
HAL Id: hal-00788609
https://hal.science/hal-00788609

Submitted on 14 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deciding Definability by Deterministic Regular
Expressions

Wojciech Czerwiński, Claire David, Katja Losemann, Wim Martens

To cite this version:
Wojciech Czerwiński, Claire David, Katja Losemann, Wim Martens. Deciding Definability by De-
terministic Regular Expressions. Foundations of Software Science and Computation Structure (FoS-
SaCS’13), 2013, Italy. pp.16. �hal-00788609�

https://hal.science/hal-00788609
https://hal.archives-ouvertes.fr

Deciding Definability

by Deterministic Regular Expressions⋆

Wojciech Czerwiński1, Claire David2, Katja Losemann1, and Wim Martens1

1 Universität Bayreuth
2 Université Paris-Est Marne-la-Vallée

Abstract. We investigate the complexity of deciding whether a given
regular language can be defined with a deterministic regular expression.
Our main technical result shows that the problem is PSPACE-complete
if the input language is represented as a regular expression or nondeter-
ministic finite automaton. The problem becomes EXPSPACE-complete
if the language is represented as a regular expression with counters.

1 Introduction

Schema information is highly advantageous when managing and exchanging
XML data. Primarily, schema information is crucial for automatic error detec-
tion in the data itself (which is called validation, see, e.g., [5, 26, 2, 20]) or in the
procedures that transform the data [24, 23, 22]. Furthermore, schemas provide
information for optimization of XML querying and processing [25, 28], they are
inevitable when integrating data through schema matching [1], and they provide
users with a high-level overview of the structure of the data. From a software
development point of view, schemas are very useful to precisely specify pre- and
post-conditions of software routines that process XML data.

In their core, XML schemas specify the structure of well-formed XML docu-
ments through a set of constraints which are very similar to extended context-free
grammar productions. Such schema are usually abstracted as a set of rules of
the form

Type → Content,

where Content is a regular expression that defines the allowed content inside the
element type specified in the left-hand side. As such, regular expressions are a
central component of schema languages for XML.

The two most prevalent schema languages for XML data, Document Type
Definition (DTD) [5] and XML Schema Definition (XSD) [10], both developed
by the World Wide Web Consortium, do not allow arbitrary regular expressions
to define Content. Instead, they require these expressions to be deterministic. We
refer to such deterministic regular expressions as DREs. In order to get a good
understanding of schema languages for XML, it is thus important to develop a

⋆ This work was supported by grant number MA 4938/2-1 of the Deutsche Forschungs-
gemeinschaft (Emmy Noether Nachwuchsgruppe).

good understanding on DREs. Furthermore, since the concept of determinism in
regular expressions is a rather foundational, we believe our results to be relevant
in a larger scope as well.

Intuitively, a regular expression is deterministic if, when reading a word from
left to right without looking ahead, it is always clear where in the expression
the next symbol can be matched. For example, the expression (a + b)∗b(a + b)
is not deterministic, because if we read a word that starts with b, it is not clear
whether this b should be matched in the expression if we do not know what the
remainder of the word will be. As such, determinism in regular expressions is
very similar to determinism in finite automata: When we consider each alphabet
symbol in an expression as a state and consider transitions between positions in
the expression that can be matched by successive symbols, then the expression
is deterministic if and only if the thus obtained automaton (which is known as
the Glushkov automaton of the expression) is deterministic.

Deterministic regular expressions or DREs have therefore been a subject of
research since their foundations were laid in a seminal paper by Brüggemann-
Klein and Wood [6, 7]. The most important contribution of this paper is a char-
acterization of languages definable by DREs in terms of structural properties on
the minimal DFA. In particular, this characterization showed that some regular
languages cannot be defined with a DRE. One such language is defined by the
expression (a+ b)∗b(a+ b). Furthermore, Brüggemann-Klein and Wood showed
that it is decidable whether a given regular language is definable by a DRE.
Since then, DREs have been studied in the context of language approximations
[3], learning [4], descriptional complexity [13, 21] and static analysis [8, 9]. Re-
cently, it was shown that testing if a regular expression is deterministic can be
done in linear time [14].

Determinism has also been studied for a more general class of regular expres-
sions which allows a counting operator [19, 11, 16]. This operator allows to write
the expression a10,100 defining the language that contains strings of length 10 to
100 and labeled with only a’s. The motivation for the counting operator again
comes from schema languages, because the operator can be used to define ex-
pressions in XML Schema. Determinism for expressions with counters seems to
pose more challenges than without the counting operator. For example, already
testing whether an expression with counters is deterministic is non-trivial [18].

In this paper we study the following problem:

Given a regular expression, can it be determinized?

This problem seems to be very foundational and has first been studied around
20 years ago [6] but the precise complexity was still open, despite the rich body
of research discussed above. The best known upper bound is from Brüggeman-
Klein and Wood, who showed that the problem is in EXPTIME (by exhibiting
an algorithm that works in polynomial time on the minimal DFA [7]) and the
best known lower bound is PSPACE-hardness [3]. The main result of this paper
settles this question and proves that this problem is PSPACE-complete. Our
proof is rather technical and provides deeper insights in the decision algorithm
of Brüggemann-Klein and Wood. A central insight, which is a cornerstone of our

proof, is that the recursion depth of the algorithm is only polynomial in the size
of the smallest NFA for the given regular language.

