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PROBABILISTIC STRUCTURAL
MODELING IN LINEAR DYNAMIC ANALYSIS
OF COMPLEX MECHANICAL SYSTEMS
I. THEORETICAL ELEMENTS

by

C. SOIZE

ABSTRACT

In this first of our paper we introduce theoretical elements of a probabilistic
modeling of structural fuzzy in linear dynamic analysis of complex mechanical
systems. The structural fuzzy is defined as the set of minor subsystems that are
connected to the master structure but are not accessible by classical modeling.

For the low frequency (LF) dynamic analysis, the modeling of the structural
fuzzy is commonly made with a system of masses. If the LF modeling of the
structural fuzzy is applied in the medium frequency (MF) domain, there result some
large differences between calculations and experiment. It is therefore necessary to
take into account internal degrees of freedom of the structural fuzzy. We are propo-
sing a global probabilistic modeling of the structural fuzzy to improve the calculated
estimates of the MF vibrations into the master structure. In this paper we (1)
develop a probabilistic modeling of the structural fuzzy and the fuzzy finite elements,
(2) build a probabilistic behavior law of the structural fuzzy and (3) study the random
vibrations in the master structure with a structural fuzzy.

The numerical developments and a few examples are presented in part |l of this
publication.



I. — INTRODUCTION

L. — CONCEPT OF MASTER STRUCTURE
AND STRUCTURAL FUZZY OF A COMPLEX
MECHANICAL SYSTEM

An industrial mechanical system such as an aero-
nautical construction, an aerospace construction, a
marine engineering construction is generally a com-
plex system. For predicting the static or dynamic
behavior of the complete mechanical system or one
of its parts by computation, we will use the term
MASTER STRUCTURE to designate the mechanical
system which is accessible to conventional modeling,
Le. the system whose mechanical properties, geome-
try, boundary conditions and excitations are known
with sufficient accuracy and whose necessary model-
ing requires implementation and leads to a numerical
approach at a cost which remains reasonable and is
consistent with the results that can be expected from
the model.

The complement to the master structure with re-
spect to the complete mechanical system or the part
thereof analyzed is designated the STRUCTURAL
FUZZY. Considering the definition given above of
the master structure, the structural fuzzy is the part
which is not accessible to conventional modeling.

For instance, for the structures mentioned above, a
distinction can be made between the primary structure
which ensures the overall stiffness and forms the
quasi-totality of the master structure and the structur-
al fuzzy which consists of the many secondary mecha-
nical systems “attached” to the primary structure and
which contribute to the functionality of the cons-
truction.

In accordance with the terminology adopted, the
concept of master structure extends to other elements
in addition to those involved in the stiffness. For
instance, where there is strong interaction between
the primary structure and dense fluids, it may be
necessary to globally model the primary structure and
the fluids in order to analyse the dynamics. The

system which can be modeled in this way is the master
structure (Fig. 1).

2. — ROLE OF THE STRUCTURAL FUZZY IN
THE DYNAMIC BEHAVIOR OF THE MASTER
STRUCTURE

In this paper, we discuss modeling and prediction
by computation of the dynamic behavior of WEA-
KLY DAMPED complex mechanical systems.

-A. For analyzing the dynamic behavior in the low
frequency (LF) domain, modeling generally consists
of taking as master structure the primary structure,
the fluids, the solid masses, etc. which are conventio-
nally modeled and a system equivalent to the struc-
tural fuzzy, modeled globally by pure masses. In this
case, the dynamics specific to the structural fuzzy are
not modeled. Such modeling is legitimate. The LF
response functions (applied force-displacement) exhi-
bit resonance peaks which correspond to the response
of the initial natural modes of vibration of the associa-
ted conservative system. Generally, the experimental
results agree very well with with the results predicted
by computation (Fig. 2).
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B. Let us now examine the case of dynamic behav-
ior in the medium frequency (MF) domain.

B.1. Let us first consider a “pure” mechanical
system, i. e. with no great complexity, which can there-
fore be fully modeled. There is no structural fuzzy
in the above sense, there is only a master structure.
This is the case, for instance, of a closed, stiffened
cylindrical shell with finite length, with a small num-
ber of internal subsystems, the entire system being

Primary structure
Fig. 1. — Diagram defining the master structure
and the structural fuzzy.



placed in a dense compressible fluid. Such a system
can be modeled conventionally to predict the hydroe-
lastoacoustic behavior by computation in the MF
domain. The model must obviously be suited to the
MF domain and requires introducing a large numbuer
of degrees of freedom (DOF). Special methods must
be used for numerical processing, since the methods
commonly used for analysis of the low frequency
domain are not efficient enough. We have developed
such an MF method and the comparisons of the
direct and crossed MF frequency response functions
obtained by computation with experimental results
are satisfactory [17, 18, 20, 79, 82, 83]. The MF
frequency response functions obtained do not have
the same morphology as those obtained in the LF
domain (Fig. 3).
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Fig. 3. — Crossed frequency response function in the master
structure of a relatively pure system in the MF domain.

B.2. Now let us consider a mechanically complex
system for which we wish to predict the dynamic MF
behavior of the master structure in presence of the
structural fuzzy. The mechanical system is always
globally weakly damped. If the master structure is
modeled for the MF domain like the “pure” mechani-
cal system described above, and the structural fuzzy
is modeled for the LF domain, i.e. by introducing
equivalent pure masses, the frequency response func-
tions of the master structure yielded by computation
have the same morphology as the MF response func-
tions of the “pure” mechanical systems mentioned
above, which was to be expected. However, compar-
ison of the predictions with experimental results
shows that there are considerable differences. The
frequency response functions of the master structure
of experimentally obtained complex systems have a
much smoother morphology than that yielded by pre-
dictions, as though dissipation were much higher

(Fig. 4). However, the rates of dissipation which
would correspond to such smoothing are much too
high to allow this phenomenon to be explained by
mechanical damping alone, which is always very weak
in the master structure and in the structural fuzzy for
the mechanical systems considered herein.
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of a complex system in the MF domain. real structure;
computations without modeling of the structural

fuzzy.

Actually, the apparent dissipation occurring on the
master structure is due to the energy transfer
(kinematic and potential) to the structural fuzzy which
includes a large number of mechanical systems atta-
ched to the master structure entering in vibration in
the MF domain and excited through the common
boundary between the master structure and the struc-
tural fuzzy.

