
HAL Id: hal-00789986
https://hal.science/hal-00789986

Submitted on 19 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing discriminating and generic words
Gregory Kucherov, Yakov Nekrich, Tatiana Starikovskaya

To cite this version:
Gregory Kucherov, Yakov Nekrich, Tatiana Starikovskaya. Computing discriminating and generic
words. String Processing and Information Retrieval, Oct 2012, Cartagena de Indias, Colombia. pp.307-
317, �10.1007/978-3-642-34109-0_32�. �hal-00789986�

https://hal.science/hal-00789986
https://hal.archives-ouvertes.fr

Computing Discriminating and Generic Words

Gregory Kucherov1, Yakov Nekrich2, and Tatiana Starikovskaya3,1

1 Laboratoire d’Informatique Gaspard Monge, Université Paris-Est & CNRS,
Marne-la-Vallée, Paris, France, Gregory.Kucherov@univ-mlv.fr

2 Department of Computer Science, University of Chile, Santiago, Chile,
yakov.nekrich@googlemail.com

3 Lomonosov Moscow State University, Moscow, Russia,
tat.starikovskaya@gmail.com

Abstract. We study the following three problems of computing generic
or discriminating words for a given collection of documents. Given a
pattern P and a threshold d, we want to report (i) all longest extensions
of P which occur in at least d documents, (ii) all shortest extensions of
P which occur in less than d documents, and (iii) all shortest extensions
of P which occur only in d selected documents. For these problems, we
propose efficient algorithms based on suffix trees and using advanced data
structure techniques. For problem (i), we propose an optimal solution
with constant running time per output word.

1 Introduction

Many text processing applications raise different variants of the follow-
ing problem: given a collection of sequences, that we call documents, one
wants to compute words (strings) that occur in a certain subset of these
documents only, and therefore discriminate these documents against the
others. Such words are called discriminating or distinguishing for the cor-
responding set of documents. A complementary problem is to compute
words that are common to a selected subset of documents. Such words
are called generic or characteristic for the corresponding subset.

In computational biology, for example, identifying words occurring ex-
clusively in the genomic sequence of one species (or a family of species) is
of interest (see e.g. [4]). Words common to a subset of biologically related
DNA sequences (and preferably not occurring in other sequences under
consideration) often carry a biological function related, in particular, to
regulation, repair or evolutionary mechanisms. As a prominent illustra-
tion, the problem of identifying genomic words occurring in a given col-
lection of upstream sequences of orthologous genes and absent in a set of
upstream sequences of unrelated genes is one of the classical problems in
computational biology [15]. Other applications include the identification

of genomic markers, or probe design for DNA microarrays. Besides com-
putational biology applications, many methods of automated text catego-
rization and text mining are based on discriminating and generic words.

In this paper, we study three problems related to discriminating and
generic words. In all of them, we will be looking for strings which are
extensions of a given pattern P (which may be the empty word), i.e. for
strings which have P as a prefix. Assume we are given a collection of
strings (documents) T1, T2, . . . , Tm of total length n.

The first problem is to compute all maximal generic words: given
a pattern P and a threshold d ≤ m, we want to report all maximal
extensions P of P occurring in at least d distinct documents. Maximal here
means that any extension of P should occurs in less than d documents.

In the second problem, called minimal discriminating words, we
need to report, given a pattern P and a threshold d ≤ m, all extensions
P of P which occur in at most d documents and which are minimal, i.e.
any prefix of P occurs in more than d documents.

Finally, the third problem computes all the minimal extensions P of
P which occur only in documents within a given subset Ti1 , Ti2 , . . . , Tid .
Minimality condition means that any prefix of P must occur in documents
other than Ti1 , . . . , Tid .

As an example, consider T1 = ababa, T2 = aabbba, T3 = bbabcb. The
maximal generic words for d = 2 (and P = ε) are ab, bab and bba. Note
that ab occurs in the three strings, but any of its extensions occurs in one
string only. Minimal discriminating extensions of P = b for d = 2 are bab
and bb, where bab discriminates {T1, T3} and bb discriminates {T2, T3}.

