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ABSTRACT

In this work, approximation schemes are developed to estimate the effective conductivity or resistivity of
composites made of several phases with imperfect interfaces. The interface can be either highly conduct-
ing or resistive, and the constituent phases can be anisotropic. By using a generalized Eshelby’s tensor
accounting for imperfect interfaces and by applying the dilute distribution, Mori-Tanaka, self-consistent
and generalized self-consistent schemes while incorporating imperfect interfaces between the inhomo-
geneity and matrix phases, the closed-form expressions for the effective conductivity and resistivity
tensors are obtained. With the help of the dilute solution results for an inhomogeneity embedded in
an effective medium matrix via an imperfect interface, the differential scheme is extended to predicting
the effective conductivity and resistivity tensors. The estimations obtained by the differential scheme for
the effective conductivity and resistivity are shown to comply with the generalized Hashin-Shtrikman
bounds. Numerical results are provided to illustrate the dependence of the effective conductivity on
the size and orientation distribution of inhomogeneities and to compare the estimations with the

relevant upper and lower bounds.
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1. Introduction

In most of the classical approximation schemes dedicated to
estimating the effective properties of inhomogeneous materials,
it is often assumed that the interfaces between the constituent
phases are perfect. In the context of thermal conduction phenom-
enon, an interface is called perfect if both temperature and normal
heat flux are continuous across it. However, in practice, due to the
presence of roughness or mismatch between the phases, for exam-
ple, the assumption of perfect interface is not appropriate and
imperfect interfaces have to be considered. Among all the imper-
fect interface models employed in the context of thermal conduc-
tion, the most widely used ones are the Kapitza's interface thermal
resistance model (see, eg. [1]), called also lowly conducting (LC)
interface model, and the highly conducting (HC) interface model.
The former stipulates that the normal component of the heat flux
vector is continuous across an interface while the temperature
across the interface suffers a jump proportional to the normal heat
flux component. Viewed as dual to the former model, the latter
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assumes that the temperature field is continuous across an
interface while the normal heat flux is discontinuous across it.
The LC and HC imperfect interface models were at the beginning
proposed on the basis of some phenomenological considerations
and next derived rigorously with the aid of an asymptotic ap-
proach. By considering a material surface or interface as the limit
case of a very thin interphase situated between two bulk phases,
the asymptotic approach showed that the Kapitza's interface ther-
mal resistance model or the HC interface model is applicable
according as the interphase is much less or more conducting than
each of the constituents. Further, if the conductivity of the inter-
phase is comparable with that of each of the phases, an imperfect
interface model “intermediate” between the aforementioned “ex-
treme” imperfect interface models is more appropriate. This ap-
proach, closely related to some mathematical techniques of
homogenization, was initiated with the works [2-8] in the general
situation. A unified treatment of imperfect interfaces for multifield
phenomena has been recently given by Gu and He (9]

The present work is concerned with the thermal conduction
phenomenon in multiphase composites with LC and HC imperfect
interfaces. The elaborated method and the results obtained for
heat conduction are transposable to other transport phenomena
like electric conduction, dielectrics, magnetism, diffusion and flow
in porous media and to anti-plane elasticity, owing to their
mathematical analogy and by means of appropriate physical
interpretations. The composites studied in this work consist of a



Nomenclature

HC highly conducting
LC lowly conducting

RVE representative volume element

DD dilute distribution

MT Mori-Tanaka

SC self-consistent

GSCA  generalized self-consistent approximation
DA differential approximation

SLB simple lower bound

SUB simple upper bound

HSLB Hashin-Shtrikman lower bound
HSUB  Hashin-Shtrikman upper bound
BLB Bruno lower bound

BUB Bruno upper bound

SCL simple cubic lattice

FCCL face-centered cubic lattice

BCCL body-centered cubic lattice

FFT fast Fourier transform

ODF orientation distribution function

matrix in which circular inclusions or spherical inclusions of
different sizes are, in the two-dimensional (2D) or three-
dimensional (3D) case, embedded via interfaces described by the
LC or HC imperfect interface model. The objective of the present
work is three-fold:

(i) First, it aims at extending the dilute distribution, Mori-
Tanaka, self-consistent and generalized self-consistent
schemes of micromechanics for incorporating the effect of
imperfect interfaces in deriving the closed-form expressions
for the effective conductivity and resistivity tensors of aniso-
tropic multiphase composites. The present study is inspired
from the recent works of Le Quanget al. [10,11]in which the
Eshelby's results and formalism for a circular or spherical
inhomogeneity embedded in an elastic infinite matrix are
extended to the thermal conduction phenomenon by
accounting for the HC or LC imperfect interface between
matrix and inclusions. Quite different from the relevant
results of elasticity, Le Quang et al. [10,11] showed that
the generalized Eshelby's conduction tensor fields and local-
ization tensor fields inside circular and spherical inhomoge-
neities remain uniform even in the presence of the HC or LC
imperfect interface. Then, the analytical closed-form
expressions for thermal effective conductivity of two-phase
composites have been derived as functions of the interface
properties and of the inhomogeneity size;

(ii) Second, it has the purpose of using the dilute solution results
and the extended differential scheme to estimate the effec-
tive conductivity and resistivity tensors. We show that, in
the presence of HC or LC imperfect interface, the effective
conductivity and resistivity obtained by the differential
approximation are comprised between the generalized
lower and upper Hashin-Shtrikman bounds derived in
[12-16]);

(iii) Finally, it consists in studying the effects of LC and HC
interfaces, inclusion size and orientation distribution of
inclusions on the effective thermal properties of composites.

The paper is structured as follows. In Section 2, the constitutive
laws of the constituents of the composites under investigation,
the LC and HC imperfect interface models and the general form
of the effective thermal conduction behavior are specified. Section 3
is dedicated to deriving the size-dependent Eshelby's tensor fields
in the context of thermal conduction in the presence of LC or HC
imperfect interface. In Section 4, closed-form expressions are
obtained for the effective conductivity by using the dilute, Mori-
Tanaka, self-consistent, generalized self-consistent and differential
schemes. In Section 5, the effects of LC and HC imperfect interfaces
and inhomogeneity sizes on the effective conductivity of compos-
ites are numerically discussed and illustrated. In Section 6, a few
concluding remarks are provided.

