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FUNCTIONAL REDUCTION
OF STOCHASTIC FIELDS
FOR STUDYING
STATIONARY RANDOM VIBRATIONS

by

C. SOIZE (*), J. M. DAVID (**) and A. DESANTI (**)

ABSTRACT

We show how the cost of spectral analysis of linear stationary random vibrations
of elastic media excited by nonhomogeous time stationary stochastic fields can be
cut down when a spatial natural basis, such that the modal basis of the elastic media
cannot be used.

The method propesed is based on a spatial functional reduction of the random
field narrow frequency bands. This functional reduction basis is made up of the
eigenfunctions of the covariance operator (associated with a narrow frequency band.

As long as the spatial correlation lengths of the field are not too small, the
proposed method is very efficient. A numerical example is given and the results are
compared with a known analytical case, validating the proposed method.

Keywords (NASA thesaurus): Structural vibration — Random vibration -
Spectrum analysis — Elastic media.

{*) Engineer, Head of Research Group, ONERA.
(**) Research Engineer, ONERA,
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I — INTRODUCTION

For studying random linear vibrations in elastic
media of any geometry, not isotropic or homoge-
neous, excited by a time-stationary stochastic field,
the conventional approach has been to use modeling
of the elastic medium by the finite element method
aimed at computing the finite part of the modal basis
of the associated conservative system involved in the
response. The stationary random problem is then
solved by spectrum analysis with a small number of
general coordinates associated with the eigenmodes
chosen, and the stochastic excitation field is projected
on these eigenmodes. This leads to a natural reduc-
tion of the field on the modal basis. It is the conven-
tional modal synthesis method, mainly used in the
low frequency (LF} domain.

In certain cases, the modal synthesis method cannot
be used or leads to excessive costs for modal extrac-
tion, for various reasons: study of certain coupled
fluid-structures systems, large quasi-static contribu-
tion in the dynamic LF response, study of vibrations
in the medium frequency (MF) domain, etc.

Herein, we therefore consider the situation in which
the modal synthesis method cannot be used. In this
case, the equations discretized on the finite element
basis are solved by suitable direct methods and the
stochastic excitation field is projected spatially on the
finite element basis. For stationary, random vibra-
tions, if it is not desired to use numerical simulation
methods for the field, this leads to constructing for
spectrum analysis the frequency response matrix func-
tion for the system whose input dimension is the
number of degrees of freedom excited. This number
is generally large, which results in a costly numerical
effort.

This paper describes a method for functional reduc-
tion of the stochastic field assumed stationary in time
but not necessarily homogeneous spatially. This
reduction is designed to decrease the “random dimen-
sion” of the excitation, thereby similarly decreasing
the input dimension of the frequency reponse function
to be computed, allowing a very appreciable gain on
the cost of spectrum analysis of the system.

IIL. — NOTATIONS

(2) For reasons which will be given below, the
frequency domain R is considered to be the countable
union of bands B, such that:

B,=[0,—Aw,2, Q,+d0,2l<R*, (1)
where >0 is the center frequency of band B, and
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Aw, is the bandwidth, With band B, = R* is asso-
ciated band B,, symmetrical with respect to the origin,
such that:

Enz ["(‘Qn + ACD,JZ),
—{Q,—Aw,/2)|l<R". (2)

It can be seen that R is written:
R=U;L,(B,UB,). (3)

(b) The Euclidian space R® is equipped with the
3

usual scalar product (u, v> = Y u;v;, 1 and v in R?
j=1

and the associated norm || u|| = (u, u )2

We note as End (R?) all the linear applications of
R*, as || A||ga w?) the norm of 4eEnd(R?), as tr4
the trace of A and as T4 the transpose of 4. Space
C3? is considered the complexification of R3. If
AeEnd(C?, A designates the conjugate of 4 and
A*=T4 is the adjoint operator.

(¢) Below, ¥ designates a bounded surface of R?
with generic point M.

do(M) designates the surface measure on
Z. Where |Z| designates the total area of surface £,
we have:

f do (M) =| < +co. @
Mel

(d) Let L?(Z, R®) be the Hilbert space of the func-
tions defined dg-almost everywhere on £ with integra-
ble square:

I | o (M) |? do (M)< + co. 5

This space is equipped with scalar product

<@, ¥ >>=J (o(M), y(M)>do(M)  (6)
z

and the associated norm:
leolll= <, o> (7

(¢) For any u and v in R®, the tensor u®@ v of
R*® R? is identified with the linear operator of
End {R?), also noted u ® v, by:

YweR? (u@uvyw=udlv, w. (8)

IIL. — DATA ON THE STOCHASTIC
FIELD AND COVARIANCE OPERATOR

IIL1. — GENERAL DATA

Let {p(Ma t)=(p1 (M: t)s pZ(M’ t)s p3 (M! t).)s
M eZX, t € R be a stochastic field defined on a probabil-
istic space (%, %, P), indexed on X x R with values in



R, centered, of the second order, stationary in qua-
dratic mean for variable t. The mathematic expecta-
tion is always E.