We are primarily interested in linear-space solutions to our problems.
All our solutions are based on the generalized suffix tree of T1, T2, . . . , Tm,
denoted GST , that can be viewed as the suffix tree for the string
T1$1T2$2 . . . Tm$m. A leaf in the generalized suffix tree is associated with
a suffix of some document Ti together with the index i of this document.
It is well-known that GST can be computed in O(n) time.

A summary of our results is as follows. For the first problem we pro-
pose a solution with the optimal time bound O(|P | + output), based on
a result for a variant of the orthogonal range reporting problem. Here-
after, output denotes the number of reported words. We consider a spe-
cial type of three-dimensional orthogonal range queries over a set S of
points (x, y, z) such that 1 ≤ x ≤ |S| and 1 ≤ y, z ≤ log n, i.e. two of
the three coordinates are logarithmically bounded in n. We call it the
extended one-dimensional range reporting. For this case, we show that a
range query Q = [a, b] × [0, c] × [0, d] can be answered in optimal time

O(1 + npoints), where npoints is the number of reported points, using a
data structure of O(|S|) space and a universal table of o(n) space.

For the second problem, we propose a solution with running time
O(|P | + log log n + output). The solution is based on a reduction to a
problem from computational geometry. For the third problem, we pro-
pose a solution with time complexity O(|P | + d log log m · (1 + output)).
To obtain this, we consider a special variant of weighted ancestor queries
problem, to which we propose an optimal solution inspired by the one
proposed in [10] for a similar problem.

It is important to note that all our algorithms output the resulting
words by reporting their loci in GST , rather then spelling the words
themselves. This is because the latter may cost up to Ω(n2) time, which is
prohibitive, while the number of loci is obviously O(n). On the other hand,
an enumeration of the set of loci may be sufficient for many applications
(possibly as a basis for further analysis, see, e.g., [10]). Note also that for
the second and third problems, the additive term |P | that appears in our
complexity bounds comes from locating the locus of P in GST and can
be deleted if P itself is specified by its locus in GST .

We assume familiarity with suffix trees. Given a suffix tree, the locus
of a string P is defined as the highest explicit node labeled by an extension
of P . The string depth of a node is the length of its label. For each node v
of the generalized suffix tree GST , we store its weight weight(v) defined
as the number of distinct documents whose suffixes occur in the subtree
rooted at v. Values weight(v) can be computed in O(n) time [3].

2 Maximal Generic Words

Consider a set of documents T1, . . . , Tm of total length n. Our first prob-
lem problem is to efficiently answer the following queries: given a pattern
P and a threshold d ≤ m, enumerate all extensions P of P occurring in
at least d documents and such that any extension of P occurs in less than
d documents. We seek a solution using O(n) space.

We present our solution in two parts. First, we reduce the solution
to a special kind of three-dimensional orthogonal range reporting queries
in which two of the three coordinates of the involved points are logarith-
mically bounded. We call these queries extended one-dimensional range
reporting. The data structure supporting these queries will be described
separately in the second part.

2.1 Main algorithm

For a node u of GST , we denote by maxchild(u) the child node of u with
maximum weight. For j ∈ [1..m], we say that a node u is a j-node if
weight(u) ≥ j and weight(maxchild(u)) < j. It is easily seen that for a
given d, the loci of maximal generic words are precisely the d-nodes.

Consider sets Li for i = 0, 1, . . . ,m/s and s = ⌈log n⌉, where Li con-
tains all j-nodes for j ∈ [is + 1..(i + 1)s]. We further define trees Ti,
i = 0, 1, . . . ,m/s. Essentially, Ti is a compacted trie on labels of nodes
from Li. Nodes of Ti are the root of GST , nodes of Li, and all nodes of
GST which have at least two children containing a node from Li in their
subtrees. We connect nodes u, v with an edge if there is no other node of
Ti on the path connecting u and v in GST . Furthermore, we label this
edge with the string written along this path. Note that Ti contains at
most 2Li nodes and therefore occupies O(|Li|) space.

