-
ing with respect to the last column :

(¢, ") Arga = Zul’ with w = det [(Li=j — Litkiea,;)1<i<r, 1<j<B—1 (LithicApi=i)1<i<R] -

First, ug = 1g1k, det [(li:j — Llithiea; )1<i<r-1, 1Sj§R—1] > 0, since the involved matrix has

a positive dominating diagonal. If | < R and [ + k; &€ Ag, then u; = 0. If [ + k; € Ag, then

after manipulations on Columns, u; = det [(li:j — 1i+k¢€A] )1§i§R, 1<j<R-1 (1i+ki6Az)1§i§R] sl

where “x[, %l” means suppressing line [ and column [. This determinant is of the same type as the
original expression for ({,(’) nrge. The result follows by recurrence on the dimension.

O

We next detail consequences of proposition (3.11) for the decomposable vectors Ry(a,b) and
Vr. We obtain the following result.
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Proposition 3.12
For integers a < k < b, (=1)0=F=DE=D R, (4.b) € (~1)! C;. There is a constant C > 0 such
that Vi can be written as :

1

—_ (_1\R ;
Vi =(-1) Zcff,wzthc

fe&y

<ep <0, forall feé&y. (21)

Moreover there are iid environments where the direction of Vg is arbitrary close to that of any
element of £ with positive p-probability, taking € > 0 small enough (see (1)).

Proof of the proposition
If a < k < b, lemma (5.2) of [8] gives Ry(a,b) = (—1)BE-DCO=1=F)(q, .\ ... dy,_1)Ry(a, k + 1), with
ds = Ps(a,s + 1,s+ R). This proves the first claim.

Since Vg = lim, 100 R_1(—7,0)/P_1(—n,0,—) and (—1)% AR U R_1(—n,0) is some Z(A),
with A € A, we get that Vi € (—1)%C;. Next, for s >0 :

Vi = (~1)ETDED (71 Pl ) T AR (T M T M) T W, (22)

Recall that ag is bounded away from zero and +oo. Remark next that, when writing Vg =
lim,, oo R_1(—n,0)/P_1(—n,0,—), the last vector also has components bounded away from 0
and +o0o (see proposition (6.2), page 329 of [8]). Taking s = 2L — 1 and using lemma (3.10) in
(22) (L times point 4i) and L times point 7ii)), observe that there is a constant C' > 0 such that
Vi = (—1)F Zfe&r c}- fywith0 < c}» < C and c}-o > 1/C, where fo = NM<j<r-1€6;N(er+---+eq).
Take then s = L — 1 in (22). Applying next the first part of the construction in point i) in
proposition (3.11), one gets (21).

Finally, the last claim is proved as in theorem (3.2), as a consequence of the minimality of C.
O

3.3 Geometrical constraints on Vj

‘We now use the previous analysis on Vi and V[, to determine the geometrical conditions imposed
to Vg, exactly in the same way as what was done for Wg, using properties of Wgr and Wry.

First, as a consequence of proposition (3.12) on Vg and its analogue for V5, we have the
following result, whose proof is the same as that of theorem (3.4).

Theorem 3.13
i) There exist a constant C' > 0 and random coefficients (c¢ y)cee, xee_ satisfying :

1
Vg = (-1)%1 Z ce Int(C, x), with ol <eey <C. (23)
CES+,X€5,

it) There exist iid environments where Vi is arbitrary close in direction to that of any vector
(=14 Int(¢, x) # 0 with positive u-probability, for all (¢,x) € 4 x E_, taking € > 0 (defined in
(1)) small enough.

We shall now determine Int(¢,x), for ¢ € £, x € £-. Recall definition (3.8) on left and
right-extremal boxes. We now glue such boxes.

Definition 3.14

i) An extremal box Br, r = Br, U By is the graph in [—L + 1, R] obtained by taking a left-extremal
box By, and a right-extremal box Br : a transition is chosen among {—L}U{1,--- , R} at each site
in [-L +1,0] and a transition among {—L,--- , =1} U{+R} is chosen at each site in [1, R].

it) Any path in an extremal box (when following the graph) either exits [—-L 4+ 1, R] or ends on a
cycle. Let us call “Cycle-free” an extremal box with no cycle. In this case, the path starting at
i € [-L+1,R] finally leaves [—L+1, R] on the right side or on the left side. Write then respectively
ex(i) = + and ex(i) = —.
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An example of extremal box with at least one cycle (in thick) is the following one :