2. Setting of the problem

The composite (or multiphase material) under consideration
consists typically of N ( =1) inhomogeneities embedded in a ma-
trix. The matrix and each inhomogeneity are assumed to be indi-
vidually homogeneous. Relative to a Cartesian coordinate system
(X4,%3,%3) in a right-handed orthonormal basis (f,,f,.f;}, the matrix,
referred to as phase 0, and the ith inhomogeneity, called phase i,
have the linear thermal conduction behavior described by an
anisotropic Fourier's law

q# = K?el or e? = HPg®, 1)

where q” and €”’ are the heat flux and intensity fields of phase
p(=0,1,2,....N), K” and H® =(K™)~" stand for the second-order
tensors of thermal conductivity and resistivity of phase p, which
are symmetric, positive definite and in general orthotropic.

Let us denote by Q the d-dimensional (d = 2 or 3) domain occu-
pied by a sample or a representative volume element (RVE) of the
composite. The subdomains of © occupied by the matrix and the
ith inhomogeneity are designated by «/® and ' (i=1,2,....N).
The interface between the matrix ' and the ith inhomogeneity,
denoted as 'Y, is assumed to be imperfect. More precisely, the
imperfect interface " is described by either the HC or LC interface
model.

First, according to the HC imperfect interface model (see, e.g.,
[2,3,6,7,14-18]), the interface T'*) between the matrix and ith
inclusion is considered as a material surface of vanishing thickness
across which the temperature field T(x) is continuous. Thus, it fol-
lows from Hadamard's relation (see, e.g, [19]) that the tangential
projection e¥x) of the intensity field e(x) is continuous even
though e(x) is generally discontinuous across I, By introducing
the tangential projection operator P defined as
Pix) =1 -nx)anx), xel 2)
with I standing for the second-order identity tensor and n(x) denot-
ing the outward normal to I'*), the surface intensity field e<x) on
') can then be expressed as

€ix) = Pixjeix), xel™ 3)

The surface heat flux field q%(x)= P(x)q(x) is related to the surface
intensity field e¥(x) by the following linear thermal isotropic law

qi(x) = ke (x), 4)

wherex e I'”and k" is the surface thermal conductivity of ", Un-
like the classical case where the interface is perfect, the normal
component of the heat flux field q(x) is in general discontinuous
across the interface 'Y and its jump is connected to the surface
heat flux field q°(x) by the following surface energy conservation
equation



(q” - q%) nix) = -V..q(x), xel™ (5)

where ¥, . q%x) represents the surface divergence of g¥x). In par-
ticular, ¥ ; - q%(x) takes the form

) = 2y Bogg L%
Vs T =56t T cOt0+rsin0ihp (6)
in the spherical coordinate system (r,d,¢) or

7, qi(x) = o
Ve @'(x) = =% (7)

in the polar coordinate system (r,4).

Second, relative to the LC imperfect interface model (see, e.g.,
[5.7,12,13,17,18,20-22]), the normal component of the heat flux
q(x) is continuous across ', ie. q“{x)- n(x)=q'{x)- n(x) for
any x < I, At the same time, the temperature field T(x) is in gen-
eral discontinuous across I'' and its jump is related to the normal
component of the heat flux field by either one of the following
interface conditions holding on I'':

TO _ 7% _an(n)qm ‘D= —a*"(n)q“l n. (8)
Aoy 1% = -q" .n=-q%.n, (9)

where o and #¥ =1/2" stand for the Kapitza thermal resistance
and joint conductivity of I'”, respectively, and depend in general
onn.

Next, in order to clarify the physical background and the valid-
ity domain of HC and LC interface models used to describe I'*), we
consider two configurations in Fig. 1. In the three-phase one, the
inclusion phase /" is embedded into the matrix phase o/ via
the interphase «'®. According to the three-phase model (Fig. 1a),
the interface between '’ and /) and the one between o™
and /) are assumed to be perfect, and the thickness h'” of o/
is taken to be uniform and small in comparison with the size of
@™, In the second configuration (Fig. 1b), the interphase »'® is
now replaced by an imperfect interface of zero thickness ", situ-
ated at the middle surface of the interphase. The inclusion and ma-
trix are then extended up to the middle surface 'Y, By using an
asymptotic expansion, the jump conditions that the imperfect
interface I''Y has to verify for the two configurations to be physi-
cally equivalent within an error of order 0(h) were derived first
by Sanchez-Palencia [2] and Pham Huy and Sanchez-Palencia (3]
in a particular case and then completed by Miloh and Benveniste
|6], Hashin [7] and Benveniste [8] in the general situation. Gu
and He [9] have recently obtained a unified imperfect interface
model for multifield phenomena.

More precisely, when the interphase with thermal conductivity

tensor K. is assumed to be HC, or equivalently “IQ"H = |K¥| and
“K‘,"H K|, then the conditions that the imperfect interface I'”

(a)

must satisfy are those of the HC interface model described above.
The corresponding surface thermal conductivity tensor K\’ of I'"
can be expressed in terms of K. and h'" as follows (see eg. [2,3]):

Kg' - h"'s‘,", (10)

where

(mn

In the present work, K. is assumed to be circularly or spherically
transverse isotropic (see eg. [23,24]), ie. K =klnon)}+
k' (1—n ®n) with K and k' standing for the radial and tangential
thermal conductivities of the interphase and it is immediate from
Egs. (10)and (11) that

K= kfp, kP - Ok (12)

In addition, due to the fact that the thermal conductivity tensor K!'
of the interphase is positive definite, ie. k' >0 and k" > 0, it fol-
lows from Eq. (12) that k. is positive.

However, when the interphase with thermal conductivity ten-
sor K! is assumed to be LC, namely HK!‘ ” < K" and

HK:‘ ” < |K'”[, then the conditions that the imperfect interface

I must satisfy are exactly those characterizing the imperfect
interface model with Kapitza's thermal resistance described above.
The corresponding Kapitza's thermal resistance of I'" can be ex-

pressed in terms of K. and h'” as follows (see [8]):
'l“l

n-K'.n’

In what follows, we make the assumption that K is circularly or

spherically orthotropic (see eg. [23,24]), so that k" =n K .n is

constant. Then, it is immediate from Eq. (13) that

af(n) = (13)

o =— (14)

which is positive and independent of n.