For every node u ∈ Ti we store its rank preordi(u) in the pre-order
traversal of Ti, and the range [minordi(u),maxordi(u)] where minordi(u)
and maxordi(u) are respectively the minimal and the maximal ranks of
nodes in the subtree of Ti rooted at u.

For each Li, i = 0, 1, . . . ,m/s, we maintain a data structure Ei storing
a set of three-dimensional points. For every node u of Li, Ei contains a
point pu, where pu.x = preordi(u), pu.y = min(s,weight(u) − i · s), and
pu.z = max(0,weight(maxchild(u)) − i · s).

Observe that x-coordinates of all points in Ei are distinct integers
bounded by 2|Li|, and that y- and z-coordinates belong to the interval
[0, ⌈log n⌉]. Ei will be defined in Section 2.2, it takes space O(|Li|).

Computing all maximal generic extensions of a query pattern P is
done as follows. First we find the locus of P , denoted v, in the tree Td′

with d′ = ⌊d/s⌋ (i.e., the node of Td′ of minimal depth with the label
starting with P). This takes time O(|P |). Then, we compute all points
pu ∈ Ed′ belonging to the three-dimensional range

[minordd′(v),maxordd′(v)] × [d − d′s, s] × [0, d − d′s − 1]. (∗)

We will show in Section 2.2 how such queries will be answered in time
O(1 + output), where output is the number of reported points, on the
data structure Ed′ . A node u is a d-node if and only if pu.y ≥ d− d′s and
pu.z ≤ d− d′s− 1. Therefore, answering the above query provides all the
d-nodes located in the subtree rooted at v, that are loci of the desired
maximal extensions of P .

To show that the data structures Ei take space O(n) altogether, it
is sufficient to show that

∑
i |Li| = O(n). First note that this sum is

equal to
∑

u∈GST ⌈(weight(u)−weight(maxchild(u)))/s⌉ since every node
u participates in ⌈weight(u) − weight(maxchild(u)))/s⌉ sets Li. On the
other hand,

∑
u∈GST (weight(u) − weight(maxchild(u))) is equal to the

total number of j-nodes for all j ∈ [1..m]. Since each j-node has at least
j leaves in its subtree and no j-node is an ancestor of another one, the
number of j-nodes is at most n/j for any fixed j. Therefore

∑
i |Li| =

1
s

∑m
j=1(n/j) + O(n) = O(n).
We also have to explain how trees Ti are constructed. Recall that

a node u of GST belongs to Li if weight(maxchild(u)) < (i + 1)s and
weight(u) ≥ is + 1. Furthermore, u belongs to Ti if either it belongs to Li

or the weight of at least two children of u is bigger than (is + 1), which
means that u has at least two children each containing a node from Li

in its subtree. Therefore, given a node u, each index i of a tree Ti that u
belongs to is retrieved in constant time. Thus, we can perform one post-
order traversal of GST and build all Ti, i = 0, 1, . . . ,m/s, in time O(n).
Once the trees are built, we need O(n) time to assign the rank preordi(u)
and the interval [minordi(u),maxordi(u)] to every node u of every tree Ti.
Observe also that the label of an edge of Ti connecting nodes u, v of GST
can be computed in O(1) time if we know string depths of u, v and the
label of the last edge on the path connecting u and v in GST . Therefore,
edge labels can be computed in O(n) time as well.

We conclude with the final result of Section 2. Its proof follows from
the previous discussion, subject to the description of data structures Ei

that will be given in the next section.

Theorem 1. For any pattern P and an integer d, the loci of all maximal
extensions of P can be found in time O(|P | + output), where output is
the number of such extensions. The underlying indexing structure takes
O(n) space and can be constructed in O(n) time, where n = |T1|+ |T2|+
. . . + |Tm|.