It is therefore the internal dynamics of the structu-
ral fuzzy which are involved and a pure mass model
which does not allow modeling of the internal degrees
of freedom of the fuzzy can in no case account for
these phenomena. In addition, the weaker the damp-
ing specific to the mechanical subsystems comprising
the structural fuzzy, the more energy will be stored
by the fuzzy, which will result in a high apparent
dissipation for the master structure. These observa-
tions mean that in order to predict the MF vibrations
in the master structure of a complex mechanical sys-
tem, we must model the dynamic effects that the
structural fuzzy has on the master structure.

L3. — METHOD FOR ACCOUNTING FOR THE
EFFECTS OF THE STRUCTURAL FUZZY ON
THE MASTER STRUCTURE.
CONCEPT OF PROBABILISTIC IMPEDANCE
OF THE FUZZY BOUNDARY

It should be noted that we are not attempting to
find a model of structural fuzzy capable of predicting
the internal vibrational state of the structural fuzzy,
but only to model the effects of the structural fuzzy on



the master structure through the common boundary.
Moreover, it would be illusory to try to model the
internal vibrational state of the structural fuzzy since
by definition, the structural fuzzy is not accessible
to conventional modeling. We therefore propose a
probabilistic approach to obtain a structural fuzzy
model globally accounting for the effects of the struc-
tural fuzzy on the master structure, so that the con-
ventional model (adapted to the MF domain) of the
master structure, plus the probabilistic model of the
effects of the structural fuzzy qualitatively and quanti-
tatively restore the average behavior of the master
structure of the complex system.

The fuzzy consists of undefined mechanical subsys-
tems formed of discrete mechanical systems with a
finite number of degrees of freedom and continua
with an infinite number of DOF. All the subsystems
are very complex from the standpoint of possible
detailed mechanical modeling. A probabilistic
approach is therefore well suited in order to obviate
the need for an “exact” description of the multiple
subsystems. However, such an approach is not statis-
tically valid unless the number of subsystems is large,
which is assumed to be the case considering the defini-
tion of the structural fuzzy.

The state equation (formulated, for instance, with
the displacement field) which governs the linear dyna-
mics of the master structure is expressed conventio-
nally as an impedance term in the Fourier space for
the time variable. Therefore, the dynamic effects of
the structural fuzzy on the master structure must be
introduced by an impedance. Since the master struc-
ture sees the effects of the fuzzy only through the
boundary it has in common with the structural fuzzy,
the effects of the structural fuzzy on the master struc-
ture must be modeled by introducing a boundary
impedance. As the model of the fuzzy is probabilistic,
the effects of the fuzzy on the master structure will
be modeled by setting a probabilistic fuzzy boundary
impedance. This fuzzy impedance applies only to the
trace of the master structure displacement field on
the common boundary. Therefore, the number of
DOF in the master structure model is not increased
by taking into account the effects of the fuzzy.

L4 — CONCEPT OF STRUCTURAL FUZZY
PROBABILISTIC CONSTITUTIVE LAW AND
FUZZY FINITE ELEMENTS

The probabilistic fuzzy boundary impedance is not
intrinsic, since it depends on the local geometry of
the common boundaries on which the fuzzy is “atta-
ched” and the degrees of freedom of the master struc-
ture displacement field on the same boundaries. We

therefore introduce the concept of probilistic fuzzy
constitutive law which can be assimilated to an impe-
dance. The constitutive laws are used to construct
the probabilistic fuzzy boundary impedances.

To model the structural fuzzy of a complex system,
the simultaneous use of several fuzzy constitutive laws
may be necessary, each of which describes a class of
fuzzy. It is clear that a fuzzy class and the constitu-
tive law describing it must be intrinsic. It would be
of no interest to establish particular fuzzy constitutive
laws for each mechanical system studied. The
approach proposed requires identifying the classes
comprising the structural fuzzy to be analyzed during
modeling of a complex mechanical system and using
for each class the constitutive law which must have
been constructed intrinsically. In other words, a
“library” of constitutive laws is used, as is the case
for materials.

In addition, in complex mechanical systems, the
structural fuzzy is generally not spatially
homogeneous. For instance, nonhomogeneousness
of the fuzzy can result simply from the absence of
fuzzy in certain areas of the structure. Also, proba-
bilistic modeling of the fuzzy in a region may require
superimposing several classes of fuzzy. This is why
it is necessary to develop fuzzy finite elements which
are used to discretize the probabilistic fuzzy boundary
impedances created with the fuzzy constitutive
laws. Thus, the “library” of fuzzy constitutive laws
is associated with a “library” of fuzzy finite
elements. Then, conventional finite element methods
can be used to superimpose the classes and take
into account the spatial nonhomogeneousness, the
isotropy, the orthotropy or the anisotropy of the
fuzzy and also to introduce fuzzy finite macroelements
created by the substructuring method, etc. These
finite elements are obviously specific since they discre-
tize random operators.

The fuzzy finite elements and the fuzzy macroele-
ments are assembled and lead to the random matrix
of the fuzzy boundary random impedance operator
which reflects all the effects of the structural fuzzy
on the master structure.

I,5. — LINEAR DYNAMICS OF THE MASTER
STRUCTURE IN PRESENCE OF A STRUCTU-
RAL FUZZY

As was explained in Sec. 1,2, the aim of probabilis-
tic modeling of the structural fuzzy is to obtain a
more realistic model of the master structure in MF
linear dynamics, i.e. to achieve better prediction of:

— the spatial propagation of the vibrational energy
through the master structure;



— the direct and crossed frequency response func-
tions for any parameters of the master structure;

— impedance matrices relative to specified parame-
ters of the master structure, to establish boundary
conditions for the dynamic analysis specific to an
internal subsystem particularized in the fuzzy, taking
info account the presence of the rest of the structural
fuzzy.

As the master structure is modeled conventionally
and the effects of the fuzzy are introduced by a
random impedance operator (see Sec. 1,4), the MF
linear dynamics of the master structure with its struc-
tural fuzzy are governed by a random operator
equation. — However, we know that MF modeling of
the master structure alone leads to models with a
large number of DOF and that it is necessary to use
appropriate numerical methods to construct solutions
[78, 82, 83].