The mean function of this field is identical to zero
since it is centered and its cross autocorrelation func-
tion, which is equal to.its cross covariance function,
is noted:

R,(M, M', )=E{p(M, t+)@p(M’, 1)}. (8)

It is
End (R?).

defined on I xEZxR, with values in
As the field is second order, we have:
E{lp(M, )|*}=tt R,(M, M, 0)< +o0. (9)

Since p(M, t) has values in R?, we have the pro-
perty:

R (M, M, —0)="R,(M’, M, 7). (10)

The following regularity assumptions are introdu-
ced on the field:

{a) The function M tr R, (M, M, 0) is a bounded
function of X in R*. Consequently, there is a real,
positive, finite constant such that:

E{llpM, n|*}sK<+00, YMeZ (11)

(b) For any M and M’ fixed in T, function
©—= R, (M, M’, 1) is continuous of R in End (R%). It
1s second order continuity with respect to variable ¢,

(c) The cross spectral measure of field p(M, 1)
noted p, (M, M’, do) accepts for any M and M’ in £
a density 5, (M, M’, o) with values in End(C?) with
respect to the Lebesgue measure dw.  Therefore, V M,
M, tin Zx X xR, we have:

R, (M, M, ‘r)=j €S, (M, M, @)do. (12)
R

Considering equation {10), §, has the following
usual properties:

S,(M, M', —)=58,(M, M, &), (13)
S, (M, M, ©)=5,(M’, M, w)* (14)

and, for any function ¢ of X in C*, we have, for any
win R

ff (S,(M, M',0) 9 (M"), ¢ (M) >
ZJI (15)

do (M)do (M") 20, f

provided ¢ has regularity properties so that integral
{15) has a meaning.

33

IIL,2. — COVARIANCE KERNEL PER BAND

The stationary linear vibrations of a dynamic sys-
tem excited by a time-stationary stochastic field are
governed by a linear convolution filter. The
spectrum analysis can therefore be performed by
bands. This is an advantage for two reasons. First,
certain analysis methods use this technique, for ins-
tance the MF method [34 to 36]). In addition, the
functional reduction is more accurate since it is adap-
ted to each elementary band.

Below, we discuss the functional reduction of the
field on each band B,\JB,. Thus, for a fixed band
B,\U B, function M, M’'— C, (M, M) on £ x T with
values in End (R?) is defined, called covariance kernel
on B, and is such that:

C (M, M")= S, (M, M’, ®)do.

weByu B,

(16)

Accordingly, tr C, (M, M)} is the power of the field
on band B, B, in a point M.
Considering equations (1), {2) and (13), we have;

C, (M, M’)--ZJ‘ Ré §,(M, M, @) do  (17)

we B,
and considering (14):

C, (M, M)="C,(M’, M), (18)

IL3. — COVARIANCE OPERATOR ASSO-
CIATED WITH COVARIANCE KERNEL

For any ¢ and ¥ in L2(Z, R?), the covariance
operator %, is defined relative to B, \J B, with func-
tion kernel C, such that:

« %,cp,q»mf CCo(M, M) o (MY (M) >

do(M)do (M. (19)

The following resuit is obtained with all the above
assumptions;

€. is a positive, symmetrical, compact, continuous,
linear operator from L*(Z, R%) into L*(T, R?). In
addition, it is a Hilbert-Schmidt (H-8) operator.

The fact that €, is compact means that its spectrum
is countable. Since it is H—S, the series of the
squares of its eigenvalues is convergent.

A few proofs are given below to demonstrate the
role of the assumptions introduced.
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(a) The function M, M"+— C_ (M, M") is bounded
on IxZX:

| € (M, M) |26 w3 || R, (M, M, 0)]20a @2
<E{]|pM, DIPHE{]|p(M, P} SK < +e0,
according to (11).
(b} Considering (&) and (4),

C,eL*(ZTxE, End (R%)
since:

f J HCo(M, M) 2o @ do (M)do (M) < +c0. (21)
ZJE

(c) From (21), it results that ¥, is continuous from
L*(Z, R%) into L3 (Z, R?).

() Thesymmetryof€,: < €, 0, ¥ »=x @, €, »
results from (18} and the fact that it is positive results
from (15).

{e) Finally, properties (b) and (c) allow it to be
shown that %, is an H~—S operator and is therefore
compact [13, 23, 31, 33).