2.2 Extended One-Dimensional Range Reporting Queries

We now describe the data structures Ei that allow queries (∗) to be an-
swered in constant time per output point. We reformulate the problem as
follows. Suppose that a set S of 3D integer points is given and for each
point p ∈ S, we have 1 ≤ p.x ≤ |S| ≤ n, 0 ≤ p.y, p.z ≤ log n. Our goal
is to report all points of S within a 3D range Q = [a, b] × [0, c] × [0, d]
in O(|Q ∩ S| + 1) time using space O(|S|). Moreover, we will also use a
universal look-up table of size o(n) shared by the instances of our data
structure (i.e. by different Ei). We assume that all points of S have differ-
ent x-coordinates, which is the case in our setting. Our approach is similar

to the solution of the external memory point location problem from [13].
Similar problems for d ≥ 2 dimensions were studied in e.g. [9]

We first describe data structures for a small set of points in Proposi-
tion 1 and Lemmas 1, 2, that are used in the final result (Lemma 3).

Proposition 1. If |S| ≤ log2/3 n, we can store a set S in an O(|S|)-
space data structure so that for any Q = [a, b]× [0, c]× [0, d] all points in
Q∩ S can be answered in O(|S ∩Q|+ 1) time. The data structure uses a
universal lookup table of size o(n).

Proof. We can assume w.l.o.g. that coordinates of points in S belong
to the rank space, i.e., coordinates are integers and 0 ≤ p.x, p.y, p.z ≤
log2/3 n − 1 for all p. If points are arbitrary integers, we can apply the
reduction to rank space technique [7] and obtain a set of points that
satisfies this condition. Answers to all possible queries for all such S are

stored in a lookup table. There are less than (3 log2/3 n)log
2/3 n different

sets S, log8/3 n queries can be asked, and the answer to a query contains
O(log2/3 n) points. Therefore the lookup table has o(n) entries and can
be stored in o(n) space. ⊓⊔

Lemma 1. Suppose that for every point p ∈ S, 1 ≤ p.x ≤ log2 n, 0 ≤
p.y, p.z ≤ log1/3 n. There exists a data structure that uses O(|S|) space
and a universal table of size o(n) while answering a query Q = [a, b] ×
[0, c] × [0, d] in time O(|S ∩ Q| + 1).

Proof. We divide S into blocks Wi such that each Wi contains ⌊log2/3 n⌋
points except possibly for the last block that may contain less. For any
pi ∈ Wi and pj ∈ Wj , pj .x > pi.x iff j > i. For every pair 0 ≤ i, j ≤

log1/3 n, we store the list Lij . If a block Wt contains points p such that
p.y ≤ i and p.z ≤ j, then Lij contains one representative point pt ∈ Wt,
pt.y ≤ i and pt.z ≤ j. Let mt denote the minimal x-coordinate of a point
p ∈ Wt. Since there are O(log4/3 n) blocks, we can search among mi and
find the biggest mi ≤ a for any a in O(1) time using a Q-heap data
structure [6]. Furthermore, we can find all points in Wt ∩Q for any query
Q using Proposition 1.

Consider a query Q = [a, b]× [0, c]× [0, d]. We find the largest ml ≤ a,
the largest mh ≤ b, and report all points in Q∩Wh and Q∩Wl. Then we
find all points p ∈ Lcd such that ml+1 ≤ p.x ≤ mh. For every such p we
examine the block Wp containing p and report all points from Q∩Wp. ⊓⊔

Lemma 2. Suppose that for every point p ∈ S, 1 ≤ p.x ≤ log2 n, 0 ≤
p.y ≤ log n, and 0 ≤ p.z ≤ log n. There exists a data structure that uses

O(|S|) space and a universal table of size o(n) while answering a query
Q = [a, b] × [0, c] × [0, d] in time O(|S ∩ Q| + 1).

Proof. First, we consider the case when p.x ≤ log2 n, p.y ≤ log n, and
p.z ≤ log1/3 n. Our data structure is a range tree [1] Ty on y-coordinates.