Since regular expressions with counters are important in the context of
W3C XML Schema, we also study the complexity of deciding if a given ex-
pressions with counters can be written as a DRE. This problem turns out to be
EXPSPACE-complete. We complement these completeness results by proving
that it is NLOGSPACE-hard to decide if a given DFA can be written as a DRE.
At the moment, it is not clear to us whether this lower bound can be improved.
The problem is known to be in polynomial time by [7].

Organisation: We give the basic definitions in Section 2. In Section 3 we present
the algorithm of Brüggeman-Klein and Wood and prove preliminary results.
Complexity results are presented in Section 4. Due to space limits, some proofs
are not presented or only sketched.

2 Definitions

For a finite set S, we denote its cardinality by |S|. By Σ we always denote an
alphabet, i.e., a finite set of symbols. A (Σ-)word w over alphabet Σ is a finite
sequence of symbols a1 · · · an, where ai ∈ Σ for each i = 1, . . . , n. The set of
all Σ-words is denoted by Σ∗. The length of a word w = a1 · · · an is n and is
denoted by |w|. The empty word is denoted by ε. A language is a set of words.

A (nondeterministic) finite automaton (or NFA) N is a tuple (Q,Σ, δ, q0, F),
where Q is a finite set of states, δ : Q×Σ → 2Q is the transition function, q0 is
the initial state, and F ⊆ Q is the set of accepting states. We sometimes denote
that q2 ∈ δ(q1, a) as q1

a
−→ q2 ∈ δ to emphasize that, when N is in state q1, it

can go to state q2 when reading an a. A run of N on word w = a1 · · · an is a
sequence q0 · · · qn where, for each i = 1, . . . , n, we have qi−1

ai−→ qi ∈ δ. Word w

is accepted by N if there is such a run which is accepting, i.e., if qn ∈ F . The
language of N , also denoted L(N), is the set of words accepted by N . By δ∗ we
denote the extension of δ to words, i.e., δ∗(q, w) is the set of states which can
be reached from q by reading w. The size |N | of an NFA is the total number of
transitions, i.e.,

∑

q,a |δ(q, a)|. An NFA is deterministic, or a DFA, when every
δ(q, a) has at most one element. Throughout the paper, we will use the notation
PN for the power set automaton of N and [N] for the minimal DFA for L(N). It
is well-known that [N] is unique for N and that it can be obtained by merging
states of PN [15]. In this paper we assume that all states of automata are useful
unless mentioned otherwise, that is, every state can appear in some accepting
run. This implies that every state can be reached from the initial state and that,
from each state in an automaton, an accepting state can be reached. This also
implies that we use minimal DFAs without sink state and that PN by default
only contains the useful subsets of states of N . We sometimes abuse notation
and also denote by ∅ the minimal DFA with no states.

Furthermore, we will often see an NFA as a graph, which is obtained by
considering its states as nodes and its transitions as (labeled) directed edges.
Then, we also refer to a connected sequence of transitions in N as a path.

The regular expressions (RE) over Σ are defined as follows: ε and every Σ-
symbol is a regular expression; and whenever r and s are regular expressions then
so are (r ·s), (r+s), and (s)∗. In addition, we allow ∅ as a regular expression, but
we do not allow ∅ to occur in any other regular expression. For readability, we
usually omit concatenation operators and parentheses in examples. The language
defined by an RE r, denoted by L(r), is defined as usual. Whenever we say
that expressions or automata are equivalent, we mean that they define the same
language. The size |r| of r is defined to be the total number of occurrences of
alphabet symbols, epsilons, and operators, i.e., the number of nodes in its parse
tree.

2.1 Variations of Regular Expressions

The regular expressions with counters (RE(#)) extend the REs with a count-
ing operator. That is, each RE-expression is an RE(#)-expression. Furthermore,
when r and s are RE(#)-expressions then so are (r · s), (r + s), and rk,ℓ for
k ∈ N and ℓ ∈ N

+ ∪ {∞} with k ≤ ℓ. Here, N+ denotes N \ {0}. For a lan-

guage L, define Lk,ℓ as
⋃ℓ

i=k L
i. Then, L(rk,ℓ) =

⋃ℓ

i=k L(r)
i. Notice that r∗ is

equivalent to r0,∞. The size of an expression in RE(#) is the number of nodes in
its parse tree, plus the sizes of the counters, where a counter k ∈ N has size log k.

Deterministic regular expressions (DREs) put a restriction on the class of REs.
Let r̄ stand for the RE obtained from r by replacing, for every i and a, the i-th
occurrence of alphabet symbol a in r (counting from left to right) by ai. For
example, for r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b

∗
2a2)

∗. A regular expression r is
deterministic (or one-unambiguous [7] or a DRE) if there are no words waiv

and wajv
′ in L(r̄) such that i 6= j. The expression (a+ b)∗a is not deterministic

since both strings a2 and a1a2 are in L((a1 + b1)
∗a2). The equivalent expression

b∗a(b∗a)∗ is deterministic. Brüggemann-Klein and Wood showed that not every
regular expression is equivalent to a deterministic one [7]. We call a regular
language DRE-definable if there exists a DRE that defines it. The canonical
example for a language that is not DRE-definable is (a + b)∗b(a + b) [7]. We
therefore have that the set of DREs forms a strict subset of the REs, which in
turn are a strict subset of the RE(#)s.