At the macroscopic scale, the composite under consideration is
assumed to be homogeneous. Due to the linearity of the local con-
stitutive laws of each phase and the imperfect interface T, the
corresponding effective thermal conduction law remains linear
and can be written as (see, e. g., [5-7])

Q=K7 E or E=HT.Q (15)

where K¥ and H¥ = (K¥)~" are the second-order tensors of effec-
tive thermal conductivity and resistivity, respectively, and the

-

(a)

Fig. 1. Three- and two-phase configurations: (a) matrix/interphasefinclusion configuration; (b) matrix/inclusion configuration with imperfect interfaces.



macroscopic heat flux Q and intensity field E over a representative
volume element are defined by

1 1
Q T /m(q v)xdx, E=- ) /mT(x)v(x)d& (16)

where v(x) is the outward unit normal vector to 4 and |€2| denotes
the volume or surface of Q according as the 3D or 2D case is
concerned.

However, due to the discontinuity of the normal heat flux field
component across the HC interface or due to the jump of the tem-
perature field across the interface with Kapitza's thermal resis-
tance, the macroscopic heat flux field Q is given by (see [5-7])

1 N
Q=<q>+ﬁ2/r"(q“"-n—q"’~n)xdx, (17)
i1
or equivalently by
N
Q= (@Y [ (7 aax (18)
i1
and the macroscopic intensity field E is determined by
1 N
E=(e) - WZ /I_H[T“"[x) ~ 19 (x)In(x)dx, (19)
=1
or equivalently by
1 N
E= (e +ﬁz A 2@ (x) -n(x)|n(x)dx (20)
=1

where (s) is the volume or surface average of quantity e over the do-
main .

3. Eshelby's conduction tensor field

We consider now a 2D or 3D infinitely extended matrix domain
Q with the thermal conductivity and resistivity tensors K° and H°,
respectively. Let a heat-free intensity €’, which plays a role similar
to the eigenstrain in elasticity, be uniformly distributed in a subdo-
main « of Q and vanish outside «'”. Introducing the characteris-
tic function »'(x) of &' by

79(x) = {

1 for x e w',

0 for x¢ ', (=4}

the prescribed heat-free intensity field e*(x) can be expressed as
e (x) = 77x)e’. (22)

The interface 'Y between the inclusion " and the external med-
ium has the outward normal vector n and is assumed to be either
HC or LC as has been described in Section 2.

When the subdomain «f* is a spherical or circular inclusion of
radius R, as proved in [10] for the case of HC imperfect interface
and in [11] for the case of LC imperfect interface, the intensity field
solution e(x) remains uniform inside w'”, More precisely, the
intensity field solution, both inside and outside «'”, is expressed as

e(x) = S(x)e’ (23)

where the tensor S(x), called thereafter Eshelby's conduction tensor
field, is defined as:

Six) = S(x) — (d— 1)ki's(x)-H*.§%  for HC imperfect interface,
Six)+ 9K ma(x)-K®.[5* — 1] for LC imperfect interface,
(24)

where §° = §ix) with x € ' is the Eshelby's conduction tensor in-
side " which is uniform and determined by

for HC imperfect interface,

{[Io(d—l)i{'S"-lf]_' s
- (25)

[0 0] " [s7 - kO ma K] forLC imperfect interface

In Egs. (24) and (25), k¥ = k" /R, & = 2% /R,,S(x) is the classical
Eshelby's conduction tensor field over Q without interface effect,
§“ is the restriction of S(x) to ' and M(x) and W“ are two
fourth-order tensors. The components Myjmg(X) of M(x) and Sy(x)
of S(x) can be calculated by (see [11])

Mmp() = - 203800 4 5 D), Sulx) = Duy(XK,  (26)
with
s
Nap (X) = o, /w" Gly — X)y,dy, (27)
‘.’2
Dix) = e L , Gly - x)dy, (28)

where G is the Green function of thermal conduction.

Itis shown in the Appendix that when x € ', then Ny(x) and
Dimj(x) are polynomial functions of degree 1 and 0 in terms of the
position vector X. Thus, the tensor Wi(X) with the components
M ymp(X) given by Eq. (26)is uniform inside «/ and equal to a con-
stant tensor W®, i.e. MI(X) = M* when x € oY,

From a dual point of view, we now consider the conjugate
Eshelby's conduction problem where a heat flux is uniformly dis-
tributed within a spherical or circular inclusion, or equivalently
q°(x) = 7(x)q". The general heat flux field solution, both inside
and outside the inclusion »'”, can be determined via the conjugate
Eshelby's conduction tensor field with HC or LC imperfect interface,
denoted by CT(x), such as

qix) =Tix)- q". (29)
It can be shown that T(x) is related to S(x) by
Cix) = ~K°.S(x) - H" 4 z9ix)L (30)

This equation indicates that, as expected, the conjugate Eshelby’s
conduction tensor C(x)_with IiC or LC imperfect interface is also
uniform inside o', ie. C(x) =T for x € ' with

= K5 H 4L 31)
In particular, when the interface between the ith inclusion and the
exterior medium is perfect, i.e. 2 = 0, k! =0 or when the size R,

of the inclusion ' is very large, we obtain from Eq. (30) the
classical conjugate Eshelby's conduction tensor

C(x) = ~K*-S(x) - H + 2" (x)1 (32)
and its restriction to /')
e KOS HY L (33)

We recall that the previous properties of the Eshelby’'s conduction
tensor field S{x) with HC or LC imperfect interface hold for any ther-
mal anisotropy of the material forming €. In order to obtain the ex-
plicit expression of S(x), we now consider the most important
special case where the 2D or 3D infinite body Q consists of an iso-
tropic material whose thermal conductivity tensor takes the form
K? = kol with kq being a positive scalar. Correspondingly, the expres-
sions of the Eshelby's conduction tensor field S(x) and of the restric-
tion of Six) to /¥ take the simple forms

0 X (R xe ) for HC imperfectinterface,
Six)= T 1 e | 1y o 1
() 0 11 (%) g (H - X @) forLCimperfectinterface
34

and



> a—,‘ml ‘ for HC imperfect interface, s
(%,—::)l for LC imperfect interface,
where
R R . x , (@d-1k
p_-F_];I. X== Q—TE. (36)

Similarly, we obtain the expressions for the conjugate Eshelby's
conduction tensors with HC and LC imperfect interface effects:

o {(q&,;l)m(x)-u X)) 1 R 0%) far HC imperfect interface,

(amtme (%) - (1= (X)) (M- X@X), far LCimperfed interface
(37)

To - (%_-_l)l

(WQ‘L‘&TE)' for LC imperfect interface.

for HC imperfect interface,
(38)

As mentioned above, in the particular case where the interface be-
tween the ith inclusion and the exterior medium is perfect or when
the size R; of the inclusion ' is so large that & = o%/R, and
k" = k¥ /R, tend to zero, the classical Eshelby's conduction tensors,
S(x) and Q(x), as well as its restrictions to ", S and C*, for an iso-
tropic material can be obtained from Egs. (34)-(38) by setting
a% =0and K" = 0:

S(x) = gh79x) + (1 —z"(xnp‘((l,u ~%® x) (39)

Cix) = ("‘T')lz"(x) +(1 - t"(x])p‘(;—l 7xux) (40)
1 d-1

572l (‘”:(T)I 1)

where p and x are defined by Eq. (36).

