N

N

Medium frequency linear vibrations of anisotropic
elastic structures

Christian Soize

» To cite this version:

Christian Soize. Medium frequency linear vibrations of anisotropic elastic structures. La Recherche
Aerospatiale (English edition), 1982, 5 (-), pp.65-87. hal-00770395

HAL Id: hal-00770395
https://hal.science/hal-00770395
Submitted on 3 Apr 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00770395
https://hal.archives-ouvertes.fr

MEDIUM FREQUENCY LINEAR VIBRATIONS
OF ANISOTROPIC ELASTIC STRUCTURES

by

C.SOIZE

SUMMARY

A new numerical method is proposed for studying*medium frequency linear
vibrations of anisotropic viscous elastic structures, based on an energy principle and
without using the base of the vibration eigenmodes of associated conservative
system. The values generated are all deterministic. These can be used to characterize
the vibratory state by frequency band, to study the response to a medium frequency
deterministic or random steady excitation, to determine for a fixed frequency band the
space distributions of the excitation forces that, when applied to the entire structure
or to a given part of the structure, produce the maximum vibrations on the entire
structure or an a specified part. The method also facilitates the study of the spatial
propagation of vibrations in the elastic medium and makes it possible to compute the
modal density.



I - INTRODUCTION

Theoretically, the linear vibrations of an elastic, vis-
cous anisotropic structure occupying a bounded domain
in space, slightly damped, can be studied without diffi-
culty if we know explicitly the spectrum {«;},jeN
of eigenfrequencies for the associated undamped system,
and the corresponding modal basis { ¢, }, jeN .

In practice, for anisotropic elastic structures of any
given a priori geometry, the modal basis {o j} is not
explicitly known and must be calculated numerically.
We are then led to consider several cases :

1) In the low frequency range, linear vibrations of
structures can conventionally be solved :

M1 - By direct numerical time integration of the
equations.

M2 — By a numerical time integration of the
uncoupled equations in the truncated modal basis
{©1, ©2, ..., Om}. This is the modal synthesis in the
time domain.

M3 — By calculating the frequency response function
T,,, which can be

(a) carried out using the truncated modal basis

{0605 ... 0.} :
T,= Y hj(0)0,@0;
i=1

(b) or carried out directly calculating, for each value
of w considered :

T,=(—0*M+ioC+K)™ 1,

where M, C and K designate the mass, damping and
stiffness operators, respectively.

2) We are interested here in the medium frequency
range, which we define as follows :

— the excitation frequencies are not high enough to
be able to use asymptotic methods a priori.

— the excitation frequencies are not low enough for
the response to be of the modal type a priori, but bring
into the answer a very large number of high order vibra-
tion eigenmodes (the eigenmodes here being ordered by
increasing eigenfrequencies) while the modal density can
be high a priori (one mode per hertz, for example, in the
vicinity of 3 000 Hz).

Let us note first of all that the structure must be
discretized finely into finite elements in this medium
frequency range. This leads us to reason using discretized
systems with a large number of degrees of freedom.

If applied to medium frequencies, the methods
described above for low frequencies would lead to the
following adaptations in use :

— As the frequencies are high, 3000 or 4 000 Hz for
instance, method M1 requires a very small integration
time step, not to mention the numerical damping pro-
blems that may crop up in certain cases.

— Methods M2 and M3(a) call for the calculation of
the vibration eigenmodes up to a high order. As the
discretized system has a great many degrees of freedom,

it seems difficult to determine the necessary truncated
modal base directly and with enough precision to separa-
te the modes, considering the current state of numerical
precision and knowledge of the algorithms used to find
the eigenvalues and eigenvectors. One can then consider,
for example, dynamic substructuring techniques to
determine the eigenmodes.

Method M3(b) involves finding the solution to a
complex linear system containing a large number of
equations, with the reduction of the matrix,

-’ [M]+io[C]+[K]

carried out for each . If the calculation is to be carried
out only for a few values of w, this method is then very
effective in the medium frequency range insofar as, for
the calculated values of w, there is no numerical condi-
tioning problem. This is true when the excitation is on
one or several rays. On the other hand, if the excitation
is on a band that is not narrow, as is often the case for
both deterministic and stationary random excitations in
the medium frequency domain, numerous values of w
must then be considered a priori for dynamic identifica-
tion. The cost of this method may then appear prohibi-
tive. Finally, as far as vibration prediction problems are
concerned, since the excitation is not at a fixed frequen-
cy but must cover a relatively wide band (e.g. 2000 to
3000 Hz), the method M3(b) should normally lead to
the consideration of very many values of w, because
since the elastic medium is bounded, anisotropic and of
indeterminate geometry, nothing is known beforehand
of the variations in the operator T, when w varies
throughout the domain of frequencies studied. We can
obtain modal behaviors as in low frequency, locally or
not, as well as global dynamic behaviors (grouping by
eigenmode packages when the modal density is large
enough) or quasi-static behaviors. All of these behaviors
may appear simultaneously at certain frequencies in the
band considered, depending on the part of the structure
studied or the component of vibrations observed. For
example, for a radially excited slender cylindrical shell a
modal behavior with respect to the axial displacement
can be obtained at certain frequencies simultaneously
with a global radial behavior calling for the superposition
of a modal package. Under these conditions, it seems
difficult to assume a slow variation of w+ T, in the
medium frequency band studied before any calculations
are made. This excludes, a priori, a calculation involving
only a few values of w.

3) We are proposing here a numerical method of solu-
tion for the medium frequencies, based on the following
assumptions :

— For the medium frequency range, the vibratory
state of the system is characterized by frequency band
and no longer by discrete frequency values.

— The frequency response function is replaced by a
calculated frequency response function, calculated by
frequency band.

— The response at time ¢ of an observation of the
vibrating system is replaced by the average response over
the band, that is the square root of the response energy
over the band.



— The idea of “appropriation’’ of an eigenmode to its
eigenfrequency, an idea which is used in low frequency,
is replaced by the search for extremum vibratory states
per frequency band.

— The idea of modal density per frequency band is
retained. This can of course be calculated without calcu-
lating the spectrum {®,;}, j€N of eigenfrequencies of
the associated undampened system. Nonetheless, the
modal density does not appear in this theory and can
thus be considered as a “by-product’’ of the calculations.

The quantities we are going to construct are all deter-
ministic and can be used :

— to identify the medium frequency dynamics of a
viscous, anisotropic linear elastic medium of any given
shape ;

— to study the response to any deterministic excita-
tion in the medium frequency domain, or to a stationary
random excitation with the spectral power measurement
concentrated in a medium frequency band ;

— to study the space propagation of the vibrations in
the elastic medium ;

— to determine, for a fixed frequency band, the space
distributions of the excitation forces which, when
applied to the whole structure or to a given part of the
structure, produce extremum vibratory states through-
out the elastic system or in a specified part of the same
system ;

— possibly to calculate the modal density.

II — VIBRATION EQUATIONS AND
ASSUMPTIONS

We study the linear vibrations of an elastic anisotro-
pic body that, in its reference configuration, occupies an
open bounded domain Q of R? 6 with boundary 92
supposed C° and C' by parts.

We call x = (x;, X3, X3) a point of R*,J,(resp- d))
the partial derivative with respect to 7 (resp. x;).

The common convention of summation on repeated
dummy indices is used.

Let u = (u;, Uy, U3) be the field of displacement of
the elastic body. On the part I, of 32, measured posi-
tive, we set u|r =0, VL.

The variational formulation of this elastodynamic
problem involves a classical introduction of the follo-
wing complex Hilbert spaces: H={u;u,eL*(Q)}
associated with the scalar product :

(4, U)’*:j u;(x)v;(x)dx,
Q

and
V={u;u;e H (Q); u;lr,=0}.
We have :
VeH=H'cV'.

I1.1 - MASS, DAMPING AND STIFFNESS OPERA-
TORS.

Let M (resp. C), the linear mass (damping resp.)
operator, be real continuous, symmetric and positive
definite on /. We then have :

Yu,veH, (Mu, U)H=J p(x)u;(x)v;(x)dx, (1)
I

where p is the density of the elastic medium, which

verifies the hypothesis :

VxeQ, O0<p Splx)Sp,<+x, (2)

where p, and p, are two fixed real constants, strictly
positive and finite.

Let K be the linear stiffness operator such that:
Yu, vel, ’

- (3)
5

Q

(Ku,v ‘),.-",:J ; en (%) €4 (1) €5 (v) dx,

where & (u)=(C;u;+0;u;)/2. The strain tensor, the
elasticity constants g;;;, (x) verify the usual properties
of symmetry and positiveness.

Under these conditions the linear stiffness operator K
is continuous, real, symmetric from ¥ to V’, and we
have :

YueV, <KM,D>[,._‘-ngul|§._ (4)
where u is a real constant, fixed strictly positive.

I1.2 — SYSTEM FREQUENCY RESPONSE OPERA-
TORS.

Leti= \/F-l. Considering our assumptions, [6,9]show
that YoeR, the linear operator —@’M+iwC+K
in H having a domain Dom K ={ueV, KueH } allows
as an inverse the compact linear operator T, from H to
H:

T,=(—0*M+ioC+K)™". (5)

The operator T, is called frequency response opera-
tor relative to the displacement field u. It is also shown
that the series of the squares of the eigenvalue moduli is
convergent, and is called a Hilbert Schmidt operator.

I1.3 — DEFINITION OF THE CLASS OF EXCITATION
FORCES.

As we indicated in the introduction, we are going to
study medium frequency vibrations in a frequency band,
and no longer at discrete frequency values. In all that
follows, the “‘frequency w'’ indicates an angular frequen-
cy.