2.2 Problems of Interest

In this paper, we investigate variants of the following problem.

DRE-Definability: Given a regular language L, is L DRE-definable?

We consider this problem for various representations of regular languages: reg-
ular expressions, regular expressions with counters, NFAs, and DFAs. When-
ever we consider such a variation, we put the respective representation between
braces. For example, DRE-Definability(RE) is the problem: Given a regular
expression r, is L(r) DRE-definable?

3 The BKW Algorithm

DRE-Definability was first studied by Brüggemann-Klein and Wood who
showed that the problem can be solved in polynomial time in the size of the
minimal DFA of a language [7]. Their algorithm (henceforth referred to as the
Bkw-Algorithm) is not at all trivial and gives good insight in DRE-definable
regular languages. We recall the Bkw-Algorithm together with some definitions
and known results and then we prove deeper properties of the Bkw-Algorithm
which will be the basis of further results in the paper.

Orbits and gates: For a state q in an NFA N , the orbit of q, denoted O(q), is
the maximal strongly connected component of N that contains q. We call q a
gate of O(q) if q is accepting or q has an outgoing transition that leaves O(q).
If an orbit consists only of one state q and q has no self-loops, we say that it
is a trivial orbit. We say that a transition q1

a
−→ q2 is an inter-orbit transition

if q1 and q2 belong to different orbits. The orbit automaton of state q is the
sub-automaton of N consisting of O(q) in which the initial state is q and the
accepting states are the gates of O(q). We denote the orbit automaton of q by
Nq. The orbit language of q is L(Nq). The orbit languages of N are the orbit
languages of states of N .

Orbit property: An NFA N has the orbit property if, for every pair of gates
q1, q2 in the same orbit in N , the following properties hold:

1. q1 is accepting if and only if q2 is accepting; and,
2. for all states q outside the orbit of q1 and q2, there is a transition q1

a
−→ q if

and only if there is a transition q2
a
−→ q.

Consistent symbols: A symbol a ∈ Σ is N -consistent if there is a state f(a),

such that every accepting state q of N has a transition q
a
−→ f(a). We refer

to the corresponding transitions as consistent transitions of N . A set S ⊆ Σ

is N -consistent if every symbol in S is N -consistent. Whenever we consider
N -consistent sets S in the remainder of the paper we assume that they are
maximal, i.e., there does not exist an a ∈ Σ that is not in S and is N -consistent.
Henceforth, we will therefore refer to the N -consistent set. For the set S of
N -consistent symbols, the S-cut of N , denoted NS , is obtained by removing all
consistent transitions fromN . Using these notions, Brüggemann-Klein andWood
give the following characterization of the class of DRE-definable languages.

Theorem 1 (Brüggemann-Klein and Wood [7]). Let D be a minimal DFA
and S be the set of D-consistent symbols. Then the following are equivalent:

1. L(D) is DRE-definable;
2. D has the orbit property and all orbit languages of D are DRE-definable;
3. DS has the orbit property and all orbit languages of DS are DRE-definable.

Furthermore, if D consists of a single, nontrivial orbit and L(D) is DRE-definable,
then there is at least one D-consistent symbol.

Algorithm 1 The Bkw-Algorithm [7].

Algorithm Bkw

2: Input: Minimal DFA D = (Q,Σ, δ, q0, F)
Output: true if L(D) is DRE-definable, else false

4: S ← the maximal set of D-consistent symbols
if D has only one trivial orbit then return true

6: if D has precisely one orbit and S = ∅ then return false

compute the orbits of DS

8: if DS does not have the orbit property then return false

for each orbit O in DS do

10: choose a state q in O
if not Bkw((DS)q) then return false

12: return true

They also show this result about the orbit property and the orbit languages.

Lemma 2 (Brüggemann-Klein and Wood [7]). Let D be a minimal DFA
and S be the set of D-consistent symbols.

1. If DS has the orbit property, then (DS)q is minimal for each state q in D.
2. If p and q are states in the same orbit of DS, then L((DS)p) is DRE-definable

if and only if L((DS)q) is DRE-definable.

Point 1 of the above lemma is immediate from combining Lemmas 5.9 and 5.10
from [7]. Point 2 is immediate from the fact that DRE-definable regular lan-
guages are closed under derivatives [7]. Notice that, in general, DS does not
have to be a minimal DFA. In particular, it can have states that are not reach-
able from the initial state. These results lead to a recursive test that decides
whether the language of a minimal DFA is DRE-definable. We present this test
in Algorithm 1. Notice that Lemma 2 ensures that we never have to minimize
the DFA that we give to the recursive call in line 11 of the algorithm.

In the remainder of this article, D always denotes a minimal DFA. In the
following we investigate the recursion depth of Algorithm 1. Therefore, we ex-
amine how, for a state q of D, the orbit of q evolves during the recursion. In one
iteration of Algorithm 1 we always delete two kinds of transitions, if they are
present: the consistent transitions (which we delete to obtain DS from D) and
the inter-orbit transitions in DS (which we delete to obtain (DS)q).