For the discretized model, introducing the structu-
ral fuzzy model leads to matrix equations with large
dimension random matrices whose solution requires
construction of a specific method.

L6 — REMARKS CONCERNING CONS-
TRUCTION OF THE FUZZY CONSTITUTIVE
LAWS

A basic problem is the construction or identifica-
tion of the fuzzy constitutive laws according to the
nature of the structural fuzzies, i.e., the classes of
fuzzy.

II. — NOTATIONS AND DEFINITIONS

A number of notations are used frequently
below. To avoid repetitions and make the deve-
lopments clearer, we have grouped the main notations
in this section.

II,1. — SPACES Ej AND K"

Let N be a positive finite integer and K=R or
C. The conjugate of zeC is conventionally noted
z. Below, E} is used to designate a Euclidian vector
space with dimension N, equipped with the scalar
product noted (U, V}y and the associated norm
[Ul=<u, v>}2

The symmetrical bilinear form U, V- (U, V> of
E% x E§ — R is extended on C and we will note as EY
the complexification of E}. The vector space EY is
then equipped with the scalar product:

(U, My=<U,V>y, Uand VeEX (1)

and the associated norm:

|Uly=(U, U)¥?,  UeEX (2

When Ef is referenced to an orthonormal basis
(real) { by, by, ..., by}, EX will be identified with RY
and the complexification EY with C¥. In this case,
we will therefore have EN ~ KV,

The vector space K" is always referenced to the
canonical basis of RY, and C" will be considered as
the complexification of RY. Therefore, for U=(U,,

Uz - s Up)EEY and V=(Vy iy Vy)eldh,
we have:
N
(U Von=3 U, (3)
:. 1
. Va= LU, (4)
=

I,2. — LINEAR OPERATOR OF E} AND K*

In this section, V designates E or K.

Let L (V) be the vector space of the linear mappings
Q of Vi and [Q]eMaty (N, N) be the matrix of
elements Q, €l of linear operator Q relative to an
orthonormal basis of Ef if V,=EX or to the canoni-
cal basis of RY if V,,=K". We will note as ‘Q the
transposed operator of Q defined by:

C'QU, Vyy=(U, QV>y, VYUand VeV, (5

The matrix of ‘Q is ['Q]=[Q]", where T designates
the transposition of the matrix.

Operator Q is said to be symmetrical if @ ="Q (for
K=RorC).

The adjoint operator of Q is noted Q*. In the
case K=R, the adjoint O* of Q is the transposed
operator ‘Q.

If K=C, Q*, which is defined by:

(Q* U, V)N =(U, QV)Ns

can be written 0*="'Q.
Operator Q is said to be self-adjoint if Q*=0Q.
The vector space L (V) is equipped with the norm
with operator:

VU and VeV, (6)

121y= Sup |QU|, (7)

lHuliv=1

and we will note as % (V,) the Banach space of
continuous linear mappings @ of V into WV which
are such that ||Q ||y < + co.

I,3. — SPACE G(R, £ (K"Y)

It is recalled that a mapping ® — Q (»)) defined
everywhere on R with values in a Banach space is



continuous by parts if:

(1) In any point @ of R, ® is either a point of
continuity or a point of jump discontinuity, i.e., in
any point, the limits from the right and left always
exist.

(2) In any compact interval of R, there is a finite
number of points of discontinuity.

Such a mapping is locally bounded, i. e. it is bound-
ed over any compact interval of R.

We note as G(R, #(K")) the space of mappings
0:®— Q (o) defined everywhere on R with values in
Z (k") such that:

(@) VoeR, Q(w0)="0(v),

(b) ®— Q (w) is a continuous mapping by parts.
It is therefore locally bounded and for any compact
interval B of R, for any weB, |Q (o) [ySc< + o,

(c) VoeR, Q(w) is an invertible operator and the
mapping © — Q (w) ~! of R into . (K") is continuous
by parts. In addition, since Q (w) " '="Q (@)™, it can
be seen that ® — Q (©) ™! belongs to G (R, £ (KM)).

I,4. — SPACE Hgy(R,C"

Let B be a compact interval of R™:
B=[w,, ©,], 0<o;,<w,< + 0. (8)

Let L?(R,C¥) be the Hilbert space of mappings
t = U(t) defined dr-almost everywhere on R, with
values in CV, with integrable square, equipped with
the scalar product:

(v, V))N=j (U0, V()ydt 9
R

and the associated norm:
I U]llv=(U, UDY2. (10)

The Fourier transform UeL*(R, C") of U is such
that for do-almost any weR

U(m)=j e 't U () dr. (11)
R

We have Plancherel’s relation

([ —TT

J2m (12)

(U, VIy=—((T, M)y.
2n

The space H,z(R,C") is defined as the vector
subspace of L?(R, C") such that:

Hy (R, CY)={UeL*(R, C")|Supp U=B,
® — U(w)ess. bounded } (13)

where Supp U designates the support of U, i.e.
U(w)=0 for o¢ B and “ess.” means essentially. The-
refore, ® — U(w) is bounded for do-almost any o in
B. Considering (13), we have:

VUeHg(R, CY), f | U@®)]3de
R

E :
=—j”U(m)|i§,dm. (14)
2n g

I1,5. — SURFACE £ OF R?

Below, any surface T of R*:

— will have as generic point the point noted m of
R3;

— will be equipped with a positive surface measure
borne by £ and noted ds(m) such that the area of £

isE[=st(m);
z
— will be equipped with a distance m,

m —=d(mm):ZxXZ—-R,ie Z will be considered a
metric space.

I1,6. — SPACE C°(Z,EY)

Let £ be a surface of R®. We will note as
C°(Z, EY) all the continuous mappings m — u(m)
defined on T with values in EJ;

II,7. — SPACE H (. EY)

Let £ be a surface of R®. We will note as
H(Z, E}) the Hilbert space of functions m — u(m)
defined ds-almost everywhere on I with values in E},
with integrable square for ds, equipped with the scalar
product:

((w, U))z='[ (u(m), v(m))yds(m) (15)
z

and the associated norm:

[l ]||e =y u))3". (16)

11,8. — SPACES (&, %, #) AND L (&, EY).