Then let B, be a medium frequency band with a
central frequency n Aw, n being an integer and Aw



being the bandwidth, The band B, is the compact
interval of R :

B,.‘—‘[(n-;)Am, (n+%)Am:|. (6)

To characterize the medium frequency vibrations of the
elastic medium, we consider the excitation class compri-
sing the functions £, (¢, x ) such that :

F,=f,@V, (7)
where :
fn (1) is the time component of the excitation at com-
plex values such that f,eL?*(R), and such that its
Fourier transform f = #(f,) have the compact
support B, ;
Y (x) is the space component of the excitation. We assu-
me here that the surface forces applied to ', =3dQ\ T,
and the volume forces applied in  are such that the
space component of the excitation can be represented
by a given element  in /1 ; (%)

Consequently, F,=f,®VeL*(R, H). (10)

1.4 — PROPERTY OF THE FUNCTIONS £, .

(a) The partial Fourier transform F, with respect to
tof F,eL*(R, H) isthe element of L*(R, H) which
is written : y

F,=f,®V. (11)

Consequently, @— F (o), at values in A, is com-

pact support 5,,.

(b) Let f, (¢) be the function such that :
Sfot)=fi(t)exp(—inAwt), vieR., (12)

Then f,eL?(R) and its Fourier transform support

P Ao Aw
Suppfo=Bo=|:" 3 T]

is

AGE j e~ f,(1)dt
R
=J. gm0t £ (1)dt = fy(0—n Ao),
R
and since supp f,=B,, wehave supp f,=B,.

(c) For a given excitation F,=f,®@V the energy is
defined as the energy of the signal 7, ; thatis

en(\ll)=J | Fali7de. (13)

Using Plancherel’s formula we obtain :

en(¢)=|lﬁ1|l§L|fn(f)I2dt (14)

-ﬂuwnélewn do.

(d) Let us give an example of the function f,,.

For all neZ, let w—p,(®) be the function of
L*(R) such that

Pal@)=1 si weB,; 5
palw)=0 si wéB,. (1s)
Then taking
1
fo(t)=;[—tsin(ti—m), (16)
we have

fol@)=py(w); f,(@)=p,(@); }

= (17)
j | fu(@)|? do=Aaw.

B,

I1.5 — EQUATION OF THE MEDIUM FREQUENCY
VIBRATIONS,

For a given F,=f,®\ belonging to the class defi.
ned in para. I1.3, we are interested in the medium fre-
quency vibration u in the band B, defined by its partial
Fourier transform i with respect to ¢, such that

o—i(o)=f,(0)(T,V), (18)
where T, is the frequency response operator defined by
(5).

As /. has compact support B,, equation (18) shows
that the Fourier transform o i (w) also has compact
support B, .

The vibration u defined by (18) is interpreted as the
forced solution associated with f @y of :

M u+Co,u+Ku=f,@%, (19)

where ueL?(R, V) and 6,ue L*(R, H).

11.6 — MECHANICAL SYSTEM OBSERVATION OPE-
RATOR,

When the displacement field u = (u;, uy, u3) is
known, the vibratory state of the mechanical system
subjected to excitation F, in the band B, is completely
determined.

We can nonetheless consider one or more components
of the field u at a fixed point of {2, or a component of a
strain tensor or the tensor of stresses at one point, etc.

An observation operator ( is thus introduced, opera-
ting only on the space variable x. When applied to the
displacement field u, this gives the observation defined
by Q and denoted by o.

We suppose that the observation ¢ at any fixed instant
t takes its values in a complex finite or infinite Hilbert
space W with the scalar product denoted by (v, w),, and
that the operator Q is real, linear, continuous from # to
W:

o=Qu. (20)



For example, to obtain the value of the displacement
field at a given point x, in £, we must take W =C" and
Q=3,,, where by, designates the measure of Dirac at
the point x, . In the same way, the jth component of the
displacement field at x, is obtained by taking W=C
and Q=39, o[l;, where II; is the jth canonical projec-
tion from C> on C . We then have o (t)=(3, oII;)(u)=
u;(t, xp).

In the same way, if we want the component &, (u) of
the strain tensor at the point xo of {2, we take W'=C
and o=Qu=(g;(u)),.,, ,otc.

Note that, for W =H, and Q is the identical applica-
tion of H, o=u ; that is, the observation is the entire
field of displacement.

III — ENERGETIC CHARACTERISTICS OF
THE VIBRATIONS IN THE BAND B,.

In this paragraph we will introduce some energy
quantities that will be used to characterize the vibratory
state of the mechanical system subject to an excitation
f,®V in the band B,,.

1111 — CHARACTERIZATION OF THE VIBRATORY
INTENSITY OF AN OBSERVATION IN THE BAND
B,.

Let 0 =Qu be an observation of the mechanical sys-
tem.

The vibratory intensity of the response o due to the
given excitation F,=f,®V of energy e, (V) will be
characterized by the square root of the scalar :

E&(¢)=J‘Rti01|%dt (21)

This scalar represents the total energy of the signal
o€ L*(R, W). By applying Plancherel's theorem we can
write the following, since ®w+f(w) has support B,
and considering (18) :

EG(“’“%L 1} do

_ 1
T 2n

(22)
‘[ | fu(@) 1211 QT (W) I3 do.

In the same way, if we consider the partial derivative
9,0 with respect to ¢ of the observation o, the vibratory
intensity of the response 3,0 =(Q d,u due to the excita-
tion F, will be characterized by the square root of the
scalar :

Ey ()= j ||a,cn&1.dz=§1—nf ©? || Qall} do  (23)
R B,

because the Fourier transform of 9d,u has support B,.

I11.2 - CHARACTERIZATION OF THE SPACE PRO-
PAGATION OF THE VIBRATIONS IN THE BAND B,,.

Because the vibratory intensity of the observation ¢ is
characterized by the scalars (or their square root) Eg (V),
given the excitation F,=f,®V in the band B,, the
spatial propagation of the vibrations is obtained by stu-
dying the function of the type x+ Eg (), defined on
Q.

In effect, for Q =6, and W=C3 o represents the
value of the displacement field at the point x and Ej (/)
represents the intensity of the vibration at this same
point x. Considering (21) and (22), we have

x~E§,(¢}=Lnuu, x)| dt
(24)

| -

(39

j Il (e, x)||& do.
T s,

It should be noted that the function (23) defines the
deflection of the elastic medium displacement for the
vibratory state caused by the excitation F,, in the band
B,, . If we desire information on the phase-shift between
any two points x; and x, in the elastic medium, this is
obtained by calculating correlations of the type

E;xl-sxz (¢)=J [H(f, x1)9 u(f= x},))c3 df
R
(25)

_2_],[ J‘B.(ﬁ{m: xl]s ﬂ((ﬂ, xZ))C] do.

Finally, the spatial propagation can be studied with
respect to any given subspace of C°. For example, the
spatial propagation of the component u; of the vibra-
tions is obtained by studying the function

x> EL . ()= { luj(t, x)|2dt
* ' (26)

1

== Jﬂ.lﬂj(m, x)|? do.

1I1.3 - PROBABILISTIC INTERPRETATION OF
ENERGY CHARACTERISTICS.

The characteristics of the type (21) were defined for
a deterministic excitation of the type F,=/f,® V. In
this paragraph, we will give the probabilistic interpreta-
tion of these characteristics when the excitation is a
stationary random process. It should be noted that the
results obtained below go farther than the simple proba-
bilistic interpretation, as they make it possible to reduce
the second order statistical calculation of medium fre-
quency stationary random vibrations to the calculation
of medium frequency deterministic vibrations, which we
will solve explicitly below in para. V and the following.

We thus let (Q, 7, P) be a probability space F
designating the mathematical expectation. We then
assume that the excitation F, can be expressed as



F,=(.®V, (27)

where the space component is always deterministic and
is represented by a given element y in /, and where the
time component is a stochastic process {(,(1), (eR |
defined on (Q, 7, P), indexed on R, with values in
L? (£2)), centered, stationary, of second order, conti-
nuous (in quadratic means). We also suppose that its
spectral measure i, allows a density S, with respect to
d w which has support By, :

e (0)=S5; (0) do. (28)

For all teR. the autocorrelation function of the
process (,(f) iswritten as:

R, (1)=EE,(t+1)L, (1)

(29)

=J e““‘u:,(mJ=j e’ S, (o) do.
R Bn

Considering the general properties of S;, and that
supp S, =B,, We know that the function f.eL*(R)
exists with compact support B, such that :

5. 0)= o=l Ho)  @eR (30

Under these conditions the inverse Fourier transform
of f., denoted f is a function belonging to L*(R).

As the process (,(t) is stationary and centered,
for any r fixed in R, the variance V of the random
variable (,(¢) is equal to the power of the process
{C.(D), 1eR} :

1 "
Vo =E(15, (1)) =p (R)= ﬂL | f.(@)]|*do.  (31)

The process { F, (1), te R} with values in #, defi-
ned by (27), is centered, stationary, of second order,
continuous and its spectral measure allows a density
S¢ (@) with respect to dw such that, for w fixed in
R, S¢ () is the linear operator of H expressed as:

Se.(@)=S, (@) (VR V). (32)

The total power of the process F, (1) is written :
er. (W) =E(IF, 1) =1V IIZE(L.1%)
or, using (31) :

1 B
ef,(\b)=ﬁHW§L | fo(@)]? do. (33)

We note that the right hand member of (33) is
identical to (14).

Thus the process {U(7),reR} with values in H,
resulting from the filtering of the process { F,,(1), t€R}
by the frequency response operator convolution filter
T,, defined by (5) is stationary, centered, of second
order, continuous and its spectral measure admits the
linear operator Sy (w) of H as the density with respect
tod w, written :

Sulw)=T,S¢ (w) T3, 0eR, (34)

where T designates the adjoint operator of T, in H.