Level automata: For a state q of a minimal DFA D and k ∈ N we inductively
define the level k automaton of D for the state q, denoted levk(D, q), as follows:

– lev0(D, q) = D.
– Let S be the maximal set of consistent symbols in D. Then

lev1(D, q) =



















(DS)q if D has more than one orbit and DS has the orbit

property;

(DS)q if S 6= ∅ and DS has the orbit property;

∅ otherwise.

q0

q1

q2

q3q5

q4

f

f f

d

d

e

b

b
a

a

a

b

d

(a) The automaton D, i.e., lev0(D, q0), S = ∅.

q0

q1

q2

q3

q4

d

d

e

b

b a

a

a

b

d

(b) lev1(D, q0), S1 = {a}.

q0

q1

q2

q3
d

d

e

b

bd

(c) The S1-cut of lev1(D, q0).

q0

q1

q2

d

d

e

d

(d) lev2(D, q0), S2 = ∅.

Fig. 1. An example of level automata for a minimal DFA D.

– Let k > 1 and Sk−1 be the maximal set of consistent symbols in B :=
levk−1(D, q). Then

levk(D, q) =

{

(BSk−1
)q if Sk−1 6= ∅ and BSk−1

fulfills the orbit property

∅ otherwise.

The above definition actually precisely follows the construction in Algorithm 1
if state q is chosen every time in line 10. The definition makes clear that the
top level recursion of the Bkw-Algorithm (in which we construct lev1(D, q))
is slightly different from the others: the input DFA D of the top level can have
multiple orbits, whereas this is not the case for deeper recursive levels. According
to Lemma 2, levk(D, q) is always minimal.

Example 3. Figure 1 provides an example to illustrate the notion of level au-
tomata. Consider the minimal DFA D from Figure 1(a) and its state q0. By
definition, lev0(D, q0) is the automaton D itself. In order to build lev1(D, q0)
(see Figure 1(b)), observe that D has two orbits and its set of consistent sym-
bols S is empty since no transitions leave state q5. Furthermore,DS , which equals
D, fulfills the orbit property since all transitions that leave O(q0) go to state
q5. As such, lev1(D, q0) equals (D∅)q0 , the orbit automaton of q0 in D. We now

explain how to obtain lev2(D, q0) (see Figure 1(d)). First notice that S1 = {a}
is the maximal set of consistent symbols in lev1(D, q0). Furthermore, the S1-cut
of lev1(D, q0) (illustrated in Figure 1(c) without unreachable states) fulfills the
orbit property. The automaton lev2(D, q0) is the orbit automaton of q0 in the
S1-cut of lev1(D, q0) (that is, lev2(D, q0) = (lev1(D, q0)S1

)q0). Finally, observe
that lev2(D, q0) has only one orbit and no consistent symbols which implies that
lev3(D, q0) = ∅. Also, in accordance with the Bkw-Algorithm, this means that
L(D) is not DRE-definable.

The following lemma summarizes the link between DRE-definability and level
automata.

Lemma 4. Let D be a minimal DFA. Then the following are equivalent:

1. L(D) is DRE-definable;
2. for every state q of D and k ∈ N, L(levk(D, q)) is DRE-definable;
3. for every state q of D and k ∈ N, L(levk(D, q)) is DRE-definable and

levk(D, q)Sk
has the orbit-property.

3.1 The Recursion Depth of BKW

First we observe that, once a state becomes a gate in the Bkw-Algorithm, its
outgoing transitions will disappear in deeper recursion levels.

Lemma 5. Let D be a minimal DFA and q be a gate in levk(D, q) for some
k > 0. Then either levk+1(D, q) = ∅ or q has strictly less outgoing transitions in
levk+1(D, q). In the latter case, q is also a gate in levk+1(D, q).

From Lemma 5, we can infer how long it takes for a state p to become a gate.

Lemma 6. Let D be a minimal DFA and p be a state of levk(D, p) for some
k ∈ N. Let ℓ be the length of the shortest path from p to a gate in levk(D, p).
Then either levk+|Σ|·ℓ+1(D, p) = ∅ or p is a gate in levk+|Σ|·ℓ+1(D, p).

Next, we want to combine Lemma 6 with an observation about NFAs versus
their minimal DFAs, namely that paths to accepting states are short.

Lemma 7. Let N be an NFA with size n. Then for every state of [N] there is
a path leading to some accepting state of length at most n− 1.

Combining Lemma 6 and 7 tells us how long states can be present in the recursion
of the Bkw-Algorithm, compared to the size of an NFA for the language.

Lemma 8. Let N be an NFA with size n. Then it holds that levn·|Σ|+2([N],
p) = ∅ for every state p of [N].

Summarized, we know that the recursion depth of the Bkw-Algorithm is poly-
nomial in the size of the minimal NFA for a language.

Theorem 9. Let N be an NFA with size n. The recursion depth of Algorithm 1
on [N] is at most n · |Σ|+ 2.

3.2 Consistency Violations

In the following, we analyze the possible causes of failure for the Bkw-Algorithm.
We identify three properties such that the Bkw-Algorithm fails if and only if
one of them holds for some orbit automaton at some level k. This will be a tool
for our PSPACE algorithm that will search for one of these violations.