All the random values will be defined on the
probabilistic space (#, ¢, #) where 2 is the
probability = measure on (<, ) . The elements
of o will be noted a, and &



will designate the mathematical expectation. We will
note as L*(.oZ, E}) the Hilbert space of second order
random variables with values in E} equipped with
the scalar product:

X) Y—-»é,”{(X, Y)N}=J‘ (X(a)s Y(a))m’d'@(a)

and the associated norm:

1/2
X*(6{1|X|§}w2=(j ||X<a>u§,m(a>) 1

I,9. — FREQUENCY BAND B,

Below, B, designates the compact interval of
R*:{Qn—?,ﬂn—# A?_m] where Q,>0 is the center
frequency of the band and Aw>0 is the bandwidth

such that Q, — A—Zm >0.

III. — PROBABILISTIC MODELING
OF THE STRUCTURAL FUZZY

III,1. — GENERAL GEOMETRIC AND ME-
CHANICAL HYPOTHESES ABOUT THE
FUZZY

The master structure occupies an open, connected,
bounded domain D, of R® with boundary
dDy=I T, and the structural fuzzy occupies an
open, bounded domain D, of R® with boundary
éDp =TT, such that D,y N\ Dp=. In the general
case, I'), is nonempty, but the particular case can
exist where I'y,=(J. These hypotheses are consistent
with the explanations given in Sec. I, i.e. that the
effect of the structural fuzzy is transmitted to the
master structure through a boundary I' common to
domain D, occupied by the master structure and to
domain D, occupied by the structural fuzzy. The
boundary I is generally not connected since the struc-
tural fuzzy can very well occupy certain disjoint areas
of the domain occupied by the complex mechanical
system. In addition, for reasons of modeling, fuzzy
subsystems can be connected to the master structure
on a finite set of spatially determined points (on @D ).
It should be mentioned that domains D,, and Dy as
well as their boundaries are assumed to be determi-
ned, in the deterministic sense, boundary I' in the
case at hand. This is fully compatible with modeling
of the structural fuzzy. The multiple mechanical
subsystems comprising the fuzzy have random mecha-
nical characteristics, geometries and spatial distribu-
tions in domain D,. The connections of the structural

fuzzy subsystems on the master structure can there-
fore have a random spatial distribution on boundary
I’ We thus assume only that the areas where the
fuzzy is attached to the master structure, defined by
I, are given.

III,1. 1. — Definition of S and S,

Let S and S, be parts of I' and m be a point of
space R? belonging to I'.

(a) Part S of I' will be an open, bounded, connec-
ted domain of a surface of R3. S is therefore a
surface of R* which we will assume to be C° and C*
by parts. We will note as @S the boundary of S, C°
and C* by parts and §=5 U é5.

(b) The part S; of I' will be the discrete set
S;={my, m,, ...,m;} consisting of I points m, belon-
ging to éD .

L,1.2. — Mechanical hypotheses concerning the
structural fuzzy

(1) All the mechanical subsystems comprising the
fuzzy are assumed to have a linear behavior around
a state of static equilibrium, taken as reference state.

Since Dy is bounded, each mechanical subsystem
of the fuzzy necessarily occupies a bounded domain
of space.

(2) No energy is added to the structural fuzzy; in
other words, there are no “internal” excitations in the
fuzzy. We therefore consider a “passive” fuzzy. It
should be noted that if there are sources of mechanical
excitation in the fuzzy, they must be “extracted™ from
the structural fuzzy and applied in an equivalent man-
ner to the master structure according to the laws of
mechanics. They therefore become excitations of the
master structure.

(3) Each mechanical subsystem of the fuzzy is dissi-
pative, with a very weak specific dissipation (Sec.
I). The associated conservative mechanical subsys-
tem is a linear dynamic system whose spectrum of
natural vibration frequencies is discrete. The
spectrum is therefore countable.

To simplify the description, we will assume that the
coupling state variable of the master structure with
the structural fuzzy, as defined on T, is a displacement
field m — u (m, r) with values in R®. The dual variable
is then a force density field m — f(m, r) with values
in R*. Actually, we could reason on any other pair
of variables. With the formulation chosen, we have
the following mechanical interpretation: the master
structure is in vibration under the effects of known
mechanical excitations which can be deterministic or
random. In the neighborhood of T, the state of the
master structure is defined by its displacement field
m —u(m,t). The trace of u(m,t) on I' is also noted
m—u(m,t). As boundary I is deformed as a func-



tion of time, all the mechanical systems of the structu-
ral fuzzy, which are connected on I, are excited by
their boundary. Coupling obviously exists between
the master structure and the structural fuzzy.

The proposed model is designed to obviate detailed
mechanical definition of each fuzzy subsystem (as the
fuzzy is by definition not accessible to modeling) and
instead to globally describe the effects of the fuzzy on
the master structure by a probabilistic model (Sec. I).

[II,22. — PROBABILISTIC STRUCTURAL
FUZZY BOUNDARY IMPEDANCE

IIL2.1. — Case of fuzzy with locally continuous boun-
dary

We consider a part of the fuzzy relative to the part
S of T, where § is the surface of R? with the properties
defined in IIL,1.1a. This part of the fuzzy is said
to be locally continuous because (1) surface S is
continuous and (2) S is only part of boundary I'.

Let Z (m, m’, @) be the probabilistic boundary impe-
dance of S. It is assumed that this impedance verifies
the following hypotheses, necessary to ensure consis-
tency of the theory. For any @ in R and for ds-al-
most any m and m” in §:

(@) Z(m,m’, ®) is a second order random variable
defined on (L;zi &, P) with values in £ (ED), i.e.:

E(1Z(m, m’, )13)

=j 1Z(m, m', ®, a)13dP(a)<+w. (17)
o

(b) We have the symmetry property:

#-almost surely .
(18)

Z(m, m', )="Z(m’, m, ©),

(c) For any v in H(S,E}), the integral

J‘ Z (m,m’, ®)v(m’)ds(m’) is defined 2-almost surely.
S

The random operator Z(w) defined for any v and
w in H (S, E2) by:

(Z(w)) v, W))s=j

5

.[ (Z(m, m’, w)v(m),
5

w(m));ds(m)ds(m’) (19)

is “-almost surely linear and continuous from
H (S,E3) into H (S, ED).