Each leaf of Ty contains one point and each internal node has log1/3 n
children. Every internal node v ∈ Ty contains a data structure Fv. For
each point p in the range of v, Fv contains a point p′ with coordinates
p′.x = p.x, p′.z = p.z, and p′.y = i so that p also belongs to the range
of the i-th child vi of v. In other words, the y-coordinate of p is replaced
with the index of the child of v that also contains p. Fv is implemented
according to Lemma 1.

Consider a query Q = [a, b] × [0, c] × [0, d]. We can find O(1) nodes
u1, . . . , ut such that some children u1

i1
, . . . , u1

j1
, . . . , ut

it
. . . , ut

jt
of u1, . . . , ut

respectively cover [0, c]. For every such uf we answer a query [a, b] ×
[if , jf] × [0, d] using the data structure Fuf .

The case when 1 ≤ p.x ≤ log2 n, 0 ≤ p.y ≤ log n, and 0 ≤ p.z ≤ log n
is handled using the same method. We construct a range tree T on z-
coordinates. Each internal node u of T has degree log1/3 n. Again, we
replace the z-coordinate of each point p in the range of u with the index of
the child of u that also contains p and then build a tree T

u
y on those points.

A query is answered by reducing it to O(1) queries on data structures T
u
y

as described above. ⊓⊔

Lemma 3. Suppose that for every point p ∈ S, 1 ≤ p.x ≤ |S|, 0 ≤
p.y ≤ log n and 0 ≤ p.z ≤ log n. There exists a data structure that uses
O(|S|) space and a universal table of size o(n) and allows queries Q =
[a, b] × [0, c] × [0, d] to be answered in time O(|S ∩ Q| + 1).

Proof. We divide the points into blocks according to their x-coordinates.
Each block Bk, k = 1, . . . , ⌈|S|/ log2 n⌉, contains all points p satisfying
(k − 1)⌈log2 n⌉ < p.x ≤ k⌈log2 n⌉. For every block Bs and each pair
0 ≤ c, d ≤ log n, we store a pointer to the last block Br, r < s, that
contains at least one point p such that p.y ≤ c and p.z ≤ d. Since there are
O(log2 n) pointers in every block, all pointers use linear space. For each
1 ≤ k ≤ ⌈|S|/ log2 n⌉, we also store a data structure Tk that supports
queries [a, b] × [0, c] × [0, d] on points that belong to a block Bk; Tk is
implemented as described in Lemma 2.

To answer a query [a, b] × [0, c] × [0, d], we report points in Bl ∩ Q
and Br ∩Q using Tl and Tr, where l = ⌈a/ log2 n⌉ and r = ⌈b/ log2 n⌉. If
r > l + 1, we examine all blocks Bi, l < i < r, that contain at least one

point p, p.y ≤ c and p.z ≤ d. In every such Bi, we report all p ∈ Bi∩Q. Our
search procedure visits every block Bi such that Bi∩Q 6= ∅. By Lemma 2,
we spend O(|Q ∩ Bi| + 1) time in every visited block Bi. Every visited
Bi, except of Bl and Br, contains at least one point p ∈ Q. Therefore the
total query time is O(

∑
|Q ∩ Bi| + 1) = O(|Q ∩ S| + 1). ⊓⊔

3 Minimal Discriminating Words

We now turn to the problem of computing words that discriminate a
subset of documents. Given a pattern P and a threshold d ≤ m, we
want to find all minimal extensions P of P which occur in at most d
distinct documents. “Minimal” here means that no prefix of P satisfies
this property. We describe a linear-space data structure for this problem.

Consider the generalized suffix tree GST . We start with locating the
locus of P in GST in O(|P |) time in the usual way. If v does not exist or
weight(v) < d, then, obviously, P has no desired extensions. Otherwise, we
have to find all nodes u in the subtree rooted at v such that weight(u) ≤ d
and weight(p(u)) > d, where p(u) is the parent of u. Then, the desired
extension of P will be the label of p(u) extended by the first letter of the
label of edge (p(u), u).