4. Estimations for effective conductivity and resistivity

4.1. Dilute, Mori-Tanaka, seif-consistent and generalized self-
consistent models

The closed-form expressions obtained in this Section for the
effective thermal conductivity and resistivity tensors extend the
relevant results of [10,11] to the multiphase composites with HC
and LC imperfect interfaces. This generalization is carried out by
using the preliminary results of Sections 2 and 3, and by applying
the dilute distribution, Mori-Tanaka, self-consistent and general-
ized self-consistent models in micromechanics. The final results
obtained for the effective thermal conductivity and resistivity ten-
sors are summarized and discussed below. For briefness, their der-
ivation and the corresponding technical details are not given here
and the reader can refer to [10,11].

First, for the composite with HC imperfect interfaces, the effec-
tive thermal conductivity tensor is estimated according to the
aforementioned micromechanics models as follows:

« When the dilute distribution (DD) model is used, we have
N N
K = K+ ) cA(K KO, KY). (42)
i=1

Here and thereafter, ¢, denotes the volume or surface fraction of
phase p and

A(KS KK ) = [I(‘" K d - 1):'("1] D(K°KYK), (43)
D(K",K",id") =87 (F%) " £ 87 KO (KU - K. (44)

In particular, when the matrix and ith inclusion phases are isotropic
and have the thermal conductivities k, and k;, respectively, and by
assuming that the effective behavior is also isotropic, the effective
thermal conductivity is reduced to

N ~
K = ka+ Y cia ko, ki k) @5)
=1
with
dha [k ko + (d — 1)k
kit (d=1)(ka+ k)
« When the Mori-Tanaka (MT) model is adopted, we obtain

K"’={c,|(°+z":q[x"-(d-1)l};'|] -D(K",K"',izﬁ‘)}-L (47)

ako. ki, k") = (46)

where
-1
L= {ZN:QD(K",K‘".E‘) +c,,|} . (48)
-1

The corresponding effective thermal conductivity of the isotropic
composite with an isotropic matrix and N isotropic inclusion phases
characterized by the thermal conductivities ko and ki is given by

o S aDilk — ko + (d - 1|
K = ko + co 13N aD; (49)

with
dko
Dj=— 0
i ki+(d—1](ko+k§")

o If the self-consistent (SC) model is applied, we get

(50)

K=K+ z":c.[x" KO- 1)i¢"l] D(KEKEL). (51
=1

This is an implicit equation for the effective conductivity tensor K*.
When the matrix and inclusion phases are isotropic and character-
ized by the thermal conductivities ky and k; and when the effective
behavior is also isotropic, the effective thermal conductivity is
determined as the positive real root of the following equation

8 ek [k~ ka + (d - 1)K

kt:ka+i-| ki+(d—l)(k“+it§")

(52)

« Applying the generalized self-consistent approximation (GSCA)
model, we have

cudka ks — ko + (d ~ 1]
dko + (1 - c3)[ks ko + (d - )i
=i (53

for the isotropic two-phase composite with ky and k, being the con-
ductivities of the matrix and inclusion phases, respectively. We re-
call that with GSCA model, it is only in the case where the matrix
and inclusion phases are all isotropic that the estimation of the
effective thermal conductivity can be obtained. Moreover, by
assuming that the inclusion phase is more conducting than the ma-
trix phase, it is interesting to notice that the expression (53) with
d =3 for the effective conductivity based on MT or GSCA scheme

[y




coincides exactly with the generalized Hashin-Shtrikman lower
bound and Bruno lower bound established by Lipton [ 14,15), Lipton
and Talbot [16] when including imperfect interface effects.

Second, for the composite with LC imperfect interfaces, the
effective thermal resistivity tensor is provided by:

o the dilute distribution (DD) model as

N
H™ = H® 4 qu(u“, HY &), (54)
=1

where
B(H® HY &) = [H? ~ H" 4 a91]. F(H" HY &%), (55)
FH H &) < (¢ @) 4 e K mY - | (56)
In the particular case where matrix and inclusion phases are all iso-
tropic with the thermal resistivities hy and h,, respectively, and by
assuming that the effective behavior is also isotropic, the effective
thermal resistivity is provided by

N
W = g + Y cibihg, by &%), (57)
i=1
with
dhalh; — b + %)
hg +(d — 1)(h + )"
o the Mori-Tanaka (MT) model as

bike, ki, &) = (58)

N
HM = {c.,H" + 3 i HY 4 a) -F(H“.H‘”.a‘z“')} ‘M, (59)
=1
where
N -1
M = {ZC,F(H". HY, a4y 4 col} . (60)
=1

The corresponding effective thermal resistivity of the isotropic com-
posite made of an isotropic matrix and of N isotropic inclusion
phases whose thermal resistivities are ho and hy, respectively, is gi-
ven by

o S GFilhy — ho + &9
M = ho + PSS T (61)

where

Fis @@ (€2)

o the self-consistent (SC) model as
N
HE = H' 4 Y gHY — HY 4 00 F(HS Y, a0), (63)
=

This tensor equation allows to obtain the effective resistivity tensor
H*“. However, if the matrix and inclusion phases are all isotropic
and characterized by the thermal resistivities hy and h; and if the
effective behavior is assumed to be also isotropic, Eq. (63) reduces
to

h“=ho+2~: Cidhz[hl—ho-Q-im] (64)
ST d - 1)+ a9)
and the effective thermal resistivity i** is determined as the posi-
tive real root of Eq. (64).

o the generalized self-consistent approximation (GSCA) model as

cudhg [y —hg+30] o

A
e = ho e d T (T—co)(d— 1)(hs +.67) Tho]~

(65)

for the case where the isotropic composite constituting of only two
isotropic phases with hy and h, denoting the resistivities of the ma-
trix and inclusion phases, respectively. Moreover, it is easy to check
that the corresponding effective conductivity obtained by inverting
the effective resistivity given by (65) with d =3 is identical to the
generalized Hashin-Shtrikman upper bound and Bruno upper
bound of two-phase composite containing the inhomogeneities less
conducting than the matrix phase (see, e. g., [12,13,16]).