IV. — FUNCTIONAL REDUCTION
OF THE FIELD BY BANDS

IV,1. — REPRESENTATION OF THE COVA-
RIANCE OPERATOR

Since operator €, is an H —§ operator, its spectrum
is discrete and countable and there exists a normaliza-

tion such that the eigenvectors %'\Lr{,} of ¢, form a

Hilbert basis of L2(Z, R*. If we note as A] the
cigenvalue associated with J, we have:

€ V=2V (20)

The eigenvalue equation (20) is an integral equation
such that for 4 o-almost every M in X:

f C.(M, M) (M) do (M)y=A]¥ (M).  (21)
z

Obviously, (21) will be solved numerically from the
weak formulation. Since %, is positive, the eigenval-
ues are real, positive values, the multiplicity of each is
finite. Below, they are ordered by decreasing values:

Y AN <+, (22)

j=1
The eigenvectors are such that:
« Y, Yk »> =5, (23)
K E Y, P> =08, (24)
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Under these conditions, the representation of ope-
rator €, is written:

G= 2 MW@V, (25)

ji=1
with, for any u, v and ¢ in L*(Z, R%):

(uRp2)p=u<v, Q> (26)

IV, 2, — BREAKDPOWN OF THE FIELD ON A
BAND

Let p,(M, t} be the stochastic field defined on
(%, €, p), indexed on T x R, with values in R3, of the
second order, centered, stationary in quadratic mean
and continuous for variable ¢t such that its cross
spectral measure is written:

By, (M, M, do=S, (M, M’, 0) dw, where:

S, (M, M', @)=8,(M, M’, 0) 1, 5 (@), (27)

where w1, (©) is the indicator function of the I
part of R. Since p and p, are centered and S, coin-
cides with §,, on B, U B,, any quantity resulting from
linear filtering of p is a stationary process whose
spectral power density coincides on B, U B, with the
spectral density of the process resulting from the same
filtering of field p,. In other words, for computation
of the spectral densities of the responses to linear
filtering on B,\J B,, it is equivalent to use p, or p,
but this is wrong for any other probabilistic characte-
ristic since fields p and p, are different and it would
even be wrong for the spectral densities if the filter
were not linear. The total power of field p, (M, t)
on X is written:

Zo=E{ || 7 lif*}

=j trC,(M, M)do(M)< +o0. (28)
>
P.(M, 1) can be projected on basis {1};{,} j. This gives

P.(M, =3 X, ;(D¥L(M), (29
i=1

Xo, 5= < pp Yl ». (30)

Processes {X, ;(1)}; are indexed on R, with values
in [¥, centered, second order, stationary in quadratic
mean, correlated. The auto- and intercorrelation
functions of processes R} (1)=E{X, ;(t+0)X, ()
are written:

R}’k(f)=j J (R, (M, M, D (M), Wi (M)
EJE

do{M)do{M"), (31



where:

R, (M, M’, )}=E{p, (M, t+0)®@p,(M, 1) }

=j ees, (M, M, o)do. (32)
e By u By

The spectral and interspectral measures have densi-
ties with compact support B,\J B, and are written
for any j and k in N*:

SFk.(w)=fJ<Spn(M, M, o) Ui (M), V(M) >
IJI
do(M)do (M"). (33)

Finally, it can easily be verified that the power of
process x, ;(t) is written:

E{X, ;(0*}=\ {34)
and that the total power on T of field p, (M, t) defined
by (28) is written:

P.=Y M\ (35
i=1

Since #,<+o0 and Aj20, equation (35) shows
that %, is also a nuclear operator.

IV, 3. — FUNCTIONAL REDUCTION OF THE
FIELD ON A BAND AND APPROXIMATION

Let J, be a positive, finite integer. Let us take
p., (M, t) such that:
JH
(M, )= 3 X, ;¥ (M). (36)
i=1
Using (29), (30), (34) and (22) gives:
+co In
Efllei=2ll?}= ¥ a=2,—% (37)
j=le+1 j=1
E{llp.—2ll* }ze 2. (38)

For a relative tolerance ¢, the approximation crite-
rion (38) is therefore written:

I
2, A
I_j=1 gs)

n

(39)
where 2, is computed by (28), i.e.:

P,=2 j _[ trS, (M, M, 0)dodos (M). (40)
IJuelB,

35

V. — CONSTRUCTION OF FUNCTIONAL
REDUCTION BY THE FINITE
ELEMENT METHOD

V, I. — INTERPOLATION BY THE FINITE ELE-
MENT METHOD

Surface ¥ is meshed with isoparametric finite
elements. Let N, be the number of nodes in the grid
of £ and m=3N, be the number of degrees of
freedom introduced. ®={®,, ®,,..., ®,} are the
nodal unknowns (three components per node).