Unfortunately, applying the solution of Section 2 to this task would
take too much space. To illustrate this, let each of the documents
T1, T2, . . . , Tm be a distinct letter of the alphabet. Then GST has a root of
weight m and n leaves of weight one (here m = n). If we consider j-nodes
as nodes of GST such that weight(u) ≤ j ≤ weight(p(u)), then each leave
is a j-node for j ∈ [1..m], and, therefore, each set Li, i = 0, 1, . . . ,m/ log n,
contains all n leaves of GST . That is, the total number of nodes in Li,
i = 0, 1, . . . ,m/ log n, will be O(nm/ log n).

We then take a different approach and reduce the problem to the
orthogonal segment intersection problem.

To each node u of GST , we associate a horizontal segment
[weight(u),weight(p(u))− 1] placed on the two-dimensional quarter-plane
with y-coordinate preord(u), where preord(u) is the rank of u in the pre-
order traversal of GST . Furthermore, for each node u, we store minord(u)
and maxord(u) which are respectively the minimal and the maximal ranks
of nodes of the subtree of GST rooted at u in the preorder sequence of
GST . All nodes of the subtree rooted at u appear then in the interval
[minord(u),maxord(u)] of the preorder sequence.

Let (xs, [y1, y2]) denote the vertical segment with endpoints (xs, y1)
and (xs, y2). Our problem is then to identify all horizontal segments that

intersect with the vertical segment (d, [minord(v),maxord(v)]). These hor-
izontal segments can be found in time O(log log n + output) and space
O(n) [2]. Therefore, the following theorem holds.

Theorem 2. Given a pattern P and an integer d, the loci of all minimal
discriminating extensions of P can be found in time O(|P | + log log n +
output). The underlying indexing structure takes O(n) space and can be
constructed in O(n log n) time, where n = |T1| + |T2| + . . . + |Tm|.

4 Discriminating Words for Specified Documents

In Section 3, we showed how to compute words that discriminate d docu-
ments from among m documents, without prior knowledge of what these
documents are. In many applications, we need to compute words that dis-
criminate documents from a given sample. Consider a set of documents
T1, . . . , Tm. Given a set of indices {i1, i2, . . . , id} and a pattern P , we want
to find all extensions of P occurring only in documents Ti1 , Ti2 , . . . , Tid

and such that any of their prefixes has at least one occurrence in a doc-
ument which does not belong to this subset.

In this section, we propose a linear space data structure which allows
to compute these extensions in time O(|P | + d log log m · (1 + output)),
where output is the number of such extensions.

We will need the following variant of the weighted level ancestor prob-
lem [5]. Given a tree T of size n, assume that each node u of T is assigned
a positive integer weight(u) ∈ nO(1) decreasing along every root-to-leaf
path: if u is an ancestor of v, then weight(v) ≤ weight(u). The answer to
an approximate weighted ancestor query (u, d), for a node u and an integer
d ≥ weight(u), is an ancestor w of u satisfying d ≤ weight(w) < 2d.

Lemma 4. T can be stored in a linear space data structure so that ap-
proximate weighted ancestor queries on T can be answered in O(1) time.

Proof. The data structure is similar to the one from the proof of Theo-
rem 1 in [10]. The only difference is that the data structure E(πj) that
finds a predecessor on a path πj is replaced by the structure of [11] that
answers approximate predecessor queries: for any integer d, we can find
a node u ∈ πj such that d ≤ weight(u) < 2d in O(1) time. ⊓⊔

We now describe the data structures we use for reporting the minimal
extensions for specified documents. Consider the generalized suffix tree
GST for T1, T2, . . . , Tm. For each vertex v of GST , we store L(v) and
R(v) defined to be the rank of respectively the leftmost and the rightmost

leaf in the subtree of v. These ranks can be computed in O(n) time by
post-processing GST . Moreover, for each leaf v of GST , we pre-compute
its ancestor u of minimal depth such that L(u) = v (u can coincide with
v). Finally, we augment GST with a data structure that answers lowest
common ancestor queries in constant time [14].