(d) For any integer J=1 and for any continuous
function m — A (m) of § in Z(R’, E}) and for any v
and w in H (S, E2) with the form:

{ v(m)=Am)V, VeC’ 20

w(m)=Am)W, weC’

[therefore v and w are in C°(§, EZ)], the random
operator Z,(®) which is defined Z-almost surely by:

xj ‘A (m)Z(m, m’, ®) A(m’)ds(m)ds(m’) (21)
s

is such that for 2-almost any aes/, the function
{o—Z;(0,a)} is in G(R, #(C%). It can easily be
verified that if v and w have form (20), we have:

(Z(o)v, W)s=(Z; (@) V, W),  P-as. (22)

Equation (19) shows that in the Fourier space, the
equation relating the displacement field m — u(m, ®)
on S to the force density field m — f(m,®) on § is
written for ds-almost any meS:

Z(m, m', @)d(m’, )ds(m’). (23)

J(m, cn)=f

A

This equation (23) completely describes the beha-
vior of the structural fuzzy relative to S with respect
to part S of boundary I'.

II1,2.2. — Case of the fuzzy with locally discrete
boundary

Let us consider a part of the fuzzy relative to
part S, of ', where S, is the discrete set defined in
III,1.1b. This part is said to be locally discrete
because (1) set S, is discrete, i.e. the connections of
fuzzy S, to the master structure are discrete and (2)
S, is only part of boundary I'. It is recalled that
points m; of S, are given (deterministic).

Let J=31 and let Z,(w) be the probabilistic impe-
dance of boundary S,. It is assumed that it verifies
the following hypotheses.

For any weR, Z,(w) is a second order random
variable defined on (=7, %, #) with values in £ (C’),
i.ei

E(1Z,(w) |5)=f 1Z,(0, @) 2dP (@) < +0 (24)
o

and for Z-almost any ae ., function ® - Z,;(®, a) is
in G(R, £ (CY)).



Let U,(m)=(r,;(m,, ®), . . ., u(m;, ®)) with values in
€’ and F,(0)=(F, (), . . ., F;(©)) with values in C’
where the F,(w) have values in C®. Then, in the
Fourier space, the equation relating the displacement
vector U, (w) relative to S, to the force vector F) (o)
relative to S, is written:

Fr(0)=2Z,(o) U, (). (25)

Equation (25) completely describes the behavior of
the fuzzy relative to S,.

II,3. — PROBABILISTIC CONSTITUTIVE LAW
OF THE STRUCTURAL FUZZY

In this section, we give the elements used to define
the constitutive laws of the structural fuzzy. The
boundary impedances are not intrinsic since they
involve the geometry, the DOF of the boundaries,
etc. The object is therefore to define intrinsic values
which will be used to construct the probabilistic
boundary impedances. The values will be called:
probabilistic constitutive law of the structural fuzzy.
As we will see, this is not always possible. Where
this is the case, we will introduce the concept of fuzzy
subsystem.

IIL,3.1. — Probabilistic constitutive law for the fuzzy
with locally continuous boundary

We again use the notations and hypotheses of Sec.
III,2.1. Space E} is referenced to an orthonormal
basis {b,,b,, by} which allows Ej to be identified
with C? by complexification. Let v=(v,, v, v3) be an
element of H(S,C?. In any point m of S, we asso-
ciate a local orthonormal basis and note as [@ (m)]
the orthogonal (3 x 3) real matrix of the linear opera-
tor for transition from basis {b,, b, by} to basis
{e, (m), e, (m), e5(m)} such that:

[@ (m)] ™t =[@ (m)]". (26)

Let v, (m) e C? such that:

o(m)=[® (m)]ve(m), o (m)=[@(m)]"v (M)-( 5

We will assume that the family of local bases is
such that for any v in H(S, C3?), we have
voeH (S, C?. We therefore do not require mapping
m — [®(m)] to be continuous on §. Moreover, in
most practical cases, it is not continuous.

Let [Z(m,m,®)] be the (3x3) matrix of
Z(m,m’,®) relative to basis {by, b, by}. Under

these conditions, for any v and w in H(S,C?),
equation (19) is written:

(Z(w) v, W))s

= _U [w (m)]" [Z (m, m’, @)] [v(m")]ds (m)ds (m’)

o J:[ [wo (m)IT
Sx8§

X[Zo (m, m’, ®)][vg (m')] ds (m)ds(m’) (28)

with the relation:

[Z(m, m’, @)]=[® (m)][Zo (m, m’, @)][®(m")]". (29)
(a) Fuzzy orthotropic on § for a band B,

The structural fuzzy is said to be orthotropic on S
for band B, if there exists m — [@ (m)], i.e. a family
of local bases on S such that [Z,(m, m’, w)] is P-al-
most surely diagonal for any ® in B, and for ds-almost
any m and m’in S. We then have:

[Zo(m, m', ©)]=82;(m, m’, ®). (30)
The constitutive law for the fuzzy orthotropic on

S for band B, is therefore the given of the family of
second order random variables with values in C*:

{zj(mv m’s (D),jE{l, 213}} fOI'

mand m’'eS

weB,,

The given represented by such a constitutive law is
used to construct the probabilistic boundary impe-
dance operator using (28), (29) and (30).

(b) Fuzzy isotropic on S for a band B,

The structural fuzzy is said to be isotropic on §
for a band B, if it is orthotropic on S and for band
B, and if Z-almost surely:

z,(m, m’, @©)=z,(m, m’, ®)=23(m, m’, ®). (31)

Under these conditions, the given represented by
the constitutive law for the fuzzy isotropic on § for
B, is a given of the family of second order random
variables with values in C: z(m,m’,®) for e B,, m
and m’eS and it is true that:

[ZD (m& m!s m)]jk=z(ms m,, (:l)) Bjk' (32)

(¢) Fuzzy anisotropic on S for a band B,

The structural fuzzy is said to be anisotropic on §
for band B, if it is neither orthotropic nor
isotropic. In this case, the constitutive law of the



fuzzy anisotropic on S for B, is the given of the
family of second order random variables [Z (m, m’, ®)]
with values in the (3 x 3) matrix C for weB,, m and
m'eSs.