It is important to notice that if By rp = By, U Bp, then the property of being Cycle-free and the
exit function only depend on the exit sets (/;(BL))ieq1,...,r,—} and (J;(BRr))je{—rL+1,.. 0,+}- Also,
any ¢ € £ is uniquely associated to the (I;(BL))icq1,... ,r,—}, Where Bp, is any left-extremal box
used to represent (. The same holds for y € £_, with right-extremal boxes. Let us next say that
(¢, x) is Cycle-free if any associated extremal box B, U By, is Cycle-free. We then denote by ex¢
the exit function. We have the following result :

Theorem 3.15
i) Let € &4 and x € E—. Then :

d—1 d
Int(¢,x) = (=1) 1(c,x) is Cycle-free <1€$<,X(R+1—i):+ - lexi,x(R_i):‘f‘)lgigd €R% (24)

ii) The cone (—1)4= Vect, {Int((,x), ( € Ey, X €E_} is :
L IFL=1:(R,)E
2. IfR=1: (Ry)L.
. IfL=R=2:Rye; +Rye3+R(e; — ez +e3) CR3.
4. If min{L, R} > 2 and max{L, R} >3 : R%.

As a corollary of theorems (3.13) and (3.15), Vg does not always lie in the non-negative cone
of R? for a constant § € {1}, since as soon as min{L, R} > 2, some Int((, x) does not verify this.
This contrasts with theorem (3.4) about Wg.

It confirms that the statement of lemma 5 page 192 of Letchikov [18] is incorrect and that condition
(C3) of Letchikov [20] is not valid in general. Restrictive hypotheses on the support of u may
however ensure that the Lyapunov eigenvector Vi lies in the non-negative cone of R?. Indeed, it
is not hard to check that this property is true when the environment is constant.

Proof of theorem (3.15) :

Z) St@p 1 : Define U; € GLd(R) by (Ul)ij = ].iSjSR,l, for1<i<R- 1, and (Ul)ij = 1iZjZR’
for R < i < d. Similarly, let Uy € GL4(R) be such that (Us);; = li<j<gr, for 1 < ¢ < R, and
(U2)ij = Li>j>Rr+1, for R+1 < i < d. Then, generic edges ¢ € &4 and x € £_, as introduced in
definition (3.9), can respectively be written as ¢ = (ABU; )¢ and x = (ALU; 1)y, where :

fz/\fz_ll ej—Zei AZeiand)Zzz:ei/\?:RH ej—Zei , (25)
’iEIj iel_ i€J+ ier

with partionning sets (I;)ief1,....r—y in {R,---,d} and (Jj)je{—r+1,....04} in {1,---, R}, with
I_#g¢and Jy # 0. As (7 = (AL (CH) and x* = (AF1H0L) (xH), we get

L*

Ini(¢, ) = [0 (E A (o )] = 0t ($ AR ) L (e6)
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with H = thltUg Satisfying Hij = 1i:j> if 4 7é R, and HRj = 1j§R — 1JZR+1'

Let us first treat the case L = 1. Then, Iy = {R} and ¢ = A1<;<re;. Also J; = [1,a], for some
1 <a< R and x =e,. Therefore, Int(A1<p<rek,€q) = (—1)‘1_1(/\1§kSR);€¢aek)L* = (—1)Ftle,.
As the associated extremal box in [0, R] is such that points R —a + 1, -+, R leave the box on the
right side, whereas the other ones leave it on the left side, ({, x) is Cycle-free and the right-hand
side of (24) equals (—1)f*1e,. This concludes the case L = 1. The situation when R = 1 is similar.

Suppose next that min{L, R} > 2. Then I and J are singletons, written as I = {u} and
J+ = {v}. First, associate matrices P to ¢ and @ to x respectively.

A K
where o is the permutation of {R,--- ,d} equal to the identity if u = R, and to the transpo-
sition (u, R), if u # R. Set €, = 1, if u = R, and ¢,, = —1, if u # R. Observe that :

Ip_1 O .
o Let P= < Rl ) € GLq(R), with A = (—Licr;)r<i<di<j<r-1, K = (Li=o(j)) R<i j<d

tp-1 _ ( {r-1 (loyern)ici<r-1,r<j<d
0 (15(j)=i) R<i<d,R<j<d ’

We have { = (ALP)(AE e;) and (1" = €, AL™L (*P71) (AL . €;), using (8).