Let H (M) be the linear operator of R™ in R? such
that M — H (M) is continuous from I into L(R™, R?)
and such that:

e(M)=H (M), MeZ,

(41)

Operator H (M) is created conventionally using
interpolation functions on the finite elements used.

V, 2. — DISCRETIZATION OF THE FIELD ON
A BAND

For any ¢ e L*(Z, R?) with form (41), we have:
K Py @ > =j {p,(M, 1), ¢ (M) )do (M)
z

- f 2. (M, ), H(M)®) do (M),

K Py ¢ » = F, (1), ®Ogm, (42)

where F, (1) is a process with values in R™, indexed

on R, stationary in quadratic mean, centered, of the
second order continuous, and which is written:

Fo(0)= J TH(M)pa (M, Ddo(M),  (33)

F, (1), which we will call discretized field, is actually
the vector of equivalent nodal forces at the nodes of
the finite element grid.

V, 3. — COVARIANCE OPERATOR OF THE
DISCRETIZED FIELD

Combining (19) and (41) gives:

<<<g,,q;,<p>>=Jf<c,,(M, M) H(M)¥,
ZJE

HM®D > do(Mydo (M),
KE W, o »=( Ce, ¥, ®Hpm, (44)
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where Cp, is the approximation of %, which is a
positive symmetrical continuous operator of End(R™)
and which is written:

cF"~_~J J TH(M)C,(M, M) H (M} do (M)do (M").
EJE
(45)

It can be seen that C, =E{F, ()®F, (1)} is effec-
tively the covariance operator of F,(t) defined by (43).

V, 4. — REPRESENTATION OF THE DISCRETI-
ZED COVARIANCE OPERATOR

Considering (44), eigenvalue problem (20) becomes
a symmetrical, positive definite operator of End {(R™)
by setting, by the very construction of the interpola-
tion:

Vi (M)=H (M)¥}, (46)
and for any @ (M)=H (M) ®:
(Cp, Wi, ®dpm=1(AW], D Dgm, YdeR™,
(47)
where:
Azf TH (M) H (M)do (M), (48)

Problem (47) is generalized to the eigenvalues since
A is not the identity in the general case. It is neces-
sary to solve:
Cr, Wi=2j A W], {49)
The condition of normalization on Yfe L2(Z, R?Y)
results on ¥ e R™ in:

{4 ‘P‘;, ‘Pﬁ drm= Sjk' (50)

Operator C, is therefore represented as follows:

Cr,= 2 M(A¥)@gn(4Y)). (1)

J=1

V, 5. — DECOMPOSITION OF THE DISCRETI-
ZED FIELD

Process F,(r) with values in R™ is projected on
basis {¥]}; of the eigenvalues.
Considering (30) and (42), we have;

X, jO=<pp ¥y »=<F,(0), ¥ Dpm  (52)
F, )=} X, ;(A¥, (53)
i=1

Rech. Aérosp. 1986-2
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Processes {X, ;(t), j=1,..., m} are indexed on R,
with values in R, centered, of the second order contin-
uous, stationary in quadratic mean and correlated.

Using equations (33) and (43), it can be seen that
the spectral and interspectral density functions
S%(w) of these processes have compact support
B \J B, and, for any j and k in N*, are written:

Je(w) =S, (@) ¥y, ¥l g,
SF,,‘ ((B)

(54
(55)

=J. f TH(M)S, (M, M’, o) H(M)do (M’)do (M)
£JE

where wi—+S¢ (o) is the spectral density function of
vector process F,(f) and this function has compact
support B, \J B, with values ir the positive Hermitian
operators of End(C™). Finally, it is verified that
equation (54) remains unchanged, i.e. that:

E{X, ;(0?}=%1] (56)
and that the total power on £ of process F,(¢) is
written:

P, m=E{||F,@O|P}=trCp,=F A% (57
j=1

V, 6. — FUNCTIONAL REDUCTION OF THE
DISCRETIZED FIELD

In accordance with the results of paragraphs IV, 3,
V, 2 and V, 5 and noting as J, the positive integer
such that 1<J,<m and as F,(t) the approximation
of F,(t) of order J,, we have:

Jﬂ

Fo=Y X, ;4% (58)

=t
E{”Fﬂ(t)—ﬁn(t)llz}ésgpn, m (59)

if J, and ¢ verify:
Jﬂ
M

-1 <e 60
9". m - ( )

V,7. — REMARKS ON THE DECREASE IN THE
EIGENVALUES

In the general case, it is not possible to obtain
information on the rate of decrease of the eigenvalues
of ¢, as a function of their rank. To do so, it would
be necessary to obtain information on the structure
of operator %,. WNevertheless, examination of the
following particular case gives an understanding of
the trends.