The spectral density of an observation process
{o(1), teR} with values in W, defined by 0=0QU
(cf 11.6) is expressed :

S.(@)=05,(w)'Q, (39)

where ’Q is the linear operator on W to H, transposed
from the real operator Q.

The total power of the process { o (¢), 1€ R | is thus
expressed as :

E(Ildilfy)=J

weR

(tr §, (o)) dw. (36)

and as supp S, =B,, considering relations (35), (34),
(32) and (30), we have :

E(IlGIIﬁx)=LEB W {QT, (W@ VY)TE'Q})S, (@) do

=.[1'EB (QTm(‘*llL QT“’(W))WS;,{(D)Q[Q)

whence :

2n
Comparing (37) with (22), we see that :

E(llollz)= —1—.[ | fal@) 2| T, (P) Il doo. (37)
weB,

E(llolli)=E5(¥). (38)

) Consequently, the energy characteristic (22) of an
observation of the system, constructed from the deter-
ministic excitation :

F,=f,®V, VeH, f,eL*(R), suppf,=B,,

can be interpreted as the total power of the same obser-
vation for a random, centered, stationary excitation
F,=(,®V, with the spectral density S, (w) of the
process {(,(7), teR | being expressed :

) -
Sﬁ.(m)=ﬂ|fn(w)lz~ weR.

1114 - COMMENTS ON THE ENERGY CHARAC-
TERISTICS.

Let us note that the energy characteristics we have
introduced to study the intensity of the vibrations in the
medium frequency domain are relative to a fixed fre-
quency band B,,. In practice, it is better not to make the
bands B, too large, to avoid calculating characteristics
that are too general and also to ensure that they remain
linked in some way to the frequency aspect.

Consequently, if we want to study the medium fre-
quency dynamics over a rather large medium frequency
interval /, we will cut this interval into a certain number
of bands B,, such that I=u B, n,B,=Q, and we

n n*

will study the problem in each band B,,.



Note that it is always possible to apply the case of
any given deterministic excitation FeL*(R, H), with
supp F =1. to several elementary cases :

F.=f,®@V. weH, f,eL*R), suppf,=B,

The remark remains valid in the case of a stationary
random excitation which has a spectral measure with
support on /, considering the results in para. IIL3.

Aside from what we have just discussed, it will also
be shown when we develop the numerical construction
of the solution that it is advantageous not to take the
bands B,, too wide, to avoid weighing down the cost of
the numerical calculations, even if it means cutting the
original band into several bands that are small enough.

IV — EXTREMUM VIBRATORY STATE
IN A BAND B,.

IV.1 — EXPLANATION OF THE PROBLEM.

In the domain of low frequency vibrations, for a
conservative linear elastic medium it is conventionally
said that the system ‘‘resonates’” at a harmonic excita-
tion F=exp (iw,!)® Vg, if wp is a vibration eigen-
frequency and if the spatial component V¥, is the eigen-
mode associated with w,. If the mechanical system is
slightly damped one would still say that there is resonan-
ce at the same frequency (in fact the resonant frequency
of the slightly dissipative system is a little different
from wy ).

The problem consisting of exciting this same system
with a force F=exp(i®,!) ® , where w, is still an
eigenfrequency, and finding ¥ in H to obtain the reso-
nance, is referred to as a problem of appropriating the
eigenmode of frequency wo . In the previously described
case, we would have to take ¥ = {5

For the study of vibrations in the medium frequency
domain, we no longer use discrete values of the frequen-
cy, but rather frequency bands B,. The quantities used
to characterize the intensity of the vibration are given in
para. III. They express the total signal energy of an
observation in a given band B, .

Thus, for a fixed medium frequency band B,, the
problem corresponding to the appropriation in the low
frequency domain is: knowing that the excitation
applied is of the type F,=f, ®V, with f, a fixed
function in L?(R) such that supp f,=B,, do particu-
lar elements V exist in A that lead to extremum vibrato-
ry states in the B, band. with the energy e, (V) of
F, as defined by (14) of course being fixed ? This is the
problem of finding the space distributions of excitation
forces producing “resonances” or ‘‘extremum vibratory
states”’ in the band B, . We will see that these extremum
vibratory states exist and that the most interesting of
these is of course the one corresponding to the vibration
maximum that can be obtained in the band B, , when
Y describes H, if the limitation that e, (V) is fixed.

It is of great interest in mechanics, to find these states,
to predict the vibrations in the medium frequency
domain,

By knowing this information, the maximum intensity
of the vibrations in a given zone of the structure can be
determined when the source of excitation is not spatially
fixed but can, a priori, be placed anywhere within a
certain area of a structure {(we then look for the extre-
mum V in a subspace A, of H, or anywhere in the struc-
ture (the extremum Y are then locked for in /). In the
same direction, we can also determine the best spatial
location of excitation sources to maximize or minimize
the vibrations throughout the structure or in a specific
area of the structure.

These various aspects will lead us to introduce an

operator which, in finding its eigenvalues and eigenvec-
tors, will make it possible to answer the questicns asked.

IV.2 — SESQUILINEAR FORM OF THE SIGNAL
ENERGY IN THE BAND B,, AND THE ASSOCIATED
OPERATOR.

Let O be an observation operator of A to W, having
the properties defined in the para. IL6.

F, =1, @V, jef{1,2},

two excitations belonging to the class defined in the
para. I1.3:

VWeH, f,eL*(R), supp/,=B,

Let u') be the vibration due to the excitation F, ;,
which is such that (cf (18)): 4 (w)=f,()( T, U").
Let ¢'/=Qu" be the value of the observation associa-
ted with the vibration «Y). Then the Fourier transform
with repect to 7 of oY) is expressed by :

) w)=f,(©) QT.¥?), weR, je{l, 2}.(39)

We let :
Eé‘(_\l,m’ V)= ( (0, )y dt. (40)

JR

Using Plancherel’s theorem, the relation (39) and the
transposition, we get :

Eg (™, W)= EI__J. (o, 62, dw
n weB,

-~

i lerJ @ P @T W™, QT 4%y do
web,
B s
o= | ful@) P (TE'QQT, W, ¥?)y, do
27{ weB,

=({ij fn(co)lzT“w'QQdem}w“',d!‘z’),

T Joes, H



where T is the adjoint operator of T, in & and Q is
the real linear operator on W to [, transposed from the
operator Q.

We conclude that :
v (1) ll\eH.
n ll?wtlland ::11 (1) (2) Jl (41)
EQ(, ¢ ) =85y, ¥ )y,
where we let :

1 -
= Z—ELB | fu(0)|* T%'QQT, do. (42)

The relation (41) shows that U'"', ¥*)— Ej (y'V), ¢'?)
is a sesquilinear form on H X A which we will call a
“‘sesquilinear form of the signal energy over band B,",
&% the linear operator in A being called the associated
“‘energy operator of the signal’’, We will study the pro-
perties of the operator &3 in the para. IV.3.

Comments (43)

(a) Let us note that for y"'=y* =y e H, we have
oW =g'®'=0, and thus:

Eg (s ¥)=(&5 ¥, )y

= | o thai= 52 | 1513da 49

is nothing other than the total energy of the signal over
the band B, of the observation ¢ defined by (21), due
to the excitation F,=f, ® V.

(b) By taking W =H and Q =1Id, where Id designates
the identity operator of H, we have

E (s W) =0V, Vu

1 5
=J;Hu!|ﬁdf= ﬂLllluilﬁd(ﬂ, (45)

ie. Efy(U, V) represents the total energy of the signal
for the entire structure over the band B,, due to the exci-
tation F,=f,® V. Thus the larger E{ (Y, /) the
larger the vibrations in the set £ of the elastic medium.
The operator &y; thus makes it possible to determine
the extremum vibratory states for the entire elastic
medium, for the band 5,,.

(c) If we are concerned only with the energy of the
signal u over the band B, in the part 2; C Q2 of (2, we
take W = H, and for Q we take the operator of multipli-
cation by the indicator function 1, of the set Q,
which is such that 1, (x)=0 if xeM\Qy, 15 (x)=1
if x € (2, . With these conditions, we have :

Ef, (U W) =&, ¥, W)y

=j (J‘ [Julz, X)Hésdx)d!. (46)
r \Ja,
The scalar £]

o (U, V) clearly represents the energy
of the signal in the part £2; of the structure over the
band B, due to the excitation F,=f, ® . Thus the
greater E{’nl (W, ¥} the greater the vibrations will be
in the Q region of the structure. The operator &7 will
thus make it possible to determine the extremum
vibratory states in the §2, part of the elastic medium.

IV.3 — PROPERTIES OF THE ENERGY OPERATOR
OF THE SIGNAL AND DETERMINATION OF THE
EXTREMUM VIBRATORY STATES.

Considering the assumptions, and the properties of
the operators T, and Q, [6 and 9] show that the opera-
tor &, defined by (42) is a linear operator, self adjoint
(6g*=4&5), positive, compact in A. Consequently,
the spectrum of eigenvalues of the operator &; is
discrete and is a sequence of positive real numbers
Ay Zh,;ZAh;— ... =0, each eigenvalue having a finite
multiplicity and being an isolated point, perhaps with
the exception of 0. There exist associated eigenvectors
V1, V2, ¥a, ..., forming an orthonormal basis of . It

@

is also shown that ) A< +o0 (we then say that &}
ji=1

is nuclear). In what follows, we will denote by A\ the

jth eigenvalue, counted once only if it is repetitive, such

that AV>A >33 - =0, and we will denote by

XU) the eigen subspace of H associated with the eigen-

value A0,

(a) Finding the extremum vibratory states.