L B

o LetQ = ( 0 I, ) € GL4(R), with B = (—lie, )1<i<r,rt1<j<d and L = (1,—-(;))1<i j<r,

where 7 is the permutation of {1,---, R} equal to the identity if v = R, and to the transpo-
sition (v, R), if v # R. Set €, =1, if v = R, and ¢, = —1, if v # R. Then :

t—1 _ (1:(j)=i)1<i<R,1<j<R 0

(Ir(yes) r+1<i<di<j<r  Ir—1

Also, ¥ = (ABQ) (AL pei) and X1 = ¢, (—1)(B=DEAR=L (tQ=1) (AR Le)). Therefore, using
that 7(j) e J_ & j=R:

Ro1 . (R-1)L rR—1 (1;¢y=i)1<i<r—1
(/\ H)(X ) = Ev(_l) Aj:l lr(j)eJR
(1r(j)et, ) R+1<i<d

Via (26), Uy (Int(C, X)) = eyep(—1)F-DEFAL-DtdtR S 0 A e e, (=1)1 0 e, Ay,
proceeding as in step I of theorem (3.6), where :

(1T(j):i)1§i§Rfl (lo(j)eli)lgingl
Ay = Lr(hyear | Llizw , lo(h=r
(1T(j)EJi R+1<i<d / 1<j<r-1 j=R 1U(j):i)R+1§i§d R+1<j5<d

Step 2 : Define ¢ : [R,d] — [1,R]U{=}, by p(i) =j < i € I;, and ¥ : [, R] — [R,d] U {+},
by ¢ (i) = j & i € J;. To distinguish R in [1, R] of R in [R,d], we write it as R'. Set n = ¢ o ¢,
when it is defined and denote by m,, the number of limit cycles of n in [1, R]\(J, U{v}). An orbit
under iterations of 1 is written as Orb,,. Considering [R,d]U[1,R] as (d,--- ,R, R’,---,1),if ({,x)
is Cycle-free, write exit(w) = +, if starting from w € (d,--- , R) and iterating successively ¢ and
1, the exit is on the right. A similar definition holds for w € (R/,--- ,1).

We now suppose that R < w < d and compute A,,. First and via column operations :

Ay

_ Cutv Ale,#zé(@j — en(i) Ly () Mo er, ifw =, .
—€u€v Y i, @ With o = As:1,sg{j,v}(es = en(s) Ly (s)u) Nj €R Mo Ep(w) s if W F# .
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Assume next that w # u. Then :

Q; = Z (_]‘)#A NseA €n(s) AteB €t /\j er Ny €o(w)-
A AN(JyU{v})=0
B=[1,R/I\(AUJyU{v})
Above, non-zero contributing subsets A must check n(A) = (AU {j,v})\{R’, ¢(w)}. Distinguish
the following cases :

o If {j,v} = {R',p(w)}, a non-zero contributing A verifies n(A) = A and is a union of limit
cycles for n in [1, R']\{v}\J,. As in the proof of theorem (3.6) : a;; = 1,,,, —0(1j=r — Lj=p(w))-

o If v & {R',p(w)} and j = R/, a non-zero contributing A is a union of limit cycles for n in
[1, R'\{v}\J, and a sequence of the form (p(w),n(p(w)), -+ ,nP(w(w))), with p > 0, and
"t (p(w)) = v. Then o = 1mn:o veOrb, (p(w))* A similar reasoning provides :

_17”77:0 1v€OI‘b,,(R’)’ ifvg {Rlv @(w)h J= @(w)v
aj =19 “lm,oljcOrb, (o)) i.fj g R, p(w)} v =R,
Lm0 LicOrb, (rry> 7 & {7 p(w)}, v =p(w).

o If {j,v} N{R,p(w)} = @, a non-zero contributing A is a union of limit cycles for n in
[1, R\{v}\J. and of two sequences of the form (p(w),n(¢(w)), -, nP(¢(w))), with p > 0,
and (R, n(R'), -+ ,n%(R)), with ¢ > 0, satisfying {n?™!(¢o(w)),n?"*(R’)} = {j,v}. Then :

@ = L, (1veOrbn(w(w»,jeOrbn(R’) - 1jeOrbn<¢<w>>,veOrbn(R@) :

Thus the above formula is valid in all cases. Finally, if R<w < d, w # u :

€Dy = Ly, =0 (_lexit(w):+7exit(R’):— + lexit(w):—,exit(R'):+)

= Lm,=o (1exit(R’):+ - 1exit(w):+) :

In the same way, €,6,A, = 1, =0 lexit(R'):+' Hence, (Int({,x))r = 1,”77:0(lexit(ﬁ,l,):Jr -
lexit(R):+) and (Int(¢, x))w = 1mn=0(1exit(w—1):+ — 1€Xit(w):+)7 R+1 < w < d. Similarly,
(Int(¢, X))w = 1mn=0(1exit(w+1):— - 1exit(w):—) = 1mn=0(1exit(w):+ - 1exit(w+1):+)7 l<w<
R — 1. This concludes point ).