Let ri> A (r) be the function defined on R with
values in R¥, with compact support [—s, €] such
that A, (r)=(2e)"! if re[—s, g} For 0, A, (r)dr
approaches the Dirac measure 8, (7).

Let us assume that field p, (M, t) is homogeneous
(stationary in time and space) on B,\J B, and that
its covariance kernel on the band is written:

CoM, MY=QA (| M- ), (61)

with ¢ positive fixed, Q a symmetrical positive defined
operator of End (RY).
approaches a field which remains colored in time but
which spatially approaches a white noise, For g -0,
the spatial correlation lengths of the field approach
zero. For £>0 specified, equation (45) gives:

CF"ZJ f A (| M—M|)TH (M) QH (M")
EJE
xdo (M)do (M), (62)

Let us assume that € is sufficiently small that (62)
can be written:

Cr > J‘ TH (M) QH (M) do (M). (63)

If Q=aldps with >0, Cr,~a A and (45) shows
that A} =A2=... =A"=aq.

There is no decrease in the eigenvalues and we must
take J,=m. This is the limit case. 1In this case, the
three components p, (M, 1), p,,(M,t} and
Py, 3(M, t) are not correlated with one another, are
not spatially correlated (but are correlated in time)
and the total power on X of each component
Py, (M, t) is written:

@,{=E{jp,,. ,(M, c)zdc(M)}
—(28) 'a|Z|. (64)

The powers of each component are therefore
equal. It should be noted that for &—0,
Pl 4c0. The limit  field of  kernel
C,(M, M)=038,(|| M~ M’||) must be treated with
the theory of generalized processes
[24]. Accordingly, the longer the spatial correlation
lengths of the field on band B,\J B,, the faster the
rate of decrease of the eigenvalues.

Remark. — Let {e!, £, ¢®) be an orthonormal basis
in B*. In this basis, the coherence tersor of field
p{(M, 1) has as matrix [I' (M, M’, ©)] whose elements
are written:

Tp(M, M, w)
|[SP (M, M", @),

= . (65
\/[SP(M» M} m)]jj[sp(M’1 Ml! m)]kk ( )

For £ =0, field p,(M, ?).

37

The spatial correlation length in the direction of the
vector with basis ¢/, at frequency ® and at point M
can be defined by:

Ly(o, M)z_[mrﬂ(er, Mydr.  (66)
L]

V,8. — METHODOLOGY FOR CONSTRUCT-
ING THE REDUCTION ON A BAND

The data are:

(1) band B, B, which is fixed;

(2) the cross  spectral density function
S, (M, M’, ©)=§,(M, M’, o) for oeB,\UB,;

(3) the relative tolerance ¢ of the reduction;

(4) the grid of £ and the finite elements used to
construct H (M).

We then compute:

(1) kernel C (M, M’) by equation (17);

(2) operator Cg, by equation (45);

(3) power 2, , =tr Cp, (equation 57);

(4) the first J, eigenvalues and eigenvectors of
problem (49), where J, is such that criterion (60) is
verified;

(5) functions 5% (@) for weB, and
hke{1,2,...,J,} by equations (54) and
(55). Actually, only J,(J,+1)/2 functions are com-
puted since 8% (w) =S (®).

This yields the functional reduction of the discreti-
zed field given by equation (58).

V1. — USE OF THE FUNCTIONAL REDUCTION
FOR THE STUDY
OF RANDOM VIBRATIONS

VII. — THE DATA

We consider a solid, linear viscoelastic medium with
instantaneous memory which occupies a bounded
open domain € of R? with a relatively regular bound-
ary Q=X T,

Let u({M, t) be the displacement field, MeQ, and
p(M, t) be the above random force field applied on
Z. The linear vibrations around a position of static
equilibrium are analyzed. To do so, medium Q is
modeled by the finite element method. The trace of
the grid of Q on X must be compatible with the grid
of Z used to discretize p (M, £). Let m be the number
of degrees of freedom of the modeled system and F ()
be the stationary vector process of applied forces due.
to discretizing of the field. We assign zero to the
DOFs where there is no nodal force. Noting as U{(t)
the nodal unknowns of the displacement field, it is

Rech. Aérosp. 1986-2



known that the stationary solution is obtained by
linear convolution filtering of F(t) by the impulse
response  heL'(R, End(R™) whose frequency
response function:

W T(m)=ﬁ(m)=f e ferth(D)dt

is a continuous function bounded in @, integrable and
which is written:

T@=[—e*M+ioC+K™!,

where M, C and K are the real, symmetrical, positive-
definite operators of mass, damping and stiffness in
End{R". This filter is stable and causal.