From the Bkw-Algorithm, we can immediately see that there are two sit-
uations in which it can reject: (in line 6) at some point in the recursion, the
automaton consists only of one orbit which has no consistent symbols or (in
line 8) at some point in the recursion, the S-cut of the automaton does not
have the orbit property. The latter means that there exist two gates of the same
orbit in the S-cut, such that either they do not have the same transitions to the
outside or one of them is accepting while the other one is not. We now formalize
these different types of violations and we then prove that the Bkw-Algorithm
fails if and only if one of these violations is found at some point in the recursion.
Let D be a minimal DFA and S be its set of consistent symbols. Then D has

– an Out-Consistency Violation, if there exist gates q1 and q2 in the
same orbit O of DS and there exists a state q outside O such that there is
a transition q1

a
−→ q and no transition q2

a
−→ q;

– an Acceptance Consistency Violation, if there exist gates q1 and q2
in the same orbit of DS such that q1 is accepting and q2 is not; and

– an Orbit Consistency Violation, if there exists an accepting state q1
such that, for every symbol a, there exists another accepting state q2 in O(q1)

in D, such that for every state q, at most one of the transitions q1
a
−→ q and

q2
a
−→ q exists.3

Notice that the first two violations focus on DS and the last one on D, as in
the Bkw-Algorithm. In summary, we will also say that a DFA D has a violation
if and only if it has at least one of the above violations. We show that these
violations are a valid characterization of DRE-definable languages.

Theorem 10. Let D be a minimal DFA. Then it holds that L(D) is not DRE-
definable if and only if there exist a state q of D and k ∈ N such that levk(D, q)
has a violation.

4 The Definability Problem

We are now ready to prove results about the complexity of DRE-Definability

for different formalisms. We first show that the problem is PSPACE-complete for
NFAs and REs. Then we look at RE(#)s which are natural extensions in the con-
text of W3C XML Schema. In that setting, the problem becomes EXPSPACE-
complete. Finally, we look at the class of DFAs.

3 Notice that δ(q1, a) may be empty if D only has useful states.

4.1 Definability for REs and NFAs

Our PSPACE algorithm for DRE-definability for REs and NFAs exploits The-
orem 10 in the following way. Given an NFA N , we search for a level k and a
state p of [N] such that levk([N], p) has a violation. As PSPACE is closed under
complement, the result follows.
Notice that, in general [N] can be exponentially larger than N and therefore
we cannot simply compute [N] in space polynomial in |N |. To overcome this
difficulty, we use the following two ideas:

1. Use the fact that the maximal recursion depth of Algorithm 1 on [N] is
polynomial in the size of the NFA N (Theorem 9);

2. Adapt Algorithm 1 using Theorem 10 and apply it on the minimal DFA by
only partially constructing it on-the-fly from the NFA.

In the following we explain how we can detect if there occurs a violation
in the minimal DFA for some NFA on the fly, i.e., without constructing the
DFA explicitly. To this end, we fix the following notations for the remainder
of the section. By N = (QN , Σ, δN , q0N , FN) we always denote an NFA. So, in
particular, we always denote byQN the state set ofN . For a set of states q ⊆ QN ,
we denote by [q] the corresponding state in the minimal DFA [N]. More formally,
[q] is the set of words {w | ∃t ∈ q s.t. δ∗N (t, w)∩FN 6= ∅}, i.e., the Myhill-Nerode
class of q. Also, whenever we talk about levk([N], [q])Sk

, the set Sk is the set of
consistent symbols in levk([N], [q]). The key result (Lemma 17) is to show that
we can detect if a violation occurs in a level k for [N] in space polynomial in k

and |N |. Here are the precise problems we consider. For each of them the input
is an NFA N and k ∈ N:

Out-Cons-Violation: Given N and k, is there a q ⊆ QN such that
levk([N], [q])Sk

has an out-consistency violation?
Acc-Cons-Violation: Given N and k, is there a q ⊆ QN such that

levk([N], [q])Sk
has an acceptance consistency

violation?
Orbit-Cons-Violation: Given N and k, is there a q ⊆ QN such that

levk([N], [q]) has an orbit consistency violation?

We first study the complexity of the following subproblems which will be
used in the proof of Lemma 17. The input is always a subset of an NFA N , sets
p, q ⊆ QN , a ∈ Σ, k ∈ N that is relevant to the problem.

Edge: Given (N, p, q, a, k), is [p]
a
−→ [q] a transition in levk([N], [p])?

Reachability: Given (N, p, q, k), is [q] reachable from [p] in levk([N], [p])?
SameOrbit: Given (N, p, q, k), are [p] and [q] in the same orbit of

levk([N], [p])?

InterOrbit: Given (N, p, k), is there an inter-orbit transition [p]
a
−→ [q]

for some label a and q in levk([N], [p])?
Acceptance: Given (N, p, k), is [p] accepting in levk([N], [p])?
IsGate: Given (N, p, k), is [p] a gate in levk([N], [p])?

Notice that SameOrbit and InterOrbit are only non-trivial if k = 0. Further-
more, for some of the above problems X we consider a variation called X-Cut

in which, with the same input, we want to decide if the problem X is true for
automaton levk([N], [p])Sk

(instead of levk([N], [p])).
We will heavily use the following result:

Theorem 11 (Corollary to Savitch’s Theorem). Let f(n) ≥ log n be a
non-decreasing polynomial function. Then NSPACE(f(n)) ⊆ SPACE(f2(n)).