For a given excitation energy e, (V) (cf [14]) and
considering the properties of the operator &£}, the
Hermitian form on H associated with (41), i.e.

V= E5 (U, V) =(63 ¥, V)as (47)

goes through extrema when  describes //, and reaches
its extrema when { belongs to the eigen-subspaces X()
of H.

_We are thusled to introduce the following definition:
with the constant

a,,:(zn)-lj (7 @) do (48)
B,

being fixed, the jth extremum vibratory state in the
band B,, will be obtained for a spatial force distribution
¥ such that :

IWilg=1, YeXV. (49)
Under these conditions, the total energy of the response
over the band B, for the jth extremum vibratory state is
expressed :

E§ (¥, v)=(5 ¥, V)u=2"". (50)

Of course the energy level AY) of the jth vibratory
state depends on the normalization of , since we have
defined ||y||y=1 (49). If the normalization is chan-
ged, that is if we take ¢y=b Y while beC, ¥ stll
verifies (49), the jth extremum vibratory state will still
b; ;-ea‘qzled but the response will have an energy level
b= A,

Let us check the equality (50).

Let g be the necessarily finite dimension of the
eigen-subspace X0), and let ¥, VY, ..., ¢ be the



eigenvectors of 4} associated with A(). They form a
basis of XU) and are orthonormal in /. Any V¥ verifying
(49) is expressed :

1
s )]
V= Z Hp pJ'
p=1

q
Y 1=t s

p=1

B,€C; )
(51)

Substituting ¥ given by (51) in the first equation (50),
we get :

=% Tk €007
p P

=;hmz pr%( tpjl, ll,;j))H:;L(J)pr]z:qu
pr P

(b) Maximum vibratory state in the band B,,.

As A(1) is the dominant eigenvalue, the upper bound
of y—Ej(y, V) when ¢ describes A, with the cons-
traints a,, fixed and || Y/||z=1, isreached for yeX";
that is, it belongs to the dominant eigensubspace.
Consequently, the maximum vibratory state that can be
obtained in the band B, with the constraints 2, fixed
(cf (48)) and ||V ||y=1, is reached for a spatial distri-
bution of force Y belonging to the dominant eigen-
subspace X(1) associated with the dominant eigenvalue
A1) of &7, the total energy of the response then being

E3 (¥, W) =A%,

(c) Extremum vibratory states relative to a subspace H,
of H,

As we indicated in para. IV.1, it is often of interest to
find the extremum vibratory states in the band B,, when
the spatial component of the excitation J does not
describe all of H, but only a vector subspace A, of H.
This situation corresponds, for example, to the case
where the forces are spatially restricted to a certain part
of the structure.

Using a logic similar to that used in para. (a) above
shows that the extremum vibratory states relative to the
subspace H, are obtained by calculating the eigensubspa-
ces of the operator (£}), which is the restriction to f,
of the operator &7 inf.

For example if A, is a vector subspace of /, of finite
dimension m, associated with the scalar product induced
by that of H, and denoting by (b;,b,, ..., b,) an
orthonormal basis for H,, the matrix of the operator
(£5), relative to the basis {b,} will be a Hermitian,
positive square (7 X m) matrix and will have the
following elements :

[(‘ga)!]lw’=(ga by, b )y=Eg (b, , b,),
p.pe{l, 2 ..
The jth extremum vibratory state relative to H; will
be obtained for the Y of the form Y= ) p, b, with
p=1

.,m}. 62

W=(My, M3, M3. ..., M) belonging to the eigensubspa-
ce associated with the eigenvalue AU) of the matrix
[(63),] and verifying the normalization condition

Y lp,l2=1.
p=1

In particular, the finding of the maximum vibratory
state in the ), part of the structure when { describes
the subspace H; defined above, consists of calculating
the dominant eigenvalue and the eigensubspace associa-
ted with the positive Hermitian matrix of elements :

[(grﬂl)l]pp':(g;‘ﬂ‘ bﬁ ] bp)H=E1"QI‘.b,-: ] bp}' (53)
where 1, has the meaning given in the comment (43 c).

V — OPERATOR OF TOTAL KINETIC
ENERGY OVER THE BAND B,
AND EXPRESSION FOR THE
MODAL DENSITY

In this paragraph, we introduce a certain operator £
in A such that, for any ¥ in A and given f}, :

represents the total kinetic energy of the response of the
elastic medium to the excitation /,®1. in the band
B,.

This operator is entirely equivalent to the operator
&} defined by (42) insofar as concerns the determina-
tion of the extremum vibratory states. Thus we shall not
belabor this aspect. On the other hand, this operator
will make it possible to calculate the modal density V,
over the band B, i.e. N, A w represents the number of
eigenmodes of vibration of the associated conservative
system that there are in the band B,,.

V.1 - SESQUILINEAR FORM OF THE TOTAL
KINETIC ENERGY OVER THE BAND B,, AND THE
ASSOCIATED OPERATOR.

We will use the notations and assumptions given at
the start of para. IV.2. The sesquilinear form of the total
kinetic energy on A X H for the band B, is defined by :

EIW™, ¥)=5 'f (M 3,u™), 5,u®)ydt,  (55)
R

u" being the vibration due to the excitation
Fr:.j=fn®¢u)'
The relation (55) shows that the total kinetic energy
over B, of the response of the elastic medium to excita-
tion f,®@\r isexpressed :

1

EZ (v, \M:i J. (M0,u, 3, u)gdt, (56)
]

u being the vibration due to the excitation f,®V, defi-
ned by (18).



Using Plancherel’s theorem, the relation (18) and the
transposition, the relation (55) allows one to write !

Ez, ¥ )= I—KJ o (M i, i)y do
we B,

J Ful@) PMT 6, T ¥, do
€8,

J 0| fn(@)]?
weld,

LJ o?| fo(@)? T;Mdem}q,m, \l,m) _
weB,

4 a

T MT, ", ), do

<

We conclude that :
v q,tl)‘ llJ”"EH.
E:(W“', w(z))___(ggwll), ]JJ(Z))H1 5

where we let :

—t—

(37)

1 o
= J 0*| fo(@) | T MT, do. (58)
4n weB,

We call &7 the total kinetic energy operator over
B,.

Considering the assumptions and properties of the
operators T, and M in H, we show as for the operator
&g that the operator &7 defined by (58) is a linear,
self- ad,}omt, po:nve compact operator in 5, and that
the series Z v; of its eigenvalues is convergent (£ is

i=1
nuclear). For such an operator we can define its trace,
the trace operator being denoted by tr.

V.2 — MODAL DENSITY RELATIVE TO THE BAND
B,.

Here we set up a relation that will make it possible to
calculate numerically, subsequently, the modal density,
denoted by V,,, taken as constant by construction in the
band B,, and such that the number of eigenmodes of
vibration in the associated undampened elastic system in
the band B, (bandwidth Aw) be equal to N, Aw.

Let &7 . be the total kinetic energy operator (58)
constructed with :

C=2EnAoM, EeR™, (59)
fo(t)=(m1)"'sin(zAo/2)explinAw 1) (60)

Thus £ represents the average damping rate of the
structure over the band B,,, and f,, is the function defi-
ned in (I1.4 d).

With these conditions, we have

a1, <N,<b,a (61)

n n?

where :

= e b-—_n
Bl 7 = 7 M

o, =167 lim Etr(M €7, ). (63)

£=0,
Numerically, for n» |, a,~b,~1, and for a
given £ << 1, we have :
N":Snn&(Arctg(—i-)
s (64)
!
+naLog(—"—§—)) tr(M&” ).
1+n°g ’

The proof for this is given in the appendix.

VI — CONSTRUCTION OF THE SOLUTION

VI.1 - CALCULATIONS NEEDED TO IMPLEMENT
THE ENERGY METHOD.

The energy characteristics (cf para III) are obtained
by calculating numbers such as Ej (), given by (21) in
the deterministic case, and by (38) in the random case.

In the same way, the extremum vibratory states are
obtained by studying the eigenvalues problem of the
operator £; defined by (42). However (41) defines
this operator in the sesquilinear form Ej (y'*, ¢*)
given by (40).

Considering the comment (43 a), we have

Ej()=E3 (¥, V).
Consequently, all of these quantities will be determined
as we can calculate Ej ("), *?), defined by (41) with
any given ¥(1) and ¢(2) in H.
_ We will thus attempt to calculate this quantity
numerically, using an appropriate numerical method (cf
para I).

The method that we are going to develop will make it
possible to calculate the frequency response operator
T,,, also sometimes called the “generalized Green func-
tion”’,

Finally, let us note that the calculation of the modal
density [c¢f (61) to (64)] requires the determination of
the operator &7, which is also defined in sesquilinear
form E’ (Y, y'?") [cf (57)], which is of the same type
as Ej (Y, y®) . We will thus also give the numerical
method for calculating E7.

V1.2 — LOW FREQUENCY EQUATION ASSOCIATED
WITH THE MEDIUM FREQUENCY PROBLEM.

Let f, be a function belonging to the excitation class
defined in para. I1.3, and let f; be the associated func-
tion such that :

fot)=falt)exp(—inAw ). (65)

Ao Ao
B"‘[_T’T]

then, according to (I1.4 b) :

foeL*(R) and supp fo=



is a low frequency signal associated with the medium
frequency signal f,, relative to the band B,,. We have the
following proposition.