42. Differential approximation model (DA)

In this section, the derivation of the closed-form expressions for
the effective thermal conductivity and resistivity tensors of com-
posites with HC and LC imperfect interfaces is carried out by apply-
ing thedifferential scheme construction process [25-27 | According
to this construction process, the composite described in Section 2
with N inhomogeneities embedded in a matrix phase is built by
introducing progressively an infinitesimal volume fraction of N
inhomogeneities into the host medium which is initially homoge-
neous and corresponds to the matrix phase. More precisely, ateach
step of this procedure, we add proportionally infinitesimal volume
amounts GAfAt< 1,i=12,..., N) of randomly circular or spheri-
cal inclusions into the composite having been already constructed
at the previous step, which contains volume fractions cit of the
inclusion phases. Thus, during the construction process, the dimen-
sionless model parameter tincreases fromO to 1. By assuming that
the effective thermal conductivity and resistivity tensors of the al-
ready constructed com posite of the previous step are K(t) and H(t),
respectively, and by applying the dilute solutions presented above
in Egs. (42) and (54), the effective thermal conductivity and resis-
tivity tensors of the new composite are given by

Kit + At) = K(t) + DK(t)

N GAt
= K(t) +
; 14 At

A(xm.x"' ki) (66)

for the case of composite with HC imperfect interface and
H(t+ At) = H(t) + DH(t)

~H(t) + iﬂsmm HO, 59 (67)
o 1+aat T

for the case of composite with LC imperfect interface.

In Eqs. (66) and (67), De denotes a differential of »; ¢, designs
the total volume fractions of all inclusion phases, ie. ¢ = Y0,
and ,% stands for the newly added volume fraction of ith inclu-
sion phase. Thus, the volume fraction of the ith inclusion phase
increases by

cit + At L= cAt
T+gAt " 14qAt’

By combining the last equation with (66) and (67 ), we obtain the
following differential equations for the effective thermal cond uctiv-
ity and resistivity tensors, K and H™, of multiphase materials
with HC and LC imperfect interfaces:

Dt =

~ at). (68)

oK) 1 & 0 o4
T=|_—m;c.n(|((n.ld K, KO) = K K™ = K1),
(69)
DHI 1 & i adi) _ DA _
T_l_—m;qn(ﬂm,m L), H0) = HY, H™ =H(1).

(70)

In the important particular case where the matrix and inclusion
phases are all isotropic and have the thermal conductivities (or



resistivities) ky and k; (or hy and hy), respectively, and by assuming
that the effective behavior is also isotropic, the differential Eqgs.
(69) and (70) for the effective thermal conductivity and resistivity,
k™ and h™, of the multiphase composite reduce to

N
Pl S ek kD), ki) <o, k¥ < k1), (1)
i1

Dhit) _

1 & :
D= Tor 2 Cbt b &™), h(0)=he, K <h(1)  (72)
=1

for the cases of composites with HC and LC imperfect interfaces.
Further, for a two-phase composite, the differential Eqgs. (71)
and (72) can be specified, respectively, as

dey [(d — 1R 4k - k]k

Dk(t)

= - . k0) = ko, (73)
L —c,t)[(d— l)(lé," +k) +k;]

Dhit) de &) + by — hlh h(0) = he. (74)

Dt (1-ab)d— 1) +h)+h'

By solving Eqgs. (73) and (74), we obtain the following explicit for-
mulae for the two-phase composite

« when the imperfect interfaces are HC,

o kg+2ié"—%y,y,+%i for case 3D,
o a [—,.-————
ki+ K" 448, +3B,1/ 4B,k + B +4p,k; for case 2D,
(75)
with
A0 L -k
" =%' (76)
o
1
Ta= [1081(.-2161':3"-12\/12)1-311&+324k4i4°-324(id") J .
(77)
- 2
@Kk~ ko .
ﬂ.=¥, p2=sgn(ko k- i), (78)

where sgn(x) is defined as sgn(x)=1 if x>0, sgn{x)=0 if x=0 and
sgnix)=—1ifx<0;
« when the imperfect interfaces are LC,

2 2
o hy+a¥ —}(',y‘ +2;-.\—)',) 7 for case 3D,
B+ &% + 3y + 3hey /4B + § + 4k, for case 2D,
(79)
with
col&® +h; - ho)

Ya= - s 80)

e (

Vo= [Imh;+ 108%" — 8y

Y3
+12y/81 + 162k - 12h3 + 81(7) — 12673 |, (81)

(i + k- ko)’ ,
p= 2T g santho—hi- ), 82

Both the generalized self-consistent approximation (GSCA) and
differential approximation (DA) become exact results for some par-
ticular microstructures: the hierarchical one constructed incre-
mentally for DA, and the Hashin-Shtrikman polydisperse coated
sphere assemblage for GSCA (see, eg. [12-16]). This fact secures

that these two approximations comply with certain mathematical
requirements: they never violate bounds or exact mathematical
restrictions imposed upon an effective property. Both models are
idealistic and involve inhomogeneities down to infinitesimal sizes
(while the relations ki = k!"/R, or &' = /R, are fixed in the
models), but intend to approximate practical mixtures with some
overall characteristics (ki or &9 among others, in particular).

5. Numerical applications

The estimations established in the previous Section 4 for the
effective thermal conductivity and resistivity of multiphase mate-
rials whose interfaces are described by either the HC or LC imper-
fectinterface model are now numerically illustrated by considering
the first example where the mono-sized spherical isotropic inho-
mogeneities of conductivity k, resistivity h;=1/k and radius R
are introduced into a host isotropic matrix phase of conductivity
ko and resistivity ho = 1/ko. Moreover, to study the effect of imper-
fect interfaces on the effective thermal conductivity of the result-
ing composite, two additional cases with inclusion phase being
more and less conducting than the matrix phase are investigated.
The normalized effective thermal conductivity provided in Section
4 with the differential approximation (DA) model as well as with
the dilute distribution (DD), Mori-Tanaka (MT), self-consistent
(SC) and generalized self-consistent approximation (GSCA) models
are plotted versus the inhomogeneity volume fraction ¢; in Fig. 2
for the case where the interfaces between the matrix and inclusion
phases are HC imperfect interfaces and in Fig. 3 for the case where
the interfaces between the matrix and inclusion phases are LC
imperfect interfaces. These estimations for the effective thermal
conductivity are then compared in Figs. 2 and 3 with the corre-
sponding simplest lower and upper bounds (SLB and SUB), general-
ized Hashin-Shtrikman lower and upper bounds (HSLB and HSUB)
and Bruno lower and upper bounds (BLB and BUB) of the effective
thermal conductivity. For more details about these bounds of the
effective thermal conductivity of composite with HC and LC imper-
fectinterfaces, the reader can refer to[12-16,28|. For another com-
parison, the estimations obtained by Cheng and Torquato [18.21]
for the effective thermal conductivities of composites consisting
of periodic arrays of spherical inclusions such as simple cubic lat-
tice (SCL), face-centered cubic lattice (FCCL) and body-centered cu-
bic lattice (BCCL) are also presented in Figs. 2 and 3.