Our proof is a careful mutual induction on the above defined problems. First
we show that Edge, Edge-Cut, and Acceptance can be computed in poly-
nomial space on level 0 and then we prove a set of implications of the sort if we
can solve X on level k, then we can solve Y on level k (or level k + 1). All the
lemmas have to be carefully put together in the right order.

Lemma 12. Given N and p, q ⊆ QN , we can test whether [p] = [q] in space
O(|N |2).

Proof (Sketch). A non-deterministic Turing Machine can test in non-deterministic
space O(|N |) whether [p] 6= [q]. The lemma then follows from Theorem 11 and
the fact that deterministic complexity classes are closed under complement. �

In the following, whenever we say that we solve a problem for N at level k,
we mean that we solve it for the NFA N and arbitrary sets of states p, q ⊆ QN ,
a ∈ Σ, and k. The basis of our entire mutual induction is being able to test if a
certain transition is present in the minimal DFA equivalent to N , if it is present
in its S-cut, or if some state is accepting.

Lemma 13. Edge, Acceptance and Edge-Cut for N at level 0 can be solved
in space O(|N |2).

Proof. We first show how to check, for a given set p ⊆ QN , whether [p] is a
state in [N], i.e., whether it is useful. As N only has useful states, there exists a
path from [p] to some accepting state in [N]. Thus it is enough to check whether
there is a path from [{q0N}] to [p]. This clearly can be done by a nondeterministic
algorithm working in spaceO(|N |). This algorithm would guess a word symbol by
symbol, simulate PN on the fly, starting from {q0N} and test at each step whether
the reached state q is equivalent to p, i.e., if [p] = [q] (proof of Lemma 12). Thus,
by Theorem 11, it can also be done by a deterministic algorithm working in
space O(|N |2).

We now turn our attention to Edge. Let (N, p, q, a, 0) be the input for Edge.

We must decide if [p]
a
−→ [q] is a transition in [N]. Since [N] does not have useless

states, this means that we should test two things:

– both [p] and [q] are states in [N];
– [δPN

(p, a)] = [q], where PN is the power set automaton of N .

The former can be solved in O(|N |2), as we mentioned before. It remains to
prove the latter. Given p and a, we can easily compute δPN

(p, a) in space O(|N |).
According to Lemma 12, we can then decide if [δPN

(p, a)] = [q] in space O(|N |2).
We omit the proof how to solve Acceptance and Edge-Cut. �

When we can solve Edge or Edge-Cut at a certain level, we can use it to
make more complex tests.

Lemma 14. Assume that we can solve Edge for N at level k in space f(k, |N |).
Then we can solve

– Reachability for N at level k in space f(k, |N |) +O(|N |2).
– SameOrbit for N at level k in space f(k, |N |) +O(|N |2).
– InterOrbit for N at level k in space f(k, |N |) +O(|N |2).

Analogously, if we can solve Edge-Cut for N at level k in space f(k, |N |), then
we can solve Reachability-Cut, SameOrbit-Cut, and InterOrbit-Cut

for N at level k in space f(k, |N |) +O(|N |2).

The next lemma allows us to do a single induction step that allows us to
compute the structure of an automaton at level k + 1 if we can compute the
automaton at level k.

Lemma 15. Assume that we can solve Edge and Acceptance for N at level
k in space f(k, |N |). Furthermore, assume that levk([N], [p]) has no violation.
Then we can solve Edge and Acceptance for N at level k + 1 in space
f(k, |N |) +O(|N |2).

The following lemma shows that we can compute properties of the level k
automaton if we can decide some properties for all smaller levels. For technical
reasons, we need the assumption that all lower level automata levi([N], [p]) have
no violation. This is because, otherwise, the level k automaton would be empty.
The proof is basically a careful induction that puts together the previous lemmas.

Lemma 16. Assume that for 0 ≤ i ≤ k − 1 all automata levi([N], [p]) have no
violation. Then all problems Edge, Reachability, SameOrbit, InterOr-

bit, Acceptance and Edge-Cut, Reachability-Cut, SameOrbit-Cut,
InterOrbit-Cut, and IsGate-Cut for N at level k are in space O((k + 1)|N |2).

Lemma 16 states that we can decide on-the-fly which transitions are present
and which states are accepting in level k automata (if no violations occur in
more shallow levels). Since these properties give the entire structure of the level
k automata, we can now also test for violations on level k.

Lemma 17. Assume that all automata levi([N], [p]) for 0 ≤ i ≤ k − 1 have
no violation. We can solve Out-Cons-Violation, Acc-Cons-Violation and
Orbit-Cons-Violation for N at level k in space O((k + 1)|N |2).

Proof. Let the input for Out-Cons-Violation be N and k. Then, an out-
consistency violation occurs at level k of N if and only if there exist p, q ⊆ QN

such that all of the following hold:

– all automata levi([N], [p]) for 0 ≤ i ≤ k − 1 have no violation;
– both [p] and [q] are gates in levk([N], [p])Sk

;
– both [p] and [q] are in the same orbit of levk([N], [p])Sk

;

– there exist a symbol a ∈ Σ and [q′] outside the orbit of [p] in levk([N], [p])Sk

such that the transition [p]
a
−→ [q′] exists in levk([N], [p])Sk

, but [q]
a
9 [q′]

does not.