Proposition : (66)

The medium frequency vibration u, such thatfi =8, ,
defined by :

(@)= f,(@)(T, V), (67)

and interpreted as the forced solution associated with
the medium frequency excitation f ®V{ over the
band B, of :

MéZu+Cou+Ku=f,QV, (68)
is expressed :
u(t)=uqy(t)exp(in Ao t), (69)

where, u, is the forced solution of :
MG uy+(C+2in Ao M)d,uq (70)
+(K+inAo C—(nAw) M)u,=f,®V

associated with the low frequency excitation [,@y
and defined by its Fourier transform :

il (@)= fo (@) (T s nao V), (71)

which has the compact support :
Ao Aw
Bi=| ——,— |-
-5 5]

Comments and Proof of the Propesition (66)  (72)

(a) By substituting (69) in (68), and taking (65) into
account, (70) is obtained directly because :

G, ult)=(0,uy(1) +inAougy(1))exp(indao ), (73)

G2 u(t)=(0%uy(t)+2in Awd, uy (1) (74)
—(nAo) ug (1)) explinAw ).

(b) From the relation (69) we cbtain
ug(t)=u(t)exp(—inAwi). (75)

Therefore iy(w)=i(w+nAw). In the same way,
considering (65) and the results of (II.4 b), we have
fi@+nAw)=f().

We conclude (71) considering (67). Since supp fo
=B,, the relation (71) shows that supp i, = By.

Consequently, u, defined by (71) is exactly the low
frequency vibration on By, the forced solution of (70)
associated with the medium frequency vibration u over
B, , by the relation (69).

(c) The existence and uniqueness of the forced solu-
tion u, of (70) results directly from (71).

(d) The low frequency equation (70) will be solved
numerically using an appropriate step by step integra-
tion method. The comparison of relations (67) and (71)
shows that any implicit numerical scheme that is uncon-
ditionally stable when applied to the equations (68) will
also be unconditionally stable when applied to the equa-
tion (70).

V1.3 — ACTUAL CONSTRUCTION OF THE MEDIUM
FREQUENCY SOLUTION.

Welet :

Aw LB 2n

7' T g Mo
For any me Z, we define the family of functions

¥, on R with valuesin [ such that :

o= (76)

~ sin@ {(t—mTt;)
bes e — B (77)
Vo (t—mT1;)

With these notations we have the following proposition :

Proposition (78)

The medium frequency vibration u defined by (67),
the forced solution of the equation :

Métu+Co,u+Ku=f,@V. (79)

is written for (e R :

u(t)=tH2™ Y ug(mt) @n(t), (80)

med

_where 4 is the forced solution of (70) defined by (71).

The Fourier transform of u (/) with respect to f,
which has compact support B,, is written :

d(@)=1.p,(@) Y uplmr,)e™ ™", (81)

mel

where p,, is defined by (15). In the same way for e R,
we have :

dou(t)=1t}2™ Y z(mt)@n(2), (82)

med

where
z(t)=0,uy(1)+inAwug(1). (83)

Comments (84)

(2) The series on the right sides of equations (80),
(81) and (82) are convergent in L?.

(b) The relatonship (81) determines operator T,
(considering (67)) as a function of the low frequency
sampled time solution ug of the equation (70), and thus
gives a constructive numerical method for obtaining the
generalized Green function.

(c) The results of proposition (78) will make it
possible to calculate the numbers E(Y''’, y'*)) and
Ej (y'*), ¢'?)), directly, that is to determine all the
quantities of interest (cf VI.1).



Proof of the proposition (78).

The functions y,,, defined by (77) arein L*(R), and
{®m |, meZ is an orthonormal system of L*(R), but
not complete, It is thus not an orthonormal basis of
L*(R).

On the other hand, { ¢, }, meZ isan orthonormal
basis of the vectorial subspace of L*(R) defined by
{feL*(R)|supp f =B, }, for the scalar product and
the norm induced by L?(R).

As u,el*(R, V) and suppi,=B, uy can be
expanded on the basis { ¢,, |, which is nothing other
than the expression of the sampling theorem, and gives :

o ()= 3, tg(me) 7L @ll). (85)
me i
Considering (69), we conclude (80). The relationship
(81) is obtained directly by taking the Fourier transform
of (80).
A similar train of thought leads us from (73) to the
relation (82).

Proposition (86)

Let ub!) and u$?) be the respective forced solutions
of (70) for the excitations f,®V'"’ and f;®VY'*. for
given Y(1) and Y(2) in H, with f, given by (65). Then :

(a) The value at the point { ''); '*'} of H X H of
the sesquilinear form of the signal energy in the medium
frequency band B, defined by (40) is expressed :

Eatwtll, \b(.’.)}

=1y Z (Qug (mt,), Qug' (mt))w,

meF

(87)

where Q is the observation operator from H to W,
defined in para. IL.6.

(b) The value at the point { Y''; y'*'| of H X H of
the sesquilinear form of the total kinetic energy in the
medium frequency band B, defined by (55) is expressed
by :

EZ(Y0, §2)

1 (88)
where =§TLM§E(M #imty), 2% (m1))y.
je{1,2}, |9
29(1)=6,ug (1) +in Ao uf (1).
Comments (90)

Considering what was said in para. V1.1, the relations
(87) and (88) show that we can calculate very simply all
of the quantities characterizing the medium frequency
dynamics in the band B, simply by knowing, at times
{mt,,meZ}, the forced solution Y’ and its partial
derivative §,uy’), je{1, 2} for the equation :

M &2 u’ +(C+2inAw M) 6, uy’

‘ o (91)
+(K+inAo C—(nAw)* M)uld = f,@y").

Moreover, the equation (91) is a second-order differen-
tial equation with respect to f, linear, in the low-fre-
quency domain :

[ Av Aw
(SUPPfG—SUPP“lci"—B(J:[— 75 2])

This equation can thus be solved easily by a direct nume-
rical time integration method with large time steps,
since the highest frequency component is Aw/2, while
a direct numerical integration of the equation (68)
would lead to very small time steps since the highest
frequency component is then (n + 1/2) Aw. This gene-
rally leads to insurmountable calculation problems (cf
Introduction, para. I).

We will discuss the numerical problems in para. VII,
Proof of the proposition (86).
Considering (40) and (80), we have :

Ep(u, wﬂ'J=J (o, 62), di
B
zj‘ {Q ulll! Qull)]wdr
R

=1, Z Z [Qull)

mel mel

Qug (m' 1))y J Q1)@ (2)dr.
R

But since | ¢,, | is orthonormal in L?(R) :

~

J o l1) G =B
3

whence the result (87).
_ In the same way, the relations (55) and (82) yield :

E:(‘L"”- q!(z,):_-l) J. (M 5:”“'1 a: uiz’)ﬂ dt
< Jr

au: an }

LZZ

meZ mel

~

:‘2>(m'rLJ)HJ (D)0 ()dt,
R

whence the relation (88).

VII - NUMERICAL ANALYSIS

VIL.1 — EXPLANATION OF THE PROBLEM.

Let us first examine the various numerical problems
encountered in solving the problem posed, ie. mainly
the calculation of (87) and (88). We will then study the
various points in detail.

(a) Time aspect

— As the time integration of the equation (70) con-

not be carried out numerically over all of R, it will be

carried out over a bounded time interval (77, tg), where
f]‘( 0 and tS:> 0.

This introduces a systematic error because it does not
take into account the ernergy contained in the interval
(— oo, #;) and (g, + o). We will see that it is possible to



reduce this error as much as we want, and that in practi-
ce we obtain a very good precision when fg — f; is
“small”’, i.e. by integrating over a time interval deman-
ding reasonable calcu'ation costs.

— To solve the equation (70), a step-by-step integra-
tion algorithm must be used that is unconditionally
stable and produces the values ug (f) and 9,ug (f)
directly for sampled values of 1, mt,, meZ.

Furthermore, the truncation need on the sums in
me Z appearing in the relations (87) and (88) is directly
linked to the choice of 7; and 5.

(b) Spatial aspect

Let us note that all of the approximation procedures
for time integration of the equation (70) can be studied
by keeping the operators M, C and X, without introdu-
cing their finite dimension approximations.

Nonetheless, as the mechanical structures considered
can be anisotropic and of any geometry, only finite
dimension approximations of these operators can be
obtained to represent them. Naturally, to approach the
operators M, C and K, we will use the usual method of
finite elements. For the medium frequency domain and
possibly even for the high frequency domain, the only
problem with using this method is selecting the fineness
of the grid in the various parts of the structure.

VII.2 — SPATIAL DISCRETIZING OF THE EQUA-
TIONS BY THE FINITE ELEMENT METHOD.

The forced solution u constructed by (69) and (70)
is strictly the same as the forced solution for (68). This
is what proposition (66) states.

Moreover, the direct solution of the equation (68) by
the finite element method, for the excitation f, @V in
the band B, would require a structure grid compatible
with the frequency components of the band B,,. Let us
recall that the method of finite elements consists of
introducing a subspace V; of space ¥, of finite dimen-
sion d, with d representing the number of degrees of
freedom corresponding to the finite element selected
model.

The approximate solution, denoted by uy4 of u is then
expressed as :

d
ug(t, M)= 3, U,(1)b;(M),
Jj=1

where {b,, b,, ... b,| isabasisof V5. The problems
of convergence are studied exhaustively in the literature
and we shall not touch upon them here. As we are invol-
ved with a classic case of elastodynamics in an anisotro-
pic linear elastic medium, there are no difficulties in
addition to the usual theory arising from the context of
the medium frequency domain.

Thus let U (1) be the (d X 1) column matrix on C*
of the nodal unknowns U; (), and let P be the (d X 1)
column matrix on C? of the spatial component of
nodal forces equivalent to /.

Let [M], [C] and [K] be the matrices of the corres-
ponding approximations of the operators M, C and X.
These are the mass, damping and stiffness matrices, res-
pectively. They are (d X d) square, real, symmetric and
positive definite, considering the assumptions concerning
the operators M, C and K.

If we denote the derivative of any quantity x with
respect to ¢ by X, the approximation of the equation
(68) by the finite element method gives

M b C e
MU (1) +[CIU (1) _ ‘ -
+[KJU (1)=f,(1) P, YieR.