The stationary solution is therefore process U(t)
indexed on I, with values in R™, stationary in quad-
ratic mean, centered, continuous in second order, and
is written:

U(t)=(h*F)(t)=J~l h(t—-t) F(t) dt.

Its spectral measure My (dw) admits a density
wr S, (@): B — End (C") such that:

Sy (@)=T(w) S¢(w) T{w)*. (67)

For weB,\UB, we set Sp,(0)=S;(w) and for
w¢B,\UB, we set Sp,=0. Considering process
F, (), with the same properties as F(t) but with spec-
tral density S, (w), process U, (ty=(h* F,)(t) has the
same properties as U(f) with spectral density
Sy, (W)=8y(w) for weB,UB, and Sy, (0)=0 for
w¢B, U B,

Therefore, the construction of Sy(w) for
weB, U B, is obtained by using process F,(t) and
U, ().

V2. — SOLUTION BY THE FUNCTIONAL
REDUCTION METHOD

Let F,(t) be the functional reduction (58) of the
discretized field. In this case, the spectral density
function @+ Sz () of R in End (C™) of process F, ()
is written:

Iy dn

Sz, @=7 ¥ Sh(@)(A¥)RAY),

j=1k=1

(68)

where 87, is given by (54) and (55). For the corres-
ponding approximation U, (t) of U, (t), this yields:
iy I,

Sg(@)=% ¥ Sh(®)

jxlk=1

(T(@) A¥)HR(T{@) AFE). (69

Rech. Aérosp. 1986-2
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VL3. — EFFECTIVE CONSTRUCTION OF THE
SOLUTION

Let Z_(B,) be the set of functions t— f, () defined
dt-almost everywhere on R such that: '

Z,.(B)={f,eL* (R, C),[,()=0,Vo¢B,}. (70)

Let o+ 1, () be the function defined on R with
values in R such that:

1, (@=1 si weB,; 15 (@)=0 si w¢B,

(71)

Foranyjin {1,2, ..., J,}, we consider the func-
tion ¢+ /7 () such that:

fleZ, (B flo)=1; @AY,  (72)

Let w/ be the response due to the deterministic
excitation fZ:

() =Ch* fi) ). (73)

Then wie Z,_(B,) and:
i (0)=T(®) f (o), (74)
w/el?*(®R, C™, Suppi=B, (75)

Under these conditions, equation {69) is written:

J J

Sg, (@)= Y Si(w
j=lk=1
<@ (@@F@), YoeB, (16)
Sg (w)=S8g,(—0), VwoeB, (77

These last two equations show that the approxima-
tion §;{(w) of Sy{w) can be computed for any
we B_ U B, by solving the deterministic problem (74).

It can easily be verified that if approximation F, ()
of F,(t) is within & with the meaning of (59)-(60), we
then have:

E{fUu,00-T, 0| }=e||T|.tr Cr,  (78)

| T.ll= Sup Sup | Y Tp(@ Ty (79)

weByu Bpk, le{l,..., m} j=1

In addition, it must be ascertained that the fineness
of the grid on £ and the degree of interpolation of the
finite elements used are compatible with the spatial
correlation lengths of the field. Such a criterion is
easy to construct.

In the MF domain, we will use method MF [34,
35, 36] in the multiloading case version to construct
1) (@) by band B,, i.e. the system response is compu-
ted simultaneously for all deterministic excitations
FL(), F2(0), ..., Fin(0.



VIL. — PARAMETRIC STUDY
OF CONVERGENCE

The smaller J, with respect to m, the more numeri-
cally efficient the method. The choice of J, is related
to the rate of decrease of the eigenvalues of operator
Cp,. As we know that this decrease is related to the
spatial correlation lengths, we give below the results
of a parametric analysis limited to a simple case to
obtain quantified information of the value of J,.

Let Oxyz be a cartesian reference system and
M=(x, y, 2) a generic point. Surface £ is the plane
rectangular domain with sides g and b along ox and
oy. Field p(M, t) defined on T with values in R is
homogeneous. Its cross spectral density is written;

S,(M, M', o)

Jlax] ay] A ) (80)
L@ L@ @

where Ax=x—x", Ay=y—y". Dimensionless quanti-
ties L ja, L/b, Tja et 5,(M, M’, ®) are introduced
such that:

= K(w)exp (

S, (M, M’, )
JSOL M, 0)S, (M, M, o)

3 3 | Ax| B |Ay| ,Ax) 81
_exp( S Ly(m)+ll(m)' 81)

SP(M, M,s (g)):

Ex = infm e By Lx ((D), Ey =infm e By Ly ((l)),

T=inf, 5 [(©). (82)