By the lemma statement we know that all automata levi([N], [p]) for 0 ≤ i ≤ k − 1
have no violation. According to Lemma 16 we can solve IsGate-Cut and Same-

Orbit-Cut for N at level k in space O((k+1)|N |2). We solve the last point by
enumerating all a ∈ Σ and states q′ ⊆ QN and testing whether

– a transition [p]
a
−→ [q′] exists and [q]

a
−→ [q′] does not exist;

– [p] and [q′] are in different orbits.

Again by Lemma 16 Edge-Cut and SameOrbit-Cut for N at level k may
be done in space O((k + 1)|N |2). This concludes the proof for Out-Cons-

Violation.

The proofs forAcc-Cons-Violation andOrbit-Cons-Violation are sim-
ilar. �

We now have all the elements to prove our main result.

Theorem 18. DRE-Definability(NFA) and DRE-Definability(RE) are
PSPACE-complete.

Proof. DRE-Definability(RE) is known to be PSPACE-hard [3]. Since an RE
can be translated in polynomial time into an equivalent NFA, the lower bound
also holds for NFAs.

Furthermore, the upper bound for REs follows from the upper bound for
NFAs. We therefore show that DRE-Definability for an NFA N is in space
O(|N |4), which proves the theorem. We assume w.l.o.g. that |Σ| ≤ |N |. Accord-
ing to Theorem 10, a language L(N) is not DRE-definable if and only if one of
Out-Cons-Violation, Acc-Cons-Violation and Orbit-Cons-Violation

occurs at some level k for N . Due to Theorem 9 we need to check this only for
levels up to |N |2 + 2, since the recursion depth of Algorithm 1 is never bigger
than this.

We test whether there exists a violation at some level k for N , starting from
level 0 and moving into higher and higher levels, up to level |N |2+2. For every sin-
gle level k the test can be done in space O((k+1)|N |2), according to Lemma 17.
Note that during the application of the above lemma we know that the smaller
levels do not contain any violation, since it was checked before, thus the as-
sumptions in the lemma statements are fulfilled. Therefore the space needed
for solving DRE-Definability(NFA) for N is bounded by O((k + 1)|N |2) for
k = |N |2 + 2, i.e., bounded by O(|N |4), which finalises the proof for NFAs. �

4.2 Definability for RE(#)s

Next we show that testing DRE-Definability is EXPSPACE-complete when
the input is given as a regular expression with counters. The upper bound is

immediate from Theorem 18 and the fact that we can translate an RE(#) into
an RE of exponential size by unfolding the counters.

For the lower bound, we reduce from the exponential corridor tiling prob-
lem, which is defined as follows. An exponential tiling instance is a tuple I =
(T,H, V, x⊥, x⊤, n) where T is a finite set of tiles, H,V ⊆ T × T are the
horizontal and vertical constraints, x⊥, x⊤ ∈ T , and n is a natural number
in unary notation. A correct exponential corridor tiling for I is a mapping
λ : {1, . . . ,m} × {1, . . . , 2n} → T for some m ∈ N, such that every of the
following constraints is satisfied:

– the first tile of the first row is x⊥: λ(1, 1) = x⊥;
– the first tile of the m-th row is x⊤: λ(m, 1) = x⊤;
– all vertical constraints are satisfied: ∀i < m, ∀j ≤ 2n, (λ(i, j), λ(i+1, j)) ∈ V ;

and,
– all horizontal constraints are satisfied: ∀i≤m,∀j<2n,(λ(i, j), λ(i, j+1)) ∈ H.

Then, the EXP-Tiling problem asks, given an exponential tiling instance, whether
there exists a correct exponential corridor tiling. The latter problem is known
to be EXPSPACE-complete [27].

The full proof of the lower bound combines elements from the proof that
DRE-definability for REs is PSPACE-complete [3] and that language universality
for RE(#)s is EXPSPACE-complete [12].

Theorem 19. Given a regular expression with counters r, the problem of de-
ciding whether L(r) is DRE-definable is EXPSPACE-complete.

4.3 Definability for DFAs

As explained before, the DRE-definability problem is in polynomial time if the
input is a minimal DFA [7]. As a final, minor result, we give an NLOGSPACE
lower bound in this case.

Theorem 20. DRE-Definability(minDFA) is NLOGSPACE-hard.

Proof (sketch). The reduction for the lower bound is from the reachability prob-
lem in directed acyclic graphs. This problem asks, given a DAG G = (V,E),
a source node s, and a target node t, whether t is reachable from s by a di-
rected path. The DAG reachability problem is well-known to be NLOGSPACE-
complete [17].

In this proof, we will use the fact that finite languages are always DRE-
definable. (This can be checked through the Bkw-Algorithm which discovers
immediately that all orbits are trivial.) For the reduction, let G = (V,E), and
nodes s, t ∈ V be an instance of DAG reachability. We construct a minimal DFA
D such that L(D) is DRE-definable if and only if vertex t is reachable from
vertex s in graph G.

We build D = (Q,Σ, δ, q0, {qf}) from G as follows. The set Q of states is
the disjoint union of the vertices V of G, plus two distinguished states q0 (which

is D’s initial state) and qf (which is D’s only accepting state). The alphabet
Σ is defined as (V ⊎ {q0, qf})

2. The transitions of D are defined as follows. Let
V = {v1, . . . , vn} be the vertices of G.

– For each directed edge (vi, vj) ∈ E, the automaton D has the transition
δ(vi, (vi, vj)) = vj ;

– for each vertex vi, the automaton D has the transitions δ(q0, (q0, vi)) = vi
and δ(vi, (vi, qf)) = qf ; and

– δ(t, (t, s)) = s is a transition of the automaton D.