The proposition (66) means that the forced solution
U (t) of (92) relative to the medium frequency excita-
tion f,; (). P, over band B,;, is expressed as :

U(n)=U,y(t) exp (inAw ¢), (93)

where U, (t) is the (d X 1) column matrix on C? such
that 1~ U, (¢) is the forced solution of :

MU, () +[€,) Uy (1)

. (94)
+[ A JUg(t)=f5(2) P, VieR,

where we let :
[%,]=[C]+2 in Ao [M], (95)
[ ]=[K]+in Ao [C]—(n Aw)? [M], (96)

and where f; (¢) is the function associated with f,; (1)
by (65).
Note that the matrices [¥,] and [%",] are (d X d)

- square, complex, symmetric (but not Hermitian) and

that the initial band structure of the matrices [M], [C]
and [K] is kept for [#,] and [,). Let {ns M2 ... |
be an orthonormal basis of the observation space W,
introduced in para. IL.6. If W is of finite dimension p, we
designate by [Q] the (p X d) matrix of the approxima-
tion of the observation operator Q from V; to W. If W is
infinite, we still designate by [Q] the (p X d) matrix of
the approximation of the operator Q from V; to W,,
where W, is the finite subspace p of W generated by
{N;.Ma2 ..., N, . Considering the properties of Q (cf
para. I1.6), [Q] isareal, (p X d) matrix.

To abridge the notation that follows, if 4 and B are

two complex column matrices of the same length, we
let:

(A4, B)="4B, (97)

where ‘A is the row matrix transposed from A4, and we
will identify an element of 4 in C? with its matrix
(again denoted by A) on the cononical basis of C*

Considering (80), (81), (82) and (83), the desired
solution to the equation (92) is such that :

U(t)=tt2e" Y Uglmty) (), (98)

mel

Ulw)=1,.p,0) Y Us(mr)e ™2, (99)

mel



U(t)=1}/2 e Y Z(mt)e,(1), (100)

me L

U@)=1.p,@) T Z(mr,)e- ™t  (101)

mel
with Z () being the (d X 1) column matrix such that :

Z(t)=Uy(t)+in Aw Uy (2). (102)

Remarks

1) On the numerical level, the relations that make it
possible to calculate the energy characteristics depending
on the displacement velocity field show that is of no
interest to write U(w)=iw U(w), but that using (101)
is.

2) The relations (99) and (101) directly yield the fre-
quency response operator matrices (still called generali-
zed Green functions) relative to the displacement field
and to the displacement velocity field.

The proposition (86) shows that the sesquilinear
forms of the signal energy and of the total kinetic energy
defined on C?xC? are expressed for any P(1) and P(?)
in C? by:

BBy, Py
=1, ) {[QIUY (m7,), [Q1UF (m1,)), (103)

med

E2(P,P2)

1w ) ([M1ZM(m,), ZP (m,)), (104)

melZ

m.—

with, for je{l,2}:

ZO(1)=UY (1) +in Ao UY (1), (105)

and where U’ (t)is the forced solution of the equation
(94) for excitation f, (1) PV

Remarks :

1) The relation (103) can be used to calculate the
energy characteristics (21) and (22), to study the spatial
propagation of the vibrations (24), (25) and (26), for a
deterministic or stationary random excitation, to deter-
mine extremum vibratory states (cf para. IV).

2) The relation (104) can be used to calculate the
modal density (cf para. V). In effect, the relation (64)
requires the calculation of tr(M &7 ;), the approxima-
tion of which is expressed as tr([M][£7 .]), the Hermi-
tian (d X d) matrix [£7,] having the following ele-
ments, as per (54) :

ﬁlpp E? (ep’ p) 106

p re{l,2, ...,d}, %)

where {e,,e,, ..., ¢e,} is the canonical basis of C°.
Let us note that, using an additional approximation,
we can avoid having to construct the entire matrix

[62. 4.

In effect, as the matrix [M] is real, symmetric, positi-
ve definite, it can be expressed as :

d
M]= Z A 'A (107)

j=1
where [, 2P, 2p32...21,>0 are the eigenvalues
of [M] and A, A,, ..., A, are the (dX 1) column

matrices of the associated eigenvectors, which are such
that (A, A; ) =35;. We then have :

d
tr((MI[E2. D) = 2 w;tr(A;A 67 o))

WKL d Ay Ay

I
[

Ith.

wET(A, A). (108)

j=1

When 4 is large, solving the entire eigen value problem of
[M], which is necessary if we are to use (108), is more
costly than the direct calculation of (106). Howsver, if
the mass matrix [M] is such that the g first eigenvalues
My, M2, ..., Hg, with g K d are dominant with respect
to Mgiqs ..., Ky, We can then approach (108) using :

tr((M][&7 ] Z W;EZA;, A (109)
The approximate value (109) is then advantageous
because it requires only the calculation of the first
eigenvalues and eigenvectors of [M], then the calculation
of (104) for a small number of spatial force distribu-
tion.

TP, el 2, .,..4)

VIL3 — TIME INTEGRATION OF THE ASSOCIATED
LOW FREQUENCY EQUATION.

The results of the para. VII.2 show that all of the
quantities are expressed by solving the low frequency
equation (94). We will study in this paragraph the nume-
rical aspects related to the time integration of (94).

This equation is standard and we can thus use any
unconditionally stable step-by-step integration algorithm
(Newmark method, §-Wilson method, etc.).

(a) Selection of the integration step.

We retain the notations (76). We have seen that
supp f, =supp Uy=B,=[-A®/2, Aw/2]. This is
why the forced solution of (94) that we are looking for
is called the associated low frequency solution to the
medium frequency problem in band B,,.

As the highest angular frequency exdisting in the
signals fy and U, is wy = Aw/2, the smallest period is
2m/wy =2 1. According to the Shannon theorem, the
integration step ¢ must be less than 2 7, /2 =7, . Now to
use formulas of the type (103), (104), U, (¢)and U, (1)
must be known at instants m<t,, me Z. Consequently,



the integration step, denoted by A, will be such that
At=1,/m;, where my is a positive integer greater than
1. The choice of my partially conditions the precision
that will be obtained in the solution and depends only
on the numerical method of integration used.

(b) Choice of the initial instant of integration ;.

The time f; < 0 at which integration will start will be
taken at f; =— m;7 , where m; is a positive integer. The
initial instant ¢; is thus defined by m;. To optimize the
cost of numerical calculation, this must be as small as
possible, with two constraints : not to truncate the exci-
tation energy and not to introduce a numerical transient
disturbing the solution that is being loocked for.

The selection of m; is thus related to the asymptotic
behavior of the function f, for #- —oo. But since
foeL?(R), we know that for any fixed positive € as
small as we want, 3m; such that

j' ) fo) R de<e,

==

We can thus make the part of the energy truncated by
the choice of a finite initial instant f; as small as we
wish. For example, for f;, defined by (16)

—mpt —mp
j ”fo(rwtg—ﬂ-f B Ay
T

= 3 ¥
. 2n m;

—

and since by (17) :

e i [ . A
j x]fo(fnldi=ﬂJ_I|fo(m“2dm=§-

the relative error introduced is less than (n’m,;)”!,
which gives 0.03 for m; = 3, for example.

Furthermore, the energy of the transient created by
the algorithm can be made negligible by taking zero
initial conditions

UO("mrTL)=Uo(_mﬂL)=0v

and m; large enough so that the system can adapt during
the first instants of integration, with the excitation
energy transferred to the system remaining small during
these instants.

(c) Choice of the final instant tg.

The final instant of integration, designated g, will be
taken as fg=mg7y, with mg a positive integer. As
Uy,e L*(R, C%), again, with Ve fixed as small as desi-
red, finite mg exists such that :

o e =
j {Uglr), Uglt) y dr<k.
mseL

Thus we can make the energy not taken into account
in the interval (zg, + °) as small as we want.

The choice of mg is directly related to the dynamics
of the system governed by the structural damping. As
the total energy introduced is known before integration
is started and as at each instant f > f;, the total energy

dissipated during the time interval r — f; can be determi-
ned, the energy budget makes it possible to determine
mg automatically to obtain a given precision beforehand
in the solution.

(d) Remark.

The relations (98) to (101), (103) and (104) use a
sum at every instant m<t,, me Z. The energy conside-
rations discussed in points (b) and (c) above which
define the initial instant #; =— m;7; and the final
instant tg =mg7,, directly give the truncations to be
carried out on the sums ) . The > need only be

mel mel
mg
replaced by ) .
m=-m

(e) Numerical method of step-by-step Integration.

Here we present a numerical method based on the
implicit second central difference, unconditionally
stable and equivalent to the Newmark method [2], but
developed in a nonconventional form due to [1]. This
method that we have tested numerically for our dyna-
mics problem in the medium frequency domain gives
very good results with a minimum of operations.

We thus have to solve the following problem :

M) U, (1)+[%,] Usl2)
+[H JUD)=S5lt) P,  tElL;, 15), s

L‘YD{II)= Uo{t,]-—~0

(110)

where [4,] and [#',] are the matrices defined by (95)
and (96).