Similarly, whenthe inhomogeneity phase is less conducting than
the matrix phase (case 2), the normalized effective thermal conduc-

Fig. 2. Estimations and bounds of the effective thermal conductivity versus the
inhomogeneity volume fraction of the two-phase composite with HC imperfect
interfaces, kjko =5 and &' kg = 4.
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Fig. 3. Estimations and bounds of the effective thermal conductivity versus the
inhomogeneity volume fraction of the two-phase composite with LC i fect
interfaces, k/k; = 5 and & /hy = 0.125.

tivity values obtained from the differential approximation (DA ), di-
lute distribution (DD), Mori-Tanaka (MT), self-consistent (SC) and
generalized self-consistent approximation (GSCA) schemes are
shown firstin Figs. 4 and 5 and then compared with its simplest,
generalized Hashin-Shtrikman and Bruno bounds as well as with
the effective thermal conductivities of the periodic composites of
simple, body-centered and face-centered cubic arrays.
It is seen from Figs. 2-5 that:

(i) the estimations for the effective thermal conductivity
derived by the micromechanical models described in Section
4, except the DD scheme, are situated between the simplest
bounds as well as the generalized Hashin-Shtrikman
bounds. However, these estimations for the effective ther-
mal conductivity are not always comprised between the
lower and upper bounds of Bruno. It can be explained by
the fact that the generalized Hashin-Shtrikman and the sim-
plest upper and lower bounds are valid for all isotropic com-
posites, whereas the bounds of Bruno incorporate details of
the microstructure (see e.g. [16]).

(ii) for the composite with inhomogeneity phase more conduct-
ing than matrix phase and with HC imperfect interfaces
between them, the lower bound of Hashin-Shtrikman and
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Fig. 4. Estimations and bounds of the effective thermal conductivity versus the

inhomogeneity volume fraction of the two-phase ¢

: posite with HC imperfect
interfaces, kyko = 0.2 and K"/l = 4.
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Fig 5. Estimations and bounds of the effective thermal conductivity of the two-
phase compasite with LC imperfect interfaces, kyjko = 02 and & /hy = 0.125.

the lower bound of Bruno for the effective thermal conduc-
tivity coincide with the estimations of the effective thermal
conductivity derived by GSCA and MT schemes (Fig. 2). The
similar observation can be made from Fig. 5, for the case of
the composite with inhomogeneity phase less conducting
than matrix phase and with LC imperfectinterfaces between
matrix and inclusion phases, that the generalized Hashin-
Shtrikman and Bruno upper bounds for the effective thermal
conductivity are identical to the results provided by GSCA
and MT schemes.

(iii) Although the inhomogeneity phase is less conducting than
the matrix phase, due to the effect of imperfect interfaces,
the effective thermal conductivity in Fig. 4 increases when
the inhomogeneity volume fraction augments. This is quite
different from the relevant results of the classical case with
perfect interfaces,

(iv) the effective thermal conductivities of periodic composites
with simple, body-centered and face-centered cubic arrays
derived by an exact method are very close to the ones esti-
mated by MT or GSCA. The same observation has been men-
tioned in the recent work of Le Quang etal. [29] and Yvonnet
et al. [30] on the determination of the effective thermal con-
ductivity of the periodic composites with HC imperfect
interfaces by applying the method based on the fast Fourier
transform (FFT) and the extended finite element method
(XFEM). Consequently, we can conclude that the estimation
using MT or GSCA is an excellent approximation for the
effective thermal conductivity of the periodic composites
with simple, body-centered and face-centered cubic arrays.

In the second example, to study the effects of the size of inho-
mogeneities on the effective thermal conductivity of mono-sphere
composites, the inhomogeneity radius R is set to vary while the
inhomogeneity volume fraction is now kept constant with
¢;=0.1296 or ¢; = 0.4826. The variation of the size of the inhomoge-
neities is characterized by a dimensionless parameter
log, [Zkﬁ"/[koR]] = Iogz(zl}i"/l@) for HC imperfect interface or
log, [R/ (kex'")] = log,(he /2" ) for LC imperfect interface. The ther-
mal conductivities of the matrix and inhomogeneities are chosen
to be such as ky/k, =0.2 for HC imperfect interface or k/ky=5 for
LC imperfect interface. Notice that these values of the phase prop-
erties have been used in the work of Lipton and Talbot [16). In Figs.
6 and 7 are reported the estimations and bounds of the effective
thermal conductivity of the two-phase composites with HC



i

09

Fig. 6. Size-dependence for the estimations and bounds of the effective thermal
conductivity of the two-phase ¢ ite with HC imperfect interfaces, ki/ks = 02
and ¢, = 0.129.

Fig. 7. Size-dependence for the estimations and bounds of the effective thermal
conductivity of the two-phase ¢ ite with HC imperfect interfaces, k/k, = 02
and ¢ = 0.4826.

imperfect interfaces versus the parameter log;[zki"/(hk)] =

log,(zid"/ko). Similarly, Figs. 8 and 9 illustrate the variation of

the estimations and bounds of the effective thermal conductivity
of the two-phase composites with LC imperfect interfaces in terms
of log; [R/(kex™ )] = loga(hg/&" ). It can be seen from Figs. 6-9 that
the estimations for the effective thermal conductivity derived by
the micromechanical models described in Section 4, except the
DD scheme, respect the simplest lower and upper bounds as well
as the lower and upper generalized Hashin-Shtrikman bounds.
However, as in the first example, owing to the fact that the Bruno
lower and upper bounds involve more details about the micro-
structure, the estimations for the effective thermal conductivity
are not always situated between them.