As such, every transition has its unique label. This concludes the reduction. The
reduction can be conducted in logarithmic space. �

5 Conclusions

We have pinned down the exact complexity of testing whether a regular expres-
sion can be determinized and considered additional variants of this problem. Our
proof provides additional insights on such DRE-definable languages and on the
decision algorithm of Brüggemann-Klein and Wood. An important open ques-
tion is about the possible blow-up in the determinization process: Given a regular
expression, what is the worst-case (unavoidable) blow-up when converting it to
an equivalent deterministic one? At the moment, we know that an exponential
blow-up cannot be avoided [21] but the best known upper bound is double ex-
ponential. While our proofs seem to give some insight in how to improve this
upper bound, testing if a language is DRE-definable and actually constructing a
minimal equivalent DRE are quite different matters. It is not yet clear to us how
our techniques can be leveraged to obtain better upper bounds for this question.

Acknowledgement. We thank Wouter Gelade for bringing this problem to our
attention.

References

1. M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange.
Book. To appear, 2013.

2. A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of XML
documents. ACM Trans. on Datab. Syst., 29(4):710–751, 2004.

3. G. J. Bex, W. Gelade, W. Martens, and F. Neven. Simplifying XML Schema:
effortless handling of nondeterministic regular expressions. In ACM SIGMOD
International Conference on Management of Data (SIGMOD), p. 731–744, 2009.

4. G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning deterministic
regular expressions for the inference of schemas from XML data. In World Wide
Web Conference (WWW), p. 825–834, 2008.

5. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language XML 1.0 (fifth edition). W3C Recommendation, Nov. 2008.

6. A. Brüggemann-Klein and D. Wood. Deterministic regular languages. In Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS), p. 173–
184, 1992.

7. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Inf.
and Comput., 142(2):182–206, 1998.

8. H. Chen and L. Chen. Inclusion test algorithms for one-unambiguous regular
expressions. In International Colloquium on Theoretical Aspects of Computing
(ICTAC), p. 96–110, 2008.

9. D. Colazzo, G. Ghelli, and C. Sartiani. Efficient inclusion for a class of XML types
with interleaving and counting. Inform. Syst., 34(7):643–656, 2009.

10. D. Fallside and P. Walmsley. XML Schema Part 0: Primer (second edition). World
Wide Web Consortium, Oct. 2004.

11. W. Gelade, M. Gyssens, and W. Martens. Regular expressions with counting:
Weak versus strong determinism. SIAM J. Comput., 41(1):160–190, 2012.

12. W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML:
Numerical constraints and interleaving. SIAM J. Comput., 38(5):2021–2043, 2009.

13. W. Gelade and F. Neven. Succinctness of the complement and intersection of
regular expressions. In ACM Trans. on Comput. Logic, pages 4:1–19, 2012.

14. B. Groz, S. Maneth, and S. Staworko. Deterministic regular expressions in linear
time. In ACM Symposium on Principles of Database Systems (PODS), pages 49–
60, 2012.

15. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2007.

16. D. Hovland. Regular expressions with numerical constraints and automata with
counters. In International Colloquium on Theoretical Aspects of Computing (IC-
TAC), pages 231–245, 2009.

17. N. D. Jones. Space-bounded reducibility among combinatorial problems. J. Com-
put. Syst. Sci., 11(1):68–85, 1975.

18. P. Kilpeläinen. Checking determinism of XML Schema content models in optimal
time. Inform. Syst., 36(3):596–617, 2011.

19. P. Kilpeläinen and R. Tuhkanen. One-unambiguity of regular expressions with
numeric occurrence indicators. Inform. and Comput., 205(6):890–916, 2007.

20. C. Konrad and F. Magniez. Validating XML documents in the streaming model
with external memory. In International Conference on Database Theory (ICDT),
p. 34–45, 2012.

21. K. Losemann, W. Martens, and M. Niewerth. Descriptional complexity of deter-
ministic regular expressions. In Mathematical Foundations of Computer Science
(MFCS), p. 643–654, 2012.

22. S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro
tree transducers. In ACM Symposium on Principles of Database Systems (PODS),
p. 283–294, 2005.

23. W. Martens and F. Neven. On the complexity of typechecking top-down XML
transformations. Theor. Comp. Sc., 336(1):153–180, 2005.

24. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. Comput.
Syst. Sci., 66(1):66–97, 2003.

25. F. Neven and T. Schwentick. On the complexity of XPath containment in the
presence of disjunction, DTDs, and variables. Log. Meth. in Comp. Sc., 2(3), 2006.

26. L. Segoufin and V. Vianu. Validating streaming XML documents. ACM Symposium
on Principles of Database Systems (PODS), p. 53–64, 2002.

27. P. van Emde Boas. The convenience of tilings. In Complexity, Logic and Recursion
Theory, pages 331–363. Marcel Dekker Inc., 1997.

28. P. T. Wood. Containment for XPath fragments under DTD constraints. Interna-
tional Conference on Database Theory (ICDT), p. 297–311, 2003.