ii) If L = 1, then Int((, x) has the form (—1)%*le, and every 1 < a < R can be taken. The case
when R = 1 is similar. Suppose next that L = R = 2. We list below, according to left exit points
a € [—1,0] and right exit points b € [1, 2], the vector given by point 4) :

o Let a=0. If b=1, we get (—1,1,—1). If b = 2, then ¥(1,0,0).

e Let a=—1. If b =1, then ¥(0,0,1). Ifb=2and 0 — 1, 1 — —1, then ¥(1,0,0). If b = 2 and
0—2,1— —1, then #(1,—1,1). If b=2 and 0 — 2, 1 — 0, then (0,0, 1).

This concludes the case L = R = 2. Suppose next that min{L, R} > 2 and max{L, R} > 3 and for
instance L > 3. We show that the dual cone of (—1)¢~1Vect{Int(¢,x), ¢ € &+, x € £_} is {0}.
Let then X = !(xy,--- ,z4) € R? be such that (—1)?"1(X,Int(¢, x)) > 0 for all (¢,x) € Ex x E_.
We prove that X = 0 by choosing adequate extremal boxes in [-L+1,---,—2,—-1,0]U[1,2,--- , R].
As above, let a and b be respectively the left and right exit points.
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e Take a = 0,2 < b < R and the graph (R R—-1— - >b4+1—-b-1— -1
0;-L+1—--L+2—--+—>—-1—1). Ifb=1, take a = —1 and the graph (R—> R—1—
+—>2—--1;-L+1—-—-L+2—---— —2—0— 2). This provides (—eg—p + €R—p+1);
forall1 <b < R. Thus xgp > xp—1 > --- > x1 > 0. Let now a < —1, b = R and the graph
R-1—-+++—»1—-0;-L+1—-—-L+2—---—a—-1—-a+1l—---——-1—-0—-R). If
a =0, take b=1 and the graph (R —» -+ —-2—-1;-L+1—>—-L+2—--- - -1 —1).
These cases give (eg—q — €g—at1), for all —L+1<a <0. Thus 2 > xg41 > -+ > x4 > 0.

e Leta=—-L+1, b= R and the graph (R—1—---—1——-L+1;-L+2—---—0— R).
We get e1 — er + eq, giving z1 + x4 > TR.
e Takea=0,b=1land R— -+ —>2—-0;-L+1— —-L+2— .-+ - —1 — 1). Thus

—ep—1t+er—ery1 and xg > xr_1+2R+1. Hence, this already provides z; = -+ =xr_1 > 0,
Trt1 = - =24 >0and xg = 1 + 24.

e IfR>3 takea=-1,b=2and(R—--—3—-0;1—-—-1;-L+1—-—-L+4+2— .- —
—-2—-0—2). IfR=2take(l1>—-1;-L+1——-L+2—---— —2— 0 — 2). This gives
er—1 —€er+ery1 —erto. Thuszpy) =--- =24 =0 and zp = 2;.

e If R> 3, take a = -1, b=2 and the graph (R— -+ —-3—>1—-—-1;-L+1——-L+2—

= —2—>0—>2). This provides —er_2 + eg_1 —er + er+1 — €r42, giving xR =0 and
thus X = 0. If R = 2, take a = —1, b = 1 and the graph (2 —» -1 ;-L+1— —-L+4+2 —
-+ — —2— 0 —1). This gives —e; + e35 — e4. Thus 1 = 0 and then X = 0.

This concludes the proof of point i7) of the theorem.

3.4 Non-singularity results

We finish this section by proving non-singularity results for Wg, Wy, Wg and Vg, Vi, Vg.
These are crucial for the sequel.

Proposition 3.16

i) For (C1,(2) € &4+ x &y, (C1,82) > 0. For each (1 € & 4, there is (2 € E4 with ((1,(2) > 1, and
for each (3 € €, there is (1 € &4 with (C1,(2) > 1. The same holds for & _ and E_. Thus, there
is a constant C' > 0 such that :

(—1)(Vr,Wr) = (=1)* (V5" Wg") > C and (-1)* (VL Wr) = (-)* (V" Wi*) > C.

ii) For some constant C > 0, (=1)¥Y Vg, Wg) |[IntOVr, W) ||Int(Vr, VL) > C. In par-
ticular, for amother constant C' > 0 : (=1)"1 Vg, Wg) > C'. We also have the equality
Ar = pr (VR WR)/T(VRr, Wg).

iii) We have |Wi* AWE* AVg| = [(Wr, VR)| [[Int(Wr, WL)|, as well as [Vi* A VES A Wg| =
|(Vr, Wr)| | Int(Vr, VL) In particular, using ii), each of the configurations (\Wi*, Wg*, V) and
(Vi*, V&*, Wg) in R? are non-singular.