Next, in order to investigate the effective thermal conductivity
of a multi-type-inclusion composite, we consider, in the third
example, a composite consisting of a host matrix phase in which
the spherical inhomogeneities of two different types, k" = 2k/*
(ora' = 24@), are introduced. As in the first example, the conduc-
tivities of the inhomogeneity and matrix phases are chosen to be
such as kfkq=5 for the case where the inhomogeneity phase is
more conducting than matrix phase and k/k,=0.2 for the case
where the inhomogeneity phase is less conducting than matrix

Fig. 8. Size-dependence for the estimations and bounds of the effective thermal
cond uctivity of the two-phase composite with LC imperfect interfaces, k/k, = 5 and
€= 0.129.

Fig. 9. Size-dependence for the estimati
cond uctivity of the two-phase ¢
= 0.4826.

and bounds of the effective thermal
ite with LC imperfect interf: kjko = 5 and

Fig. 10. Differential approximations and bounds of the effective thermal conduc-
tivity versus the inhomogeneity volume fraction of the composite with HC
imperfect interfaces and kike = 5, K" fko = 4 (case 1); kjko =5, k)" ko = 8 (case 2);
kjko = kajko= 5, ki fko = 2K"'/ko = 8 and ) = 3 = Lci (case 3)
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Fig. 11. Differential appraximations and bounds of the effective thermal conduc-
tivity versus the inhomogeneity volume fraction of the composite with LC imperfect
interfaces and kjko = 5, & fhg = 0.125 (case 1); kiko = 5, % /by = 025 (case 2); ks/
ko =kyjk = 5, &%) fhg = 2&™ fhy = 025 and ¢, = ¢; = j¢, (case 3).

phase. More precisely, by assuming that the inhomogeneity phase
is more conducting than the matrix phase and by applying the dif-
ferential approximation scheme, we plotin Figs. 10 and 11 the nor-
malized effective thermal conductivity of the composite with two
kinds of inhomogeneities, ki =2k* (or 4" =2%%), and two
types of imperfect interfaces in terms of the total inhomogeneity
volume fraction ¢; = 2c, = 2, (case 3). These normalized effective
thermal conductivities are compared first with the corresponding
simplest lower and upper bounds (SLB and SUB), generalized Ha-
shin-Shtrikman lower and upper bounds (HSLB and HSUB) and
Bruno lower and upper bounds (BLB and BUB) and then matched
with the ones obtained from the composite containing spherical
inclusions having k{”(2?) (case 1) and that having k" (&") ( case
2). In a similar manner, the relevant results of the normalized
effective thermal conductivities are depicted in Figs. 12 and 13
versus the total inhomogeneity volume fraction ¢; for the case
where the inhomogeneity phase is less conducting than the matrix
phase.

The fourth example consists of a composite made of a host iso-
tropic matrix phase of conductivity ko and resistivity fig = 1 kg, in
which the spherical anisotropic inhomogeneities are embedded.

0 01 02 03 04 05
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Fig. 12. Differential appraximations and bounds of the effective thermal conduc-
tivity versus the inhomogeneity volume fraction of the composite with HC
imperfect interfaces and kijke = 02, kI’ /ky = 4 (case 1); kifko = 02, K" /ko = 8 (case
2); ks jho = kajko = 0.2, I fleg = 2ki" fko = 8 and €1 = ¢ = L, (case 3).
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Fig 13. Differential approximations and bounds of the effective thermal cond uc-
tivity versus the inhomogeneity volume fraction of the composite with LC imperfect
interfaces and kjko =0.2, @™ fho = 0.125 (case 1); k ko = 02,8 fhg = 025 (case
2); ki flo = kafko = 02, & jhg = 25" [hg = 025 and ¢, = €2 = 4, (case 3).

Relative to an appropriate Cartesian coordinate basis, without loss
of generality, the conductivity and resistivity of the inhomogeneity
phase are assumed to be diagonal and denoted as
K" =diag[k§",k‘z",k‘,"] and HY =diag[h‘,",h‘2",h‘,"]. respectively.
The interfaces between the matrix and inhomogeneity phases are
described either by the HC or LC imperfect interface model. In
order to account for the anisotropy due to the spherical inhomoge-
neities on the effective thermal conductivity of the composite, we
introduce an orientation distribution function (ODF), denoted as
W4, ), which satisfies the following integration condition

2n n
l/ / W0, @) sinfdode = 1. 83)
4An Jo-o Jo-o

Moreover, in the present example of transversely isotropic orienta-
tion distributions around the axe x5, the ODF is expressed as W(#).
More precisely, we assume that W(d) takes the form (see, eg.,
[31,32] etc.)

acoshiocosd)

wo) = sinh(a)

(84)
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Fig 14. Differential approximations for the effective thermal cond uctivity versus
the inhomogeneity volume fraction of the composite with HC imperfect interfaces
and kifko = 5, k'/ky =4 (case 1); K ko = diagP3,5,7), k'/ko =4, 6= 0 (case2);
kyjko=3: kafka =5, kojho =7, K ko =2, K¥ ko =4, k" jko =6 and ¢ =2 =
c=to (case 3 Kk =diagP,5,7), ' ko=4, c=1 (case 4); K" jko=
diag[3,5,7), k" /ko = 4, & = 10(case 5)
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Fig. 15. Differential approximations for the effective thermal conductivity versus
the inhomogeneity volume fraction of the composite with LC im perfect interfaces
and Rhjhg=02, @"/hy <0125 (case 1); H"/hy = diagl0.1,02,0.3), & /hy =
0125 6=0 (case 2); hyjhe=01; hyfhg =02, hyjhy =03, &Y jhg =
0.1, ¥ /h = 0125, &M /hy =015 and ¢, =¢;=¢, =} (case 3); H" jhy =

diagl0.1,02,0.3), & jhg = 0125, 6 =1 (case 4); H"jhy =diagl.1,02,03),
@%by =0.125, ¢ =10 (case 5).
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Fig. 16. Differential approximations for the effective thermal conductivity versus
the inhomogeneity volume fraction of the composite with HC imperfect interfaces
and k,fky = 0.2, Kk = 4 (case 1); K" /ky = diag0.1,02,0.3), K*/k, = 4, 6 =0
(case 2); kaflo=0.1; lo/ho = 02, ka/ko = 03, k"o =2, k" /hy = 4, K" ks = 6
and € = €3 = ¢y = L (case 3); K fko = diagl0.1,0.2,0.3), k' /ky =4, 6= 1 (case
4); K"/ ko = diagl.1,0.2,03), k) kg = 4, & = 10(case 5)