Each leaf of GST is associated with a suffix of some document Tk

and the index k of this document. We store these document indices in an
array D, called the document array, such that D[i] = k if the i-th leaf of
GST in the left-to-right order corresponds to a suffix coming from Tk.

We augment D with two data structures. The first one is an O(n)-
space data structure that answers queries rank(k, i) (number of entries
storing k before position i in D) and select(k, i) (i-th entry from the left
storing k). Using the result of [8], we can support such rank and select

queries in O(log log m) and O(1) time respectively. The second one is the
linear-space data structure from [12]. It allows us to report all distinct
document indices in an interval of D in time O(1) per each output index.

We are now ready to describe the algorithm. We start with locat-
ing the locus v of P in GST in time O(|P |) and retrieving the interval
[L(v)..R(v)]. Starting from ℓ(0) = L(v), the algorithm will process the in-
terval [ℓ(i)..R(v)] and compute a desired extension covering the leftmost
subrange of suffixes of this interval, then it will iteratively proceed to a
smaller interval [ℓ(i+1)..R(v)], ℓ(i+1) > ℓ(i).

To process an interval [ℓ(i)..R(v)], we first check if it contains any of
document indices i1, i2, . . . , id, and locate the smallest of them as follows.
Using d rank queries and d select queries on D we find the minimum rank
minrank of any of i1, i2, . . . , id in D[ℓ(i)..R(v)]. This costs O(d log log m)
time. If no index of i1, i2, . . . , id occurs in D[ℓ(i)..R(v)], the whole algo-
rithm terminates.

Let s be the leaf of GST with rank minrank . Then the suffix cor-
responding to this leaf must have a prefix which is an extension we are
looking for, whose locus is an ancestor x of s. We will find x in two steps:
first, we find the longest interval of D starting at minrank and containing
only indices i1, i2, . . . , id, and then we will find the highest ancestor of s
such that the ranks of all the suffixes in its subtree belong to this interval.
This ancestor will be x.

First step. Using approximate weighted ancestor we can find an ances-
tor u of s such that 3

2d ≤ weight(u) < 3d in O(1) time. (If u is an ancestor
of v, we set u = v.) The interval D[minrank ..R(u)] includes the longest
interval starting at minrank which contains only indices i1, i2, . . . , id. On
the other hand, interval D[minrank ..R(u)] contains indices of less than

3d different documents, and we output these indices in time O(d) us-
ing the data structure of [12]. For each of these documents which is not
among i1, i2, . . . , id, we compute the smallest rank greater than minrank
using one rank and one select queries, and then take the minimum of
them, denoted minrank ′. We set minrank ′ = R(u) if D[minrank ..R(u)]
contains only indices i1, i2, . . . , id. This step takes O(d log log m) time.
[minrank ,minrank ′ − 1] is the longest segment of D starting at minrank
and containing only indices i1, i2, . . . , id.

Second step. We now compute x which is the ancestor of s of minimal
depth such that (i) L(x) = s, and (ii) R(x) < minrank ′. We first retrieve
the ancestor u′ of s of minimal depth such that L(u′) = s. Let u′′ denote
the node with greater depth among u and u′. If R(u′′) < minrank ′, then
x = u′′ and we are done. Otherwise, compute the lowest common ancestor
w of s and s′, where s′ is the leaf of rank (minrank ′ − 1). If R(w) = s′,
then x = w. Otherwise, x = w1, where w1 is the leftmost child of w. The
second step takes O(1) time.