Proof of the proposition :

i) Since C4 C (C¢ 4+)* (proposition (3.11)), we have (C1,(2) > 0, for all (¢1,(2) € &+ x &4. Fixing
(1, if this quantity were always equal to 0, then ¢; = 0, since C has non-empty interior. Finally,
remark that (1, (2) is an integer. The last point follows from theorem (3.2) and proposition (3.12).

ZZ) The last point follows from <VR,WR> = (1/pR)<VR,tMTWR> = ()\R/,DR><TVR,TWR>. Next,
using that Ort,, is an isometry for all 0 <n < d :

(Wr, Vi) [IntWr, Wo)|| [Int(Vr, Vi)l = (Wi* AWL), (V™ AVES))
= (Wr" AWLS V" AVLY)
= <W}%*’Vﬁ*> <Wf*7VLl*>a
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since S(Vg*) L SOWLE*), as well as S(Wg*) L S(Vi*). We conclude with point 7).

iii) The equalities |WE* AWE* AVg| = [(WE* A WE* )2, Vr)| = [(Wr, VR)| [IntOVr, WL
treat the first case. The second one is similar.
O

We finally study the behaviour of quantities like (M, X),>0, when X € S(Wx*). By definition
of S(W%*), such a quantity tends exponentially fast towards 0, as n — +o00. We show that the
convergence is uniformly exponential.

Proposition 3.17
There exist constants 0 < ¢ < 1 and C > 0 such that :

Vn >0, VX € SOVL*), | M, X|| < Cc|| X||

Vn >0, VY € SOWL), |M_,Y]| < Cc||Y]|

and :

Vn >0, VX € S(T”Vf;;*), It (M) X]|| < Cc™|| X]|]
(28)
V>0, VY € S(TVEY), [H(M_)Y ] < Cer|[Y].

Proof of the proposition :

Step 1 : We first make reductions, using the matrix K, = diag(1,7,---,7%71), as in [7]. Let
M(6,m) € M, satisfying Condition (1). Recalling definition (3.1), introduce A; =1+ 1 +---+d;,
1<j<R-1,and Bpyp—j=m+ - +nNr+r—j, B <j <d. Then KTM((S,U)K;l =rM(&,n),
with (&',7') associated to A} = A;/r/,1 <j < R—1,and By, p_; = Bryr—j/r®*"7, R<j<d.
Condition (1) thus implies that for r close enough to 1, M(é’,n') € M and a condition similar to
(1) holds with another constant.

Setting M’ = rY(K, MK ), we get K,M,K 1 = r"(M'),, n € Z. Also, the subspaces
related to M’ and defined by Oseledec’s theorem are the images by K, of those related to M. We
thus only need to show the proposition with ¢ = 1. Since the Lyapunov exponents of (M’,T) verify
Yi(M',T) =~ (M, T) —logr, 1 <14 < d, we also suppose that yg(M,T) # 0, up to perturbing.

Step 2 : We show that the first inequalities in (27) and in (28) are equivalent. For instance, denote
by p : R — R? the orthogonal projection on S(W4*). Then, for some constant C' and a.s :

vX € S(Vg"), I1X] < Cllp(X)], (29)

since if this was not true, it easily contradicts point i) of proposition (3.16). Suppose next that the
first inequality of (27) holds and take n > 0 and X € S(T"Vz*). As *(M,,)X € S(V£*), denoting
by (f1,-++, fr—1) an orthonormal basis of S(Wz*), we get :

(M) X | < Cllp(" (M) X)I| < C Y I(X, Mo fi)] < €| X
i=1

The proof of the other direction is similar, as well as that of the equivalence between the second
inequalities in (27) and (28).