where @ is a scalar parameter. In particular, when ¢ = 0, it is imme-
diate from (78) that W{@) = 1, or equivalently, the anisotropic inho-
mogeneities are identically distributed in all directions. With the
foregoing expression of W(#), in Figs. 14-17, the normalized effec-
tive principal thermal conductivities, ky/kq, kaa/ke and ky/ky are
plotted in terms of the inhomogeneity volume fraction ¢; with
o=0(case 2), o =1 (case 4) and o = 10 (case 5) for the two cases
where the inhomogeneity phase is either more or less conducting
than matrix phase and with HC or LC imperfect interfaces model.
Then, these estimations for the effective thermal conductivity are
compared with the one provided by the composite made of
the same isotropic matrix phase in which the mono-sized
spherical and isotropic inhomogeneities with conductivity
K =;-(k‘," +k¥ +lé,") and resistivity h" =;—(h‘|" +hy +h‘,") are
inserted (case 1). Finally, for comparison, we show also in Figs.
14-17 the effective thermal conductivity of the composite
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Fig. 17. Differential approximations for the effective thermal cond uctivity versus
the inhomogeneity volume fraction of the composite with LC imperfect interfaces
and  hyho =5, &@%hg =0125 (case 1); H"jh =diagl2,5 8], &/ho =
0125, 6 =0 (case 2); hijho=2; hafho =5, hy/ho =8, &" fhg = 0.1, ¥*'/he =
0125, dM/hg =015 and € =C=cy=Ltq (case 3); W' /ho = diag2,5 8]
& fhy = 0.125, 6 = 1(case 4); H" /h, = diag(2,5,8), & /h, = 0.125, ¢ = 10(case
5)

Fig. 18. The subdomains @* and L of @ satisfying the condition s t/< 1 and
s t=1 and the chosen new coordinate system {s},55,5; } for a given vector t.

containing three isotropic inhomogeneity phases with ¢; = =
= C:/3 k(ll — k(‘ll k(!l — k‘;l k()l - kf"' h(ll — h(‘il h(ZI — h;l and
1'¥ =} (case 3). Note that in this case, the three spherical inho-
mogeneity phases are chosen to be such as

;-(id‘ '+ k@ + l}‘,") =k¥ or L(@™ + & 4+ &) = &,

6. Concluding remarks

The closed-form expressions for the effective conductivity or
resistivity tensor of anisotropic multiphase composites with
imperfect interfaces have been derived by using the Eshelby's
formalism and dilute solution results. Unlike the results derived
previously for the effective properties of the inhomogeneous mate-
rials with imperfect interfaces, the results given in the present pa-
per for thermal conduction hold for any thermal anisotropy of
materials constituting the matrix and the inhomogeneities. More-
over, the results show that, as in the classical case with perfect
interfaces, the effective conductivity estimated by the differential



scheme for multiphase multi-type-inclusion never violates the
generalized Hashin-Shtrikman bounds. In view of the conclusion
(iv) made in Section 5, the estimation obtained by the MT or GSCA
scheme can be viewed an excellent approximation for the effective
thermal conductivity of the two-phase periodic composites with
simple, body-centered and face-centered cubic arrays.

Finally, due to the physical analogy existing between different
transport phenomena, the results obtained by the present work
for the thermal conduction phenomenon are straightforwardly
transposable, for example, to electric conduction, dielectrics, mag-
netism, diffusion and flow in porous media. By using the close rela-
tion existing between the depolarization tensor in electrostatics
and Eshelbys conduction tensor under consideration (see, eg.,
|33,34]), all results derived in this work for the thermal conduction
phenomenon can be directly generalized to the electromagnetic
phenomenon. Additionally, since a mathematical correspondence
between anti-plane elasticity and 2D thermal conduction exists,
new results for anisotropic anti-plane elasticity can be deduced di-
rectly from the 2D anisotropic results derived above.
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Appendix A

This appendix aims at showing the explicit computation of the
components Dy{X) and Ny;(x) defined as Eqgs. (27) and (28). For
clarity, for their derivation and the relevant technical details, the
reader can refer to [11). The main results are presented below

(i) Case when /" is a spherical inhomogeneity with radius R;

For interior points of the inclusion /", the expressions of Dyy(x)
and N,i(x) are given by
1 o
D) =g [ ds [ gmfsids (A1)
1 2n
Noplx) = 30 [ ds [spls - gyt (A-2)

where s is a unit vector whose components are expressed as

sy =(1-52)"cosg, sp=(1-2)"sing (A-3)
and t and gmy(s) are, hereafter, defined as

X ==
t R Ex(S) F.TS, (A4)

For exterior points of the inclusion »'”, by introducing a new coor-
dinate system {s{, s}, s, } in which s} -axis is taken in the direction of
t, and ;- and sj-axis are given along two perpendicular directions
in the plane normal to t(see Fig. 18), we can then express the rela-
tion between {s,s;,s} } and (s,,52,53) by

=3, (A-5)
where = are the direction cosines between the s;- and g-axis. Since

85(5) = o SimSa, EomS, SamSla) = Ey(S) (A-6)
and by setting
- (1 -s’,z)mcos';‘, sh = (1 -s’,z)msin:‘, (A-7)

the expressions of Dy{x) and N,j(x) take the following form

14 n
Dayi(x) =ﬁ / ds, / Byl $)dl

- /o 0 {1, 4 (A8)
Moo ez [ %, [ g4 g 510
-, / R e (A-9)

(ii) Case when @' is a circular inhomogeneity with radius R

For interior points of the inclusion @', Dyfx) and Nyglx) are
determined by

1 2n R
DylX) =5z [ Bu(51/a1,52/a2, 01, (- 10)
R [ .
Nap (X) =7/¢ Spisits + S2t2)ggi(s1/a1, 52/ a2, 0)d], (A-11)
with
§; = C0s{, Sy =sin{. (A-12)

For exterior points of the inclusion o, Dyfx) and Npjp(x) are calcu-
lated by

1 18 2n = "

Daylx) =H[Wdfs XL Sq(=h‘w-27§r=°)d~
1 2n - - _ »

o)y e (EesEs )}, (A1)
Nap (X)= =R, / ds, / S 53118 (Zrm S FamS'a, 0)

e ZaR [ (58 ErnsEnse Oyl (A14)
with
§; =cos{’, & =sin{. (A-15)
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