(d) Fuzzy homogeneous on S for a band B,

— A fuzzy anisotropic on S for B, is said to be
homogeneous if:

[Z(m, m’, ©))=[Z ()], } (33)

Vm, meSxS§, P-a.s.

— A fuzzy orthotropic on § for B, is said to be
homogeneous if for je 1,2,3}:

zj(mn m, m)zzj(m)s } (34)
Ym, meSxS, P-a.s.

— A fuzzy isotropic on § for B, is said to be
homogeneous if:

z(m, m’, 0)=z(w), } (39)
VYm, meS xS, P-a.s.

Consequently, for the fuzzy, the homogeneousness
on § corresponds to an absence of spatial memory
on §. However, it can be noted that in the orthotro-
pic or isotropic case, the homogeneousness on S does
not necessarily mean that [Z (m, m’, ©)] is independent
of m and m’ (contrary to the anisotropic case), since,
according to (29), (30) and (32), for the homogeneous
orthotropic fuzzy, we have:

[Z(m, m', @)]=[®(m)][z(w)][@m)]T  (36)

where [z(w)]; =0, z;(w), and for the homogeneous
isotropic fuzzy, we have;

[Z (m, m', @)]=[@m)][®(m)]"z(w)  (37)

(e) Fuzzy locally homogeneous on S for band B,

A fuzzy is said to be locally homogeneous on S for
band B, if there is a finite partition of S:S=U,§,
such that the fuzzy is homogeneous on each part
§, of §. It should be noted that the probabilistic
characteristics of the fuzzy will be different on each
part §;.

(/) Fuzzy nonhomogeneous on S for band B,

A fuzzy is said to be nonhomogeneous on § for B,
if it is neither locally homogeneous nor
homogeneous. This situation is generally that of
fuzzy substructures. We will come back to this
point.

II1,3.2. — Constitutive law of the fuzzy with locally
discrete boundary

We will use the notations and hypotheses of Sec.
II1,2.2. This situation is fully similar to the case of

the nonhomogeneous anisotropic
fuzzy. Consequently, the constitutive law of the
fuzzy on S, for band B, is the given of the family of
second order random variables with values in
Z(C): Z;(w) for weB,

II,3.3. — Remarks on construction of the fuzzy laws

It is necessary to make a distinction between at
least two cases:

(a) The first concerns the intrinsic construction of
the constitutive law for a specified class of fuzzy
(Sec. I). In Section IV, we will give the complete
developments for construction of a first fuzzy law
used to create a model for the orthotropic or isotropic
locally homogeneous fuzzy. The general problem
remains open and is now being investigated. For
instance, the construction of a second law of nonho-
mogeneous fuzzy, taking into account the spatial
memory, is under development.

(b) The second case concerns the behavior of fuzzy
substructures. This situation is similar to the con-
ventional substructuring methods. In our case, a
fuzzy substructure consists of a master substructure
and the structural subfuzzy which is “attached” to
it. The general program developed (see Part IT of
this paper) gives an automatic solving method consist-
ing of substructuring complex mechanical systems
with a structural fuzzy to facilitate use of large models
and optimize numerical processing costs, with the
possibility of taking into account internal excitations
in the fuzzy substructures. This substructuring
approach remains possible due to the use of the gen-
eral method adopted for solving random operator
equations (Sec. V). However, it is interesting to con-
sider a fuzzy substructure from another angle than
that of the general solving method. In effect, the
overall model of a fuzzy substructure can result from
an experimental and numerical identification. For
instance, let us consider a fuzzy substructure without
internal excitation. If the common boundary
between this substructure and the master mechanical
system is of the discrete type, i.e. of type S, the
constitutive law for this fuzzy substructure is then
given by the results of Sec. II,2.2. However, if the
common boundary is of the continuous type, i.e.
type S, the constitutive law is generally given by the
model of the nonhomogeneous and anisotropic law
(Sec. IL,3. 1 ¢ and f), since the spatial memory affects
S (in the same way as it affects §;). It can be noted
that these two situations can be assimilated to the
above scheme. This is the angle from which we
introduce fuzzy finite macroelements in Sec. II1,4.



II1,4. — FUZZY FINITE ELEMENTS

The use of fuzzy finite elements (FFE) is made
necessary for the reasons mentioned in Sec. I,4. As
the master structure is modeled by the finite element
(FE) method, the mesh of boundary I' is common to
the finite elements of the master structure and to the
fuzzy finite elements. The degrees of interpolation of
the finite elements on either side of I' must therefore
be compatible.

In all of section I1L,3, space E3 is referenced to the
orthonormal basis { b,, b,, b5 }. We will note as:

v=(ry, Uz, U3) and  w=(w, Wy, W3)

two fields defined on S with values in R® such that v
and we C°(§ R3).

II1,4.1. — Localized finite elements for the locally
continuous homogeneous fuzzy

Let S’ be a surface finite element borne by S with
Inodes my, ie{1,2, ..., 1}
We set J=31. Let:

v(m,) w(m,
Fd=1 & § =« = : (38)

v (my) w(m;

be the (J x 1) column matrices of the nodal variables
of fields v and w at the nodes of finite element S’
The conventional formulation of the isoparametric
finite elements is generally used. Let m —[A"(m)] be
the continuous function of §” in the real matrices with
dimension (3 x J) such that:

VmeS, [v(m)]=[4"m)][V,],

(40)
[w (m)]=[4" (m)] [W,].

Matrix [A’ (m)] is constructed conventionally using
the weighting functions of finite element §”. Applying
(19)-(22) gives #-almost surely:

(Z (@) v, W5 =[W,)T[Z,()][V,] (41)

where [Z, ()] is the random matrix of the fuzzy finite
element with values in the (J x J) square symmetrical
complex matrices such that:

[ZJ(m)]=J j,[A'(m)F

s

x [Z(m, m', ®)][A" (m")]ds(m)ds(m’) (42)

Applying equations (33), (36) and (37) yields
expressions (43), (44) and (45) for the anisotropic, the
orthotropic and the isotropic fuzzy respectively:

[Z; ()] =[A]" [Z ()] [H] (43)
(Z;(@)]=[H]"[z()][H] (44)
(Z;(w)]=2(w) [H]"[H] (45)

where:

(A= j [4’ (m)] ds (m);
L (46)

[H]= j [@ (m)]" [A" (m)]ds (m).
5

It can be seen that for the locally continuous,
homogeneous fuzzy, the finite elements remain
localized. They are constructed using a constitutive
law represented by [Z (®)], [z(®)], or z(w) depending
on the case, and the local geometry represented by

[A] or [H].