We then proceed to the next iteration with the interval [ℓ(i+1)..R(v)],
where ℓ(i+1) = R(x) + 1. Each iteration takes O(d log log m) time; each
iteration, except of possibly the last one, outputs at least one desired
locus. This leads to the final result:

Theorem 3. Given a subset of indices {i1, i2, . . . , id} and a pattern
P , all minimal extensions of P which occur only in the documents
Ti1 , Ti2 , . . . , Tid can be computed in time O(|P |+d log log m ·(1+output)),
where m is the total number of documents. The underlying indexing data
structure occupies O(n) space and can be constructed in O(n) time, where
n = |T1| + |T2| + . . . + |Tm|.

5 Concluding Remarks

Our solution to the first problem (Section 2) is optimal: it takes a linear
space and a constant time per output item. It is an interesting question
if the second problem can admit an optimal solution too. Improving the
bound for the third problem is another interesting direction to study.

Acknowledgments: G.Kucherov has been partly supported by
the Marie-Curie Intra-European Fellowship for Career Development.
T.Starikovskaya has been supported by the mobility grant funded by the
French Ministry of Foreign Affairs through the EGIDE agency and by
a grant 10-01-93109-CNRS-a of the Russian Foundation for Basic Re-
search. Part of this work has been done during a stay of Y.Nekrich at

the Marne-la-Vallée University supported by the BEZOUT grant of the
French government.

References

1. J.L. Bentley. Multidimensional divide-and-conquer. Comm. ACM, 23(4):214–229,
1980.

2. T.M. Chan. Persistent Predecessor Search and Orthogonal Point Location on the
Word RAM. In ACM-SIAM Symposium on Discrete Algorithms, pages 1131–1145,
2011.

3. L. Chi Kwong Hui. Color set size problem with applications to string matching.
In Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors,
Combinatorial Pattern Matching, volume 644 of Lecture Notes in Computer Sci-
ence, pages 230–243. Springer Berlin / Heidelberg, 1992.

4. A. Fadiel, S. Lithwick, G. Ganji, and S. W. Scherer. Remarkable sequence signa-
tures in archaeal genomes. Archaea, 1(3):185–190, Oct 2003.

5. M. Farach and M. Muthukrishnan. Perfect hashing for strings: Formalization and
algorithms. In Combinatorial Pattern Matching, volume 1075 of Lecture Notes in
Computer Science, pages 130–140. Springer Berlin / Heidelberg, 1996.

6. M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994.

7. H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related techniques for ge-
ometry problems. In Proc. 16th Annual ACM Symposium on Theory of Computing
(STOC 1984), pages 135–143, 1984.

8. A. Golynski, J.I. Munro, and S.S. Rao. Rank/select operations on large alphabets:
a tool for text indexing. In ACM-SIAM Symposium on Discrete Algorithms, pages
368–373. ACM Press, 2006.

9. J. JáJá, C.W. Mortensen, and Q. Shi. Space-efficient and fast algorithms for
multidimensional dominance reporting and counting. In Proceedings of the 15th
International Symposium on Algorithms and Computation,, pages 558–568, 2004.

10. G. Kucherov, Y. Nekrich, and T. Starikovskaya. Cross-document pattern matching.
In J. Kärkkäinen and J. Stoye, editors, Proceedings of the 23rd Annual Symposium
on Combinatorial Pattern Matching, July 3-5, 2012, Helsinki (Finland), volume
7354 of Lecture Notes in Computer Science, pages 196–207. Springer Verlag, 2012.

11. Y. Matias, J.S. Vitter, and N.E. Young. Approximate data structures with appli-
cations. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 187–194, 1994.

12. S. Muthu Muthukrishnan. Efficient algorithms for document retrieval problems. In
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’02, Philadelphia, PA, USA, 2002. Society for Industrial and Applied Math-
ematics.

13. Y. Nekrich. I/O-efficient point location in a set of rectangles. In Procedings of the
8th Latin American Symposium on Theoretical Informatics, pages 687–698, 2008.

14. B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification
and parallelization. SIAM Journal on Computing, 17:111–123, 1988.

15. M. Tompa et al. Assessing computational tools for the discovery of transcription
factor binding sites. Nat. Biotechnol., 23(1):137–144, Jan 2005.