Under these conditions, the frequency aspect, i.e.
the position of B, in R*, becomes relative and the
convergence results given apply to all bands B,. For
each case treated, the grid of X is constructed with
elements with four nodes, the fineness of the grid
being compatible with the spatial correlation
lengths. The corresponding grids vary from 256 to
576 finite clements and m therefore varies from 289
to 625. The computation cases correspond to the
following values:

Lja=L,/bel0.,5), Tae[0.05 and 0.5]

The relative tolerance € on the accuracy of the reduc-
tion was taken equal to 0.1,

The results obtained are summarized in
Figure 1. As m varies from 289 to 625, taking as
average value of m m =450, the relative average rate
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in percentage of the functional reduction is written
8=100 x(m—J,)/m. For instance, for [Ja with order
0.5 and L fa=L /b with order 2, reduction 8 is of
order 99.1% (J,=4).

VIII. — EXAMPLE AND VALIDATION

VLI —
GRAMS

DEVELOPMENT OF THE PRO-

A functional reduction program was developed for
the fields. The finite elements have three or four
nodes. A fineness criterion for the grid of X related
to the spatial correlation lengths of the field is
included. The problem generalized to the eigenval-
nes and eigenvectors is solved by the iteration algo-
rithm in subspaces [3 to 6] and allows extraction of
the J, dominant cigenvalues and eigenvectors, This
method is convergent if the eigenvalues are multiples
and is very efficient if J, <m.

This program interfaces with program ADINA-
ONERA in which we have included dynamic MF
analyses for excitation by random fields according to
the method described in paragraph VL3.

VIIL,2. — EXAMPLE

We consider a flat rectangular elastic plate, simply
supported on its edges, with sides a=3m, b=1m,
thickness 1=0.01, homogeneous and isotropic, with
density p=78.5 kg/m?, ~with surface dissipation
constant ¢=2 pg,Q,, where £=0.01, Poisson’s ratio
v=0.3 and Young's modulus
E=021x10"2N/m? The band analyzed is
B,=[200, 300] Hz, Q,=2mx250. This plate is
subjected to a random pressure field whose transverse
spectrum is given by (80) with [Ja=0.35, L ja=-
Ljb=5.

(a) Theoretical solution

In this case, the stationary solution can be construc-

‘ted implicitly. Noting as w({x, y, t) the transverse

displacement of the plate, we have:

S,(6 3, X ¥, @)= ) 9,®)0n0)0n (x)

Py (y’) Tmn ((ﬂ) Tu’ m’ (&3) Snm nm ((I)). (83)
Snm nom (0))

a ] a b
=.[ dxj dyj dx’f Ay’ S,(x, y, x', y', )
1} o 0 ]

X Q%) 0 () 0y XV 9, ). (84)
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where:

-1
Tnm(w)=[P%§(“w’+®fm+2ffsﬂ,.ﬁ))] . (85)
___EW
12(0—-v?)’

w-[(2) (3]
nm p a b ] -
(86)

@, (x)=sin(nnx/a),  @,)=sin(mn y/b).(87)

In the band analyzed, [200, 300] Hz, the eigenfre-
quencies of the associated conservative plate as well
as the modes (pair (n, m)) are: [equations (86} and
(871

f=wam/{2n

3
3

201.2
226,0
234,3
2343
248,0
248,0
2673
275,86
2921
3004

QU HOWAIN=m
WM W WA W W e

-

For the theoretical computation, the truncation in
n and m in (83) was made with values 1<n<30 and
[€£m<£10

(b) Numerical solution by reduction

The structural grid is made with 3456 finite plate
elements with three nodes for calculation of the MF
response by ADINA-ONERA (approximately 5100
DOF). The grid used for functional reduction is com-
patible with the structural grid and has 36 x 12=432
grid points. The functional reduction is made with
tolerance £=0.5, which, in this case, led to a value
of J,=4.

¢) Results and “theory-computation” comparisons
4 U p

The spectral density functions Sy, (M, M, ) are
computed at the points indicated on Figure 2. The
results given by “theoretical” computation and by the
functional reduction and ADINA-ONERA are given
in Figures 3-12. These figures show very good
agreement of the results which validates the theory
developed as well as the actual programming.
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94,3125

95,5 }20

96,615 -
r t/a = 0,0566

1/a = 0,283

97,7:—10

98,95

100L .
0

Ex/a = t\//b

Fig. 1. ~ Curves representing the number J» of eigenfuncticns
used for functional reduction as well as the average relative
rate § for a relative tolerance of 0.1 according to different

Lx Ly ! ]
values of parameters — = > and ;.Jn.'number of sigenfunc-
a
tions selected; §: average relative rate of the functional redue-
tion.