* Letty, t3, ..., tm, ... be the finite set of the inter-
val (f[, fs') such that 14 =y and Vm, fm?l"'Im:Al'.
At the instant “1/2" of the interval [7,,, 7,.,], denoted
by :

4 At
!11=Im+‘:m 1 _fm+T~ (111)
we let
Ua=Uolt s  Viu=Uslty) (112)

At the instant t;/,, the implicit central difference
method leads us to define :

Unp+U,ey

Vig=—""% (113)
k D'rnf “L?m Vm +Vm
B = s (114)
i va == Vm
Uyr= ——3{ . (115)

From the second equation (114) we conclude :

;

Vm,-1=z(["_m_%)_l/m. (116)



(115) can also be expressed :

Oypm( Yzt V)2 y¥
' 2 At At

or, using the second equation (114) :

n 2 2
o -—V,. 117
Ul,Z [AI]Z Um+l (AI)Z Um AI‘ m ( )

By writing the equilibrium at the instant 7,5, (110)
yields :

[M] th"'[%}n} Uuz“'{fn] Uj2=/folty2) Py (118)

and by substituting the relations (117), (114) and (113)
in (118) we get :

2 1 1. ,

2 1 W
=i+ g6l -30x) 0.

/

2 At
il Vm+fo(r,,,+ T)P. (119)

By replacing the expressions (95) and (96) of [%¥,] and
[ ,], in (119), considering (116), we get the system of
equations of the numerical integration method :

2

[An.] Um+1=[Bn] Um+ AI [‘M] Vm
+f0([m+ %E)P, m=1, (120)
2 .
mTl=E‘.er+1_bm)_Vm‘ (121)

where, for the initial instant f;=1,, U; =F; =0, and
where we let :

g 2 2inAo  (nAe)?
[A"]—((A.r)2+ At 2 )[M}

1 . Ae) 1 :

i 2in Aw  (nAw)?
{B"]_({At]2+ A 2 )[M]

1 L Aw” | ,
+(\E—MT)[C]—§[K] (123)

Remark 1 : Note that [4,] and [B,] are both (d X d)
square, complex, symmetric matrices and they have the
same band structure as the matrices [M], [C] and [K].

Remark 2 : For a fixed medium frequency band B,,,
the solution of (120) for all values of m and for values of
P that must be considered require only one triangulariza-
tion of the band matrix [4,].

Remark 3: In the special case where the structural
damping is introduced by the mean damping rate £ in
the band B,,, we have [C]=2&nAw[M], [cf (59) and
(A.3)] and the relationships (122) and (123) are expres-
sed :

F 2 2nAe .
[An]=((w+—m-(:+g
-i-(nAw)z(iE,-%))[M]%»%[K]. (124)

-

i

2 2nAow
—| [ E
[B,,] (—ZA ] + A7 (t+&)

(Af

—(nAe)? (i?;— %))[M] - —;[K]. (125)

VIII - EXAMPLE

Here we present the example of a plane, homoge-
neous rectangular plate, isotropic in bending.

We have voluntarily selected this very simple case so
as to be able to :

— compare the numerical results obtained with the
exact theoretical solution known ;

— study the numerical convergences ; in effect, we
known that there is a convergence mathematically, but
we want to see if the needed calculations remain reaso-
nable.

To do this, we developed a specific finite element
semi-analytical computer program for this type of plate,
to construct its mass, damping and stiffness matrix.

VIII.1 - GEOMETRICAL AND MECHANICAL DATA.

Relative to an orthonormal oxyz system, we consi-
der a plane rectangular plate of dimensions L, =6.0 and
Ly, =0.5, the central plane of which is the oxy plane.
The coordinates of the four corners of the plate are (0,
0,0),(Lx, 0,0),(Lx, Ly, 0)and (0,L,, 0).

The plate is homogeneous, isotropic of constant
thickness ¢ = 0.001, density o = 7850, Poisson constant
v=0.3 and Young's modulus £ =2 X 10!, We want to
know the bending, with the displacement of a point
(x, ) in the oz direction in the central plane being
denoted by w (x, ¥). We hypothesize that the plate is
simply resting on its edges.

VIII.2 — FINITE ELEMENTS CONSIDERED.

For such a plate, we know how to construct the exact
solution explicitly. To test the proposed method in the
medium frequency domain, we modelize the plate with
finite semi-analytic elements, discretizing in the ox direc-
tion and integrating analytically along oy.



The finite element used is constructed by expanding
in a direct sum the displacement field space w (x, y)
into a subspace characterized by an integer N > 1 such
that the displacemest field in the subspace /V is expres-
sed by :

Y

sy, 5 . [ Nny
ol Bt i
yv{x, y)=u(x}) sin L, )

Having chosen a grid in the ox direction, the finite
semi-analytical element is constructed for each subspace
N by taking cubic interpolation functions in x for the
function u (x) and integrating analytically over .

We thus obtain for each subspace NV a mass matrix
[M] and a stiffness matrix [K]. In the present example,
we generated the damping matrix relative to a medium
frequency band B,, by the relationship

[Cl=2EnAn[M].

The scalar ¢ > 0 then represents the mean critical dam-
ping rate in the band B,,.

By knowing these three matrices the vibratory state
of the plate can be determined for medium frequency
excitations in the band B,,, the spatial component of the
excitation being in the considered subspace V, i.e. of the

. [(Nmy
f P
orm sm( 7

), with P being a column matrix of
constants. il

For the numerical results given below, we took a
grid with 91 nodes at a constant mesh in the ox direc-
tion, which gives 90 finite semi-analytical elements and
180 degrees of freedom (considering the boundary
conditions).

In fact, for the medium frequency bands B,, studied
this grid is a bit too dense ; but we did not want to
introduce systematic errors of approximation due to the
finite element method, considering the comparisons with
the exact theoretical solution, because we are attempting
to test the convergences on the other parameters of the
numerical model we are proposing (choice of parameter
values for m,, m;, my, Ar, etc.).

VIIL.3 - NUMERICAL RESULTS OBTAINED.

A. Numerical convergence.

For a fixed band B,,, we study the convergences of
the solutions as a function of the parameters m;, mg,
mr defined in paragraph VII.3. For the time compo-
nent of the excitation, we use the function f;, (¢) defi-
ned in IL.4d. For the space component of the excitation
relative to a subspace N, we apply the nodal force
)

0N
lxsm(ﬁ
L

) along the degree of freedom z at node
¥

46, which is the middle of the plate, and O on all of the
other degrees of freedom,

The quantity observed to test the numerical conver-
gence is the value of u (x) at node 46, denoted by u4 4,
with the complete displacement field for this node being
given by :

Nxy)
Wy (X465, V) =Uye SiD ( o ), ye(0, L,).
L!v‘
For this observation uw,,, we calculate its energy
characteristic given by (21), which we designate by the
simplified notation £,

Table I summarizes the calculations processed and
indicates the number of the figures 1 to 6 graphing the
numerical results obtained by the method explained in
this article.

The various figures 1 to 6 show that the convergence
is rapid and that the solution is obtained with good
precision and after relatively few steps in the calculation.

The number of steps is (m; + mg) X my. In the cases
covered, with some 30 steps, we obtain a solution having
more than sufficient precision for practical purposes. It
should be noted that the ordinate scale is very much
expanded.

TABLE ]
! I
Band 8, { |
Theoretical |
i number of
Mean ! eigenmodes Theoretical 1+ _.
Sub’s\;:ace Center Bandwidth f Value | damping in the band value of , Figure
frequency ] rate ¢ 8, and in E, (m) '
Aw ofn | n u
Hz the subspace
(Hz) N
5 260. 26. 10 0,001 12 | 01 667x10"* 1
5 260. 26. 10 0,01 12 | 0.8110x1075 2
15 2180.1 50,7 43 0,001 26 [ 0,1683x1 075 | 3and 4
15 2180.1 50,7 43 0.01 26 ) 0, 849%10°% | Sand 6
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) B. Level and spatial propagation of vibrations.
;[’ m; +ms Table 2 summarizes the computations graphed in the
o550 100 10 200 figares 7 shrongh 14,
m, 55 10 s 50 100 For all of the calculations, the time component of
ms |5 40 95 LY the excitation f, is the function defined in I1.4d. For the
Fig. 3. space component of the excitation relative to a subspace
TABLE II
Band Bn
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- number of
. ean eigenmode i
Sub}s&:m Center Bandwidth o damping th Wi i i Vo Lais Flngsra
frequency R rate § B and in )
ofn n
(Hz) the subspace
(Hz) N
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156 21801 50,7 43 0,001 26 10 | 40 3 9
15 21801 50,7 43 0,01 26 10 | 40 3 10
5 260. 26. 10 0,001 12 5 |20 3 11
5 260. 26. 10 0,01 12 5 |20 3 12
] 260. 26. 10 0,001 12 5 (20 | 3 13
5 260. 26. 10 0,01 12 5 |20 3 14




N
N, the nodal force | x sin( Ln
¥y
degree of freedom z at the node indicated on each figure

by a vertical arrow next to the P =1 symbol, and 0 is
applied to all of the other degrees of freedom. Each
figure (7 to 14) represents the graph of the function :

J ) is applied along the

where £, (x) is the energy characteristic of the observa-
tion u (x) given by (21). This function thus makes it
possible to calculate the intensity of the vibrations, and
to study their spatial propagation, at all points in the
plate. Each figure shows the solution obtained from the
exact theory and the numerical solution obtained by
means of the theory discussed here. Note that the pre-

x—/E,(x)( max \/E,(x))"", x€e(0, L), diction obtained may be qualified as very good.
x€l0, L,)
VE./max(VE.) +F=F «+»« = Computation
1 = exact theory
0,8
0.6
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axis of symmetry
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Fig. 7.
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02 . 4 x
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C. Maximum vibratory states.

The figures 15 and 16 illustrate the implementation
of the developments in paragraph IV, to determine the
maximum vibratory states.

The hypothesis of calculation for these two figures
are as follows :

The subspace considered is NV =15. The center fre-
quency of the band B,, is 2 180.1 Hz, with a bandwidth

Aw of 50.7 Hz, which corresponds to n =43. In this
band, the theoretical number of eigenmodes (and in the
subspace N =15) is 26. The mean critical damping rate
in the band is taken to be £ = 0.001. The calculation
parameters are m; =5, mg =10 and mp =3. The time
component of the excitation f,, is the function defined
in I1.4d.