Step 3 : We prove (27). By symmetry, we only consider the first inequality with ¢ = 1, as
discussed above. As in [7], let VI = V_;(—1,4+00,—j), 1 < j < L. Fixing 1 < j < L, (3) gives
M, V) =V, _1(=1,+00,—75), n > 0. Remark that each component of V,,_1(—1, 400, —j) is the
difference of two probabilities and thus is bounded by one. According to the previous discussion,
we distinguish two cases :
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—If yr(M,T) > 0, then (see [7]), VI +---+ VL =0and (V1,--- ,VE~1) span S(Wg*) and
| Ai<j<r—1 V7| > 1. Therefore, the result follows from the previous remark.
~ If yr(M,T) < 0, observe that the (V!,---, V) are linearly independent. We consider the

cone D C AR of point vi) in proposition (3.11). Recall that C; + C D and remark that point 4)
of proposition (3.16) still holds, when replacing C; 4 by D, as C; C (D)*. We will show that :

(—1)EHEDE (ALl e p, (30)

Let us show that this proves the result. First, ||(Ai<j<r—1V?)>*| = || Ai<j<r—1 V7| > 1 and
this quantity is clearly bounded. Next :

(—DE I EDRAR (N g VI VES) = ()BT EEDERR (A oy VI VR > €, (31)

for some constant C' > 0. Indeed, ||(A1<j<r—1V?)>*|| > 1 and at least one component in the
decomposition of (—1)L=1H@=DR(A ;1 VI)1* according to the elements ¢ defining D is not
small. Since all components of (—1)%Vy are greater than some constant ¢/ > 0 (proposition (3.12)),
we get (31) via point 4) of proposition (3.16). As a result, (29) is valid, when replacing S(Wg*)
by S(/\lSjSL,le). Since the sequence (anj)nZO is bounded, for 1 < j < L — 1, this proves the
first inequality in (28). We finally show (30). Observe first that :

(=D Migjcna V= Mgicpa | D, (Pros(§) = Prosa()ei + erj |
1<i<R

setting P/(j) = S37_, Pi(—1,+00, —1). Using lemma (2.4) :

d
Ll . .
(71)L71 (/\jLz—llvj) = (71)(d71)R AlSjSR <6j — Z ei(Pll%_j(Z — R) — P;%—j—l(l — R)))
i=R+1

d
= (—DUIE Ao <6j - Z ei(Qj4+1(i) — Qg‘(ﬂ)) )

i=R+1

with Q;(i) =1 — Pp_;(i — R). Remark that Qr41(i) =0, R+1 < i < d. Consequently :

d
(—1)E-1H(d-DER (/\Jpz—llvj)u = A1<j<R <6j +---4+erp+ Z €; Qj(i)> . (32)
i=R+1

Fixing 1 < j < R, i — @;(i) is a non-increasing function, verifying 0 < @;(¢) < 1. Thus, for
1<j<R wegetej+ - -+er+ Z?:RH e; Q;(i) € Vecty {3 o oy es | R<m < d}.

In (32), multilinearity gives that (1)~ 1H(d=D7 (/\JL:_l1 Vi )L* is a non-negative linear combination
of elements of the form Ai<j<g(e; + -+ em,), with m; > R for all 1 < j < R. Such an element
can clearly be written as an element generating D. This proves (30) and concludes the proof of
the proposition.

O

4 Invariant measure equation and Law of Large Numbers

4.1 Characterization of (/M)

We consider condition (I M), described in definition (1.7) and show how the previous algebraic
study clarifies the analysis. We discuss the invariant measure equation according to the sign of
Yr(M,T). We follow the strategy of [7] and begin with a reformulation of the equation P*m = .
Recall that P*f(w) = >, cp po(T%w) f(T™*w).
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Proposition 4.1
The equation m = P*m is equivalent to the equality Z = TZ, where :

R

ZT " <+pR> T "z + ZTl ! <M> T e, with x = prm. (33)
PR Pt PR

Ergodicity of (Q,F,u,T) then implies that the equation m = P*m is equivalent to the equality
Z = —c for some constant c. In this case c =) ., [ zp.m dp.

Proof of the proposition :
Observe that the equality m = P*m can be written as :

R L
T = pom + Z T "p, T "m + Z Tlp_T'x,
r=1 1=1

or, equivalently, with = pr7 :

1_p° ZT (p’“>T—Tx+ZTl <p l)T:r,

=1 PR

that is :

1_
po ZT < +PR>T erZTll(pH_ - L>T11
PR

I—2 PR

_ _ZT r+1 <pr +pR>T_T+1x+ZTl (p 1+ -HU—L)sz.
PR Pr

=1

4t 1—
Since—<M>x—<pl++pL>x+( po)sz,wegetZ—TZzO.
Pr Pr Pr

As all steps proceeded by equivalence, this proves the first claim. The formula for the speed follows
by taking expectation in (33), using the definition of 7.

O

We next rewrite (33), using some conjugate of *M. Introduce the following auxiliary matrices.