I1,4.2. — Fuzzy finite macroelements

(a) Case of fuzzy with locally discrete boundary

We use the hypotheses of Sec. III,2.2. The I
points m,, ..., m; of S; are assumed to coincide with
the nodes of the finite element mesh of the master
structure. Under these conditions, equation (25)
directly defines the matrix of the fuzzy finite macroele-
ment with a locally discrete boundary. This is the
(J x J) symmetrical complex random matrix [Z;(w)],
J=31, of the operator Z,(w®) defined in Sec. IIL,2. 2.

(b) Case of fuzzy with locally continuous nonho-
mogeneous boundary

Let us consider a locally continuous, nonhomo-
geneous fuzzy on § as defined in Sec. IIL,3.1f. The
surface § common to the master structure is meshed
by finite elements. Let I be the total number of nodes
of the mesh of § and J=3 I be the corresponding total
number of DOF. Let m — [A(m)] be the continuous
function of § in the (3 x J) real matrices such that:

YmeS, [v(m)]=[A(m)1[V,],} i
[ ()] =4 ()] (W]

where [V,] and [W,] are the (J x 1) column matrices
of the nodal values of fields v and w at all the nodes
of the mesh of surface § and where m — [4(m)] is
constructed using the weighting functions of all the
finite elements used on §.

Applying (19)-(22) yields £-almost surely:

(Z(@) v, w)s=[W,1"[Z;()][V,] (48)

where [Z;(®)] is the symmetrical, complex random
matrix with dimension (JxJ) of the finite macroele-
ment such that:

[ZJ(m)]=j J [4m)]"
M

s

X [Z(m, m’, ®)][4 (m)]ds(m)ds(m’). (49)

It will be noted that the spatial memory of the
fuzzy law does not allow the construction of localized
finite elements in this case.



(¢) Case of fuzzy substructures

It will first be noted that discretizing of a nonhomo-
geneous fuzzy with locally continuous boundary leads
to a fuzzy finite macroelement of the same type as
that of the fuzzy with a locally discrete boundary,
which is conventional. Similarly, a fuzzy substructure
(Sec. IT,3.3b) whose “attachments” to the master
structure are discrete gives a finite macroelement as
defined by Sec. I11,4.2a. If the boundary between
the fuzzy substructure and the master structure is
continuous, we have a finite macroelement as defined
by Sec. II1,4.2b.

IV. — CONSTRUCTION
OF A PROBABILISTIC
FUZZY CONSTITUTIVE LAW

IV,1. — STATEMENT OF THE PROBLEM

In this section, we construct a fuzzy law which
can be used for an orthotropic or isotropic locally
homogeneous fuzzy. Consistently with the results of
Sec. II1,3. 14, this law is defined by one quantity,
z(m) in the isotropic case, or by three quantities,
z, (®), Z,(®), Z;(w) in the orthotropic case. Actually,
we will construct a law with scalar values of type
z(m). This law will depend on mechanical parameters.
We will therefore be able to use it for the orthotropic
case by assigning different values to the parameters
for each direction 1, 2 and 3. Similarly, the use of
localized fuzzy finite elements (Sec. IIL4.1) con-
structed using (44) or (45) allows the parameters of
the law to be varied from one FFE to another in
order to take into account the spatial variations of
the parameters (this is the use of the concept of locally
homogeneous fuzzy introduced in IIL3.1e). It is
understood below that the fuzzy will be considered
locally as regards the space variable. In addition, we
are attempting to construct a probabilistic impedance
reflecting the mechanical hypotheses introduced in
Sec. IT1,1.2. The most elementary mechanical model
verifying these hypotheses is that of a simple linear
oscillator excited by its support. We will use this as
underlying deterministic basis for constructing the
probabilistic constitutive law. This obviously does
not mean that the law obtained will only be suitable
for simulating behavior of a fuzzy consisting of simple
oscillators. On the contrary, this law will be capable
of representing the dynamic behavior of the complex
mechanical systems comprising the fuzzy. This is due
to the fact that the parameters of the simple oscillator
will be modeled by random variables and the proba-
bilistic law obtained will generate a random family of
oscillators. Below, we recall the formulas for the
dynamics of a simple linear oscillator excited by its
support.

IV,2z. — REVIEW OF AN ELEMENTARY
DYNAMIC MODEL

We consider a simple linear oscillator in a reference
system whose mechanical characteristics are the point
mass |1, the viscous damping constant ¢ and the
stiffness constant k. Let ¥ (¢) be the displacement of
mass , and U(t) be that of the support. When
U(t)=0, Yt, the support is fixed and the natural
frequency @, >0 of the associated conservative oscilla-
tor is such that k=py 2. The damping constant is
then referenced to the critical damping ratio & such
that c=2§&p,®, where 0<g<1 by hypothesis. We
now assume that the support is free and that the only
excitation force, noted F(t), is applied to the support.
The corresponding displacement of the support is
U).

Using the notation f(t)=df(t)/dt, the linear vibra-
tions of this system around a position of static equilib-
rium are determined by the following equations:

o Ve (V=1)+k(V-U)=0
—c(V-U)—k(V=U)=F.
If FeHy (R, C), then U, U, vV, V, and ¥ are in

Hg (R, C). The Fourier transform of (50) yields the
desired equation:

Flo)=z(») U(n) (51)

(50)

where, for @>0:
z(m)=—0’R(0)+iol(w)
o (03/0%) ((@3/0) — 1 +4&2)
(@E/0?)—1)+4(0}/0?) §? (52)
L 2,08 (0,/0)
(020 —1)* +4 (05 /0?) E*

R(0)=

I{w)

It should be noted that z(w) can also be written
z(0)=—0*M (@) +iol(o)+K()

with, for any >0, M(0)=0, I(w)>0,
K(®)=0. Therefore I (w) is effectively the dissipa-
tive term of the impedance and M (w) and K() are
the mass and stiffness terms respectively, such that:

—®*R(0)=—0’M () +K(o)

where:
(@) For £€]0, 1/2
M(@)=R(@), K(@)=0,
i S f-4E
6}]
M (w)=0, K(0)= —o*R(w),

¢ Dee A_UE
w



(b) For £e[1/2, 1]
M (®)=R (), K(w)=0, YVo>0

In addition, we have:

lim R(w)=pg lim I(w)=0.
(wp/o) = + o (wp/w) = + o
®
Consequently, for -2 1, we have
[0
z ()~ —@* p,. (53)

IV,3. — DETERMINISTIC BASES UNDERLY-
ING THE FUZZY LAW

Let Dys be a connected part of domain D,
(Sec. II1,1) with boundary éDyg=S \U I'pg, where S is
the part of I' defined in III,1.1a. The framework
for construction of the fuzzy law described in IV,1 is
that of the homogeneous fuzzy on S. This means
that all the reasoning will concern surface S, knowing
that all the points S are “equivalent™.