RY
|
+ M5
TMG
e Vg~ = -
M1 M2 M3 M9 M10 M11
M8
. X

° |

Fig. 2. — Geometric position of the observation points
on the structure.
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Fig. 3. ~ S{f)=_Spectral power density function of the accele-
computation by ADINA;

ration normal to point M7,
-------- analytic computation.

10 xlogw (S (f)2)

— 20 -

- 25

~ 30 4 E_

-354, F s

i ‘_I - L‘J—. . I.J'_"' A
- 40~ -L ‘:_,;‘r .—: LL
] i SE

- 45 -
- 50

- B
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- 55 =

— 70
—~ 75 -

- 3y

300
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— 80 Y
200

T Y T 1 T 1
220 240 260 280

Fig. 4. — S¢f)=Spectral powar density function of the accele-
computation by ADINA;

ration normal to point M2
-------- analytic computation.
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10 x loge (S (f)?)
- 20 -
- 25 - e
30 = i
"L_:jfL_—_,_:;.' '
- 354 . I,
L,

- 40 b

— 45 -

- 50+

— 55

— 60+

- 65
— 704

~ 754

f {Hz)

— 80 r
200

T T T
220 240

T 1 T I R
260 280 300

Fig. 5. — §( 7} =_S8pectral power density function of the accele-

ration normal to point M3.
-------- analytic computation.

10 x logro (S(f)?)
— 20 -

- 25+ A
— 30 4 4L

-3 P T

~ 80 ’

computation by ADINA;

f (Mz)

T T ¥
200 220 240

Li 1 1

' ]
260 280 300

Fig. 6. — §(f)=_Spectral power density function of the accele-

ration normal to point M5.

-------- analytic computation,

computation by ADINA;
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10 % logwe (S(f)?)

- 20 =

- 25

— 30 4

- 70
- 754
. f {Hz)
- 80 1 ] 1 T ¥ T T 1 1 L
200 220 240 260 280 300

Fig. 7. = 8 f}=Spectral power density function of the accele-
ration normal to point M6. computation by ADINA;
-------- analytic computation.

10 x logie (S (F)?)

- 20

- 251 S
.y 4
—~ 30 1 R

- 50
— 554

- B0 =

- 55

-

- 70~

- 754

> f (Hz)

- 80 T ™
200 300

T T ¥ T
220 240 260 280

Fig. 8. — S{f)=Spectral power density function of the accele-

ration normal to point M7, computation by ADINA;
-------- analytic computation,
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10 xlogio (S (f) 2)

- 20 -

-

- 25

—_30
- 354

- 70+
- 754
5 f{Hz)
- 80 T ¥ T L] T ¥ t 1 T ]
200 220 240 260 280 300

Fig. 9. — §{f)=_Spectral power density function of the accele-
ration normal to point M8, computation by ADINA;
-------- analytic computation.

10 xlogie (S(f)?)
- 20—

- 25+
~ 304

] f
- 80 Y r . (Hzl)

200 300

T T T T
220 240 260 280
Fig. 10. — §(f)=Spectral power density function of the accele-

ration normal to point M8 computation by ADINA;

-------- analytic computation.
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Fig. 11. — $( f ) =Spectral power density function of the accele-

ration normal to point M 70. computation by ADINA;

-------- analytic computation.

10 xlogrwo (S(f) )

- 25 =~

- f (Hz)
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1
280 300

L3 | 1 L}
220 240 260

Fig. 12. — 8¢ f ) =Spectral power density function of the accele-
ration normal to point A 77. computation by ADINA;
-------- analytic computation.
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‘tary loading cases.

IX. — CONCLUSION

The parametric analysis shows that if the spatial
correlation lengths of the random field are not too
small compared to the dimensions of the surface to
which the field is applied, the functional reduction
method is highly efficient. For instance, for the plate
treated, there is very good agreement of the results
when J, is taken equal to 4. In this case, a conven-
tional method would have led to taking 432 elemen-
The numerical gain is therefore
proportional to 432/4, i.e. about 100.

It should be noted that if the spatial correlation

lengths become small, J, increases fairly
rapidly. Obviously, as long as J, remains less than
m, the method remains interesting since
m/J,>1. However, considering the cost of extrac-

tion of the ecigenvalues and eigenvectors, J, must
remain much smaller than m.

It should also be noted that the reduction is made
by bands whose width is arbitrary. However, the
narrower the bands, the more accurate the reduction
since the reduction is then adapted in the frequency
domain. In pratice, for a given excitation spectrum,
very broadband, there are bands for which the reduc-
tion is highly efficient and others for which it is
not. For the latter, other methods must be used,
such as the conventional method.

Manuscript handed in on February 12, 1986
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