Each curve in the figures 15 and 16 is a graph of the
function x+— . /E (x), x€(0, L), where £, (x)is the



energy characteristic of the observation u (x) given by
(21) and corresponding to the following spatial excita-
tions :

(a) The curves referenced (2) correspond to the
vibration obtained for an excitation the spatial distribu-

N
T{y) all along

¥

the degree of freedom z of the node indicated in the
figures by a vertical arrow next to the symbol P = 1, and
0 for all of the other degrees of freedom.

(b) The curves referenced (1) correspond to the maxi-
mum vibration, determined by the theory explained in
paragraph IV, that there can be at a point in the plate
(Fig. 15) or in an area of the plate (Fig. 16), indicated in
the figures by double arrows and the note “‘optimization
on these nodes”, when the spatial component of the

. N }
excitation P sin _Lﬂ_{) of the subspace /V, represen-

tion of which is a nodal force 1 xsin (

ted by PeC!8°, descyribes the subspace R° of C!8°,
defined by the degrees of freedom indicated in the two
figures by the vertical arrows under to the symbol
P P2 PR P& PG These scalars PU) represent the
components of the forces along the considered degrees
of freedom, with the normalization conditions

5
I1PI*= ¥ | P9 =1,
F=1

For figure 15, the maximum vibratory states for the
defined configuration is obtained for P(1) =0.391,
P(2) = 0475, P(3) =0.493, P(4) = 0.476, P(5) = 0.388.

For figure 16, it is obtained for P(1) = 0.626, P(2) =
0.500, P(3)=0.123, P(4)—=_— 0.288, P(5) = - 0.509.

We note that, for each calculation considered, the
total excitation energy is the same for vibrations (1) and
(2). Furthermore, the spatial localization is roughly the
same. Nevertheless, the vibration intensities obtained
are very different in the figure 15.

We thus see the great interest of the maximum vibra-
tory state calculations, because the vibration (1) in the
figure 15, for example, directly yields the absolute
maximum of the vibration that can exist in band B, at
the specified point on the plate when the space compo-
nent of the excitation is not fixed but describes a sub-
space, the total energy of the excitation of course being
fixed. This aspect is extremely useful in predictions.

IX — CONCLUSIONS

The difficulties encountered in studying the dynamics
of linear anisotropic elastic media in the medium fre-
quency range with modal techniques led us to develop a
new numerical method. Although the method proposed
is supported by numerical processes, it led us to intro-
duce new mechanical concepts to study the vibrations of
the structures in the higher frequency domain (energy
characteristics per band, extremum vibratory states,

etc.), for both deterministic and random sexcitations, It
should be noted that similar concepts have been in use
for a long time in other fields of physics (theoretical
physics), and in the probabilistic approach to the dyna-
mics of structures,

The numerical analysis that we have carried out
shows that this method can be used without difficulty in
the main existing structural computation codes. We are
currently attracted to this method so as to be able to
process practical cases entailing modelization with a
large number of degrees of freedom.

Finally, we believe that this approach can be used to
address problems of fluid-structure interaction in the
same frequency ranges, and in particular elasto-acousti-
cal problems, as long as the problems remain linear.

Manuscript submitted July 19th, 1982.

APPENDIX
MODAL DENSITY

Below we give the proof of relations (61) to (64)
relative to the modal density in the band B,,.

We again use here the set of notations and hypotheses
given in the article.

Let {o,}, jeN be the modal basis of the associated
conservative elastic medium, and {Q;}, jeN be the
spectrum of associated angular eigen frequencies such
that :

0, £0,£0.%...

The set {®;}, j€N constitutes a real orthonormal
basis in /. We have :

(Mo, ‘Pk)ﬂ=5jkm;‘a (A1)
(K @ (pg)g=5ﬂ¢m_,‘92‘, (A.2)

where & is the Kronecker symbol.
Considering (59) and (A.1), we have :

] 1 nAo
VIEN, §=f—7—, (A3)
J

(C(pj’ (Pk]f;:Sjsz,ijmjp (A.4)

nAw

as sup§j=éﬁ—=§1, when §, -0,V & —0.
I 1

Yetwhen £ —0, £, —0. Thus:

VjeN, Ilim §;=0. (A.5)

§=0,

Under these conditions, the frequency response operator
T,, defined by (5) is expressed

Tmz Z hj{m){pj®(pjs (A'6)
i=1



where

hi(w)= I

S m Q- 0*+2i0E,Q) (A.7)
We thus have :
T"MT—(Zh, ¢,®«pJM)(Zh o) ¢; ® o)

—Zhj(w)h,--fm)w P 000, ® @
L7
Considering (A.1), we conclude that :
ToMT,= Z |hj(m)|zmj¢’j®q)j- (A.8)
i=1

Substituting (A.8) in (58), considering (60), (17) and
(A.3), we obtain, by letting :

1 o? do

e, €)=EL& Q-0 +40? ¥ (nAo)™’ (55
tfé‘.fj; m'1Q, 80,80,  (A.10)

By composing on the left the two sides of (A.10) with
the mass operator M, and since :

tr{M(o;®9)}=(Mo, @Q)p=m;,
we deduce the relationship :

tr(M&r )= i 1Q;, &). (A.11)
j=1

Let A4 be the positive measure on R such that

@
N'=73 Bq, where dq, is the Dirac measure at point
j=1

$; of R™. We then have :

I 1@ YA @)= 1@, &),
R i
For any interval / bounded in R,

(A.12)

M(J)=I N (dQ)< + o
QeJ

is equal to the number of eigenmodes there are in the
interval J. From relationships (A.11)and (A.12) we can
state :

tr(M &7 §)=J I(Q,E) 4 (dQ) <+, (A.l3)
R
because as M & .- is a nuclear operator in H,

tr(M &7 ;)< + o0 the integral of (A.13) can be written
as:

f](ﬂ, E) N (dQ)=K,+K;, (A.14)
]
where :
K1=f Q&) A (dQ)<+0  (A.15)
QeB,
Kz“—‘f 1@, &) 4 (4q)
QeRNB,
= ¥ 1@, §)< +o0. (A.16)

Ji2,¢B,

To simplify the demonstration, we suppose that the
band B,=[(n—1/2)Aw, (n+1/2)Aw] is such that

Vien,
1A 1
H-E) w#Q,, n+§ Ao#Q,.

Note that if .the hypothesis (A.17) is not verified, there
still exists a band B, in the neighborhood of B,,, for
(A.17) to be satisfied.

We will thus limit curselves to the hypothesis (A.17).

For Q,¢B,, (Ql—-mz)2 is strictly positive for any
wEBRB,. Therefore 1(Q;, £)=1(Q;, 0) and, considering
hypothesis (A.17), we hava 1(Q;, 0)< + cc, whence :

lim £1(Q;, &)= hm "'I(Q 0)=0.

(A17)

£-0.
Consequently :
VQ,¢B,, lir;] E1(Q;, &)= (A.18)
Considering (A.16), we c:);ciude :
ok (A.19)

By construction, the modal density on band B, is the
positive constant V,, such that :
A (dQ)=N,dQ. (A.20)

From relationships (A.15) (A.9) and A.20) we con-
clude :

N
K = _"
: 4n J;IEB_ LEB.

=0 F40 i (nha)

When the changes of variables of integration

©=(n+e)A® and Q=(n+¢')A® are made, (A.21)is
expressed

1/2 1/2
16m ) _1n) -1z

—£)2((1/2) +(1/2) (n +£)/(n+¥))?
As for

1 1
(a:s')e(-—, )X(——,
nzl 2 2

n+e'  n+1/2
n+eg n—I/"

+
e+ (e

B | b

), we have for

| =

max

n+g’ _n—l/l

min =
n+e n+1/2

we obtain the following inequalities from (A.22):



Nu 1/2 f1/2 dgds’ <K
16nby | -1 J _ija B E €Y ]

12 1/2 dede’
1 lﬁn“ﬁf-l,'z j‘—m a, Pt +(e—¢')’ (A.23)

1/2 1/2
Y=j j‘ Blx—x")dxdx',

=112 -1/2

where B(y)=(A*+y%)" "

We note that p(—y)=p(y). The change of variable
x — x'=y gives

1/2
7=J F(x")dx',
<Az
where

—12=-%

1i2-x
F(x’)=‘[ B(v)dy.

We integrate the integral defining 7y by parts to obtain

1/2 1/2
j J. B(x—x')dxdx’
-2 ) -2

2 g | 1
=" tan! — — 1+ ]. (A.24
7Ltsm 3 Log( +l2) ( )

By applying (A.24) to calculate (A.23) and by mult-
plying each member of the inequalities (A.23) by £, we
have :

L, <EK;<L,, (A.25)

where a,, and b, are defined by (62). We conclude that :

. N,
;lﬂl‘ L= 6nb, ° (A.28)
lim Ly= 0
;T *" 16na,

Considering (A.13), (A.14), (A.19) and (A.25), we have:

N, < lim Etr(M &7 ;)<

16nb, o léna,’

whence :

a, (In<N"<b" Qs (Azg)

with o, given by (63).

For n <1, we have a, ~ b, ~ 1. Then (A.26) and
(A.27) yield :

N.fZ 441 ( I
L ~L,~ "= (3 I+ ,_,)).
R lﬁn(n 5t (m‘:) e . 5

Thus when § is positive and small (£ < 1), we have
Euw(Mar,)

N £
e [tan'l(_l?)ﬁ-nE,Log(—"“’_)],
STIZH ng ‘\/1+n2i2

whence the relationship (64).
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