Definition 4.2
i) Let N € GL4(R) be the random matriz defined as (suppressing the first case, if R=1) :

—Ti7taq;, i=1,1<j<R-1,
TRIN; ;=4 Ti7'bpipy, i=1 R<j<d,
Lieji1, 9<i<d.

it) Define (¢;)o<i<a as ¢; = —a; for2 <i < R—1 (if R > 3) and ¢; = bpyp—; for R < i < d.
Define ® € GLq(R) b

]-j:17 1= ]-7

D(i,j) = -0 i>2, j&[2,d+2—i]
T 2¢cjqie, 122, j€[2,d+2—1].

Remark. — Notice for the sequel that ® and &' are bounded maps. Also *®e; = e;. The next
proposition directly follows from proposition (4.1) and definition (4.2).

32



Proposition 4.3
i) One has M = (T®)~! (TR-1N) &.

it) With the notations of proposition (4.1), the equation m = P*x is equivalent to the equality :
T'X = NX +cep, with X =T g ...z ... T 1),
iii) Set Y = T—E+2t@=1 T=RX . Then (IM) is equivalent to the two conditions :
o There exists Y and a constant ¢ such that Y = MTY + ce;.
o We have (Y,e1) >0, p—a.s, and ||Y|| € L' (u).

Also, up to a positive multiplicative constant, ¢’ is the average speed of the random walk.

We next characterize (IM), proving theorem (1.8) :

Proof of theorem (1.8) :

i) Suppose that yr(M,T) = 0. Since the Law of Large Numbers holds, the average speed is 0.
If (IM) holds, then for some Y € R? with ||Y|| € L!(u), we have Y = *MTY and (Y,e;) > 0,
@ — a.s. Therefore, the Lyapunov exponent of Y with respect to (‘M,T~1) (cf definition (7)) is
< 0, and similarly with respect to (!:M ~1,T). This property is only shared by vectors colinear to
Wg. Thus, for some 7, we have Y = yWg. As ||[Wg|| = 1, we deduce that v € L'(). One also
checks that v = Typg, where pg is defined in proposition (2.6), ii).

Consider next the first coordinate in the equality Y = yWgr. As (=1)"Y(Wg,e1) >0, u— a.s
(corollary (3.4)), we get that (—1)?"'y > 0, u — a.s. Proposition (3.16) then provides A\g =
YV, Wr)/(TYT Vg, WRg)). Setting ¢ = (—1)41~(Vg, Wg) gives the result. Reciprocally, if \g =
¢/Te with o € L'(p) and ¢ > 0, pp — a.s, then MTWpg = ppWg can be rewritten as :

o (g Sr) = (e ) oy
and Wg ¢/(Vgr, Wg) has the desired qualities. So (IM) is verified.
i1) Suppose that yg(M,T) < 0. Decompose first Y and e; with respect to suitable subspaces :
Y = H+ K +Wg, with H € S(Vi*), K € S(V&*), v € R,
e1 = Ho+ Ko + v0Whg, with Hy € S(V1*), Ko € S(V£*), 70 € R.
Using Oseledec’s theorem (see [17]), equation Y = ‘MTY + c'e; is equivalent to :

H="'MTH + ¢ Hy, K ="MTK + Ky, v=prTv + . (35)

Proposition (3.16) implies that Hy, Ky and 7y are bounded quantities. Let us check that the
solution of the previous system is given by :

H=—cY oy (TN (MY T ("M 1)) T~ Hy
K=¢Y 00 ("M---T" (M) T" Ky

y=¢ ano Ty (PR e 'Tn_lpR)-

Considering K for instance, the expression follows by iterations. Indeed, T" K is bounded along
a subsequence, by Poincaré recurrence theorem, so (tM c T M )) T"K tends to zero along
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this subsequence, via proposition (3.17). As Y- ., (*M ---T""1(*M)) T" K, converges (proposi-
tion (3.17)), this gives the result. Proposition (3.17) also implies that H and K are bounded
quantities. To conclude this preliminary analysis, remark that vo = (e1, Vgr)/{(Vr, Wg). Since
pr = AR(TVR, TWRg)/(Vr, Wg), we get that :

C/
’}/:
{

— 7 with Z = TV, Ar--T" " \gR). 36
VR7WR> 7W1 Z < R,61>( R R) ( )

n>0

We next have the following discussion :

e If the integrability condition is verified, one can then solve Y = {MTY +e; with ||V € L ().
Back to (IM), this provides 7 € L'(u) with 7 = P*r and p(m # 0) > 0. To get a non-
negative solution, observe that || < P*|r|, pu—a.s. But this leads to a sub-invariant quantity
in proposition (4.1). As ergodicity ensures that a sub-invariant quantity is invariant, we
deduce that |r| = P*|w|, u — a.s. Therefore (see [16]) |r| > 0, u — a.s, and the quantity
|7|/ [ |«| dp checks (IM).

e Suppose that (IM) is verified. The average speed ¢ in the Law of Large Numbers is > 0, as
the random walk is transient to the right. If ¢ = 0, the argument of [7] about the recurrence of
the ergodic sums is still valid and implies the recurrence of the random walk. Thus ¢ > 0. If
Y verifies Y = *MTY +ceq, then proposition (3.16) implies that the corresponding quantities
H, K and v are integrable (recall that H and K are bounded). Thus Z € L!(u), as ¢ > 0,
meaning that the first component of > (Ag-+-T" *Ag)T™Vg is in L (p). The case of the
other components is deduced from the equality MVr = AT Vg, as the quantities Ag and
1/Ar are bounded.

This ends the proof of point 7). The proof of i) is symmetric.
O

Remark — Let us focus on the transient case yg(M,T) < 0. If min{L, R} = 1, as explained in
the introduction, then the condition for (IM) reduces to > ~o(Ag---T" *Ag) € L*(p). This is
also the case if L = R = 2, since theorems (3.13) and (3.15) say that (Va,*(1,2,1)) is uniformly
positive. Such a remark cannot be made if min{L, R} > 2 and max{L, R} > 3, as the algebraic
dual cone of the natural cone where any Vg lies is reduced to {0}.

Proof of proposition (1.9) :
Recall the definition of D given in (5) and the fact that the hypothesis yg(M,T) > 0 implies
y(D,T71) < 0. Let W and p be as in the proposition. As in [8], let also :

Ve =T 4 (1/Tp--- T 2p) (1 —1/T?1p),--- , (1 =1/Tp),(p—1)) and A\g = 1/T~E+2p,

It was shown that MV = A rT Vg and Vi is colinear to Vi. At this point of the discussion, we
make an apology for the incorrect corollary mentioned at the end of the statement of proposition
(8.4) of [8] on the boundedness of logn. Indeed ergodicity implies that 7 is necessarily a constant
multiple of |[Vz||, but this quantity can be close to 0. It is in fact the heart of the problem.

It is now plain that A\g = Ag||TVz||/||Vz|| and Vg = 6Vz/||Vz| for some random variable § € {+1}.
However it is easily seen that ¢ is T-invariant. By ergodicity, d is constant and we now suppose that
Vi = Vr/||Vr||. Considering next the condition for (IM) in theorem (1.8) when yr(M,T) > 0 :

S UT Ag---T"Ag)™ ' T7"Vg =

n>1

> (T Ag---T7"Ag)~' TV, (37)

n>1

V|

As mentioned in the course of the proof of theorem (1.8), the integrability condition of the quantity
appearing in (37) is equivalent to that of any of its component. Since the last component of Vi
checks (Vg)q = 1/T~'Ag — 1, the last component of the right handside of (37) is a telescopic sum
simply equal to —1/(T~*Xg||Vz||). Using the expression for Vi and the fact that log p is bounded,
we get the result. g

Notice that the previous arguments also give :
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Corollary 4.4
Ifyr(M,T) > 0, then the components of 3., <, (T *Ar--- T~ "Ag)~! T~"Vg are all bounded away
from 0 and have the same fized sign. A similar statement holds in the case when yr(M,T) < 0.

4.2 Classification with respect to speed

Recall that the quenched LLN always holds (corollary 9.2 of [8]). We now show theorem (1.10),
providing a criterion for the non-zero speed of the random walk. Recall that 7(a,b) denotes the
exit time of the maybe half-infinite interval [a + 1,b — 1].

Proof of the theorem (1.10) :

Consider point ), the case of i7) being symmetric. Then 4 < 1 is proposition (9.1) of [8] and 2 < 3
is theorem (1.8). This also gives 2 = 1, by the argument of recurrence of the ergodic sums given
in [7] and mentioned at the end of the proof of theorem (1.8). We finally prove that 4 = 2.

As 1 holds, the recurrence criterion (theorem (1.4)) gives ygr(M,T) < 0. Set 7 = 7(—00,1) and
let m be the bounded positive invariant density defined in proposition (9.1) of [8]. We define a
finite measure v on (2, F) for all B € F by :

T—1

v - | [ [ 3 1ata) def] ™1 () du(w), (39)

k=0

where (wg)k>0 is the sequence of the environments seen from the particle. Using the invariance
properties of 7 (see proposition (9.1) of [8] and proposition (3.6) of [7]) and following the proof of
theorem (3.1) of Alili [1], we deduce that Pv = v and that v is absolutely continuous with respect
to p. This concludes the proof of the theorem. O
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