From a dimensional standpoint, z(®) must have
dimension MT 2L~? since, in the equation
F(w)=z(w) U(w), F() is a surface density of forces
applied to S(ML™'T"?). Therefore, F(®) has
ML™'T™! as dimension and U(¢) is a displacement
(dimension L); therefore, U(w) has LT as dimension.

Considering the mechanical hypotheses on the
fuzzy (Sec. II1,1. 2), there is a fundamental vibration
frequency, noted ®,;, of the fuzzy Dgs which is
the smallest natural frequency of the set of systems
contained in domain Dgs Thus, for o < ©,,, the
fuzzy D5 behaves like a pure mass as seen by S.

(a) Cutoff frequency

The last remark leads us to introducing in construc-
tion of the model a cutoff frequency noted Q, in the
fuzzy law such that for ®<Q,, the constitutive law is
of type (53).

(b) Underlying deterministic model of the fuzzy
constitutive law below the cutoff frequency

For we]0, Q[, we will take the following model
for impedance z (®) in any point m of surface S:

z(0)= -0’ R(0)+iol () (54)
where:
{R(m)=u(m) (59)
I(w)=0

and where @ —p(w) is a function of ]0, Q[ in
R*=[0, + [, p(w) being designated the equivalent

mass of the fuzzy per unit surface at (angular) fre-
quency ®. The dimension of pi(w) is ML ™2,

(c) Modal density of the fuzzy above the cutoff
frequency

The natural frequencies of the fuzzy systems contai-
ned in Dy are above Q. It is understood that by
natural frequencies are meant the frequencies of the
associated conservative systems, as the natural damp-
ing of the fuzzy systems is assumed to be weak
(Sec. III, 1. 2).

The modal density n (o) of the fuzzy is introduced,
the function ® — n(w) being defined on [Q,, + co[ with
values in 0, 4+ oc[. By definition of n (w), the number
of natural frequencies of the fuzzy in the vicinity Am
of @ is n(w) Aw.

The distance, noted 2&(w), between two natural
frequencies of the fuzzy in the vicinity of  is there-
fore:

Aw 1
28(0))—’!(&))[\0)—@ (56)

(d) Deterministic model underlying the constitutive
law of the fuzzy above the cutoff frequency

For o fixed above the cutoff frequency, we will
take the following model, of type (52), for the imped-
ance z () in any point m of surface S:

z(m)=—m2R(w)+icol(m),} (57)

we[Q, +of

where :

R(®)
_1(0) (0F (@)/0?) (0} (0)/0?) =1 +4 & (v)) (

58)
(07 (@)/0*)—1)* +4 (0} (@)/0?) & (0)

I(w)

. 2 (0) 0§ () (o, (w)/0) (59)
(07 (@)/0*) —1)* +4 (0} (0)/0?) § (o)

in which u, £ and w, are three functions defined on
[Q,, + o[, with values in [0, + oo, ]0, 1[ and ]0, + oo
respectively. The scalar p(w) is the equivalent mass
of the fuzzy per unit surface (dimension ML~2). The
rate of natural dissipation of the fuzzy at frequency
© is £(w) and verifies 0<&(w) <1. Obviously, for @
fixed, this frequency does not necessarily coincide
with a natural frequency , of the fuzzy. It is the
probabilistic model that we construct below which
will allow us to introduce the probability for
©,(0) (o, o+ dw).



IV,4. — PROBABILISTIC HYPOTHESES FOR
CONSTRUCTION OF THE FUZZY CONSTITU-
TIVE LAW

The deterministic bases for the fuzzy constitutive
law are:

(a) For the mechanical parameters:

— the cutoff frequency Q, =0;

— the equivalent mass of the fuzzy per unit surface
described by the function @ — p(w) of 0, + o[ into
[0, +cof;

— the rate of natural dissipation of the fuzzy
described by the function @ — £ (w) of [Q, +cof into
10,71; =

— the modal density of the fuzzy described by the
function ® — n(w) of [Q,, + oo into ]0, + ool

The three functions p, & and » are assumed to be
continuous by parts.

(b) The algebraic expressions of z(w) defined by
(54) and (55) for ® into ]0, Q[ and by (57) and (58)
for o into [Q,, + co[.

The probabilistic construction consists of modeling
scalars p(w), §(w), n(w) and ®,(w) for each o fixed
by random variables, giving random impedance
z(w). The cutoff frequency is assumed to be deter-
ministic in this model.

IV.,4.1. — Random variables expressing dispersion of
the mechanical parameters

We introduce three random variables, X, X,, X,
defined on (&, ¥, #), mutually independent, with
real values, each followmg a uniform probability law

with support [—
Let x = 1;_ 5, ﬁ] be the characteristic function

of the interval [— \/@, \/3] <= R and p(x) be the uni-

form probability density:

1
P(x)=U§1[—JE, /31 (X). (60)

Then, for je{1, 2, 3}, the probability law for X;
is written:
Py, (dx)=p (x) dx (61
and each X; is a normalized random variable, i.e.
centered and with unit variance:
1_(J=é" (X)) =0;

62
ox,={ € (X, X)) }2=1. (62

Since X,, X,, X; are independent, we can infer
from (62) that:

&(X;X,) =08, jandkin{1, 2, 3} (63)
where §;;=1 and 8, =0 for j#k.

To contro[ dispersion of the mechanical param-
eters, we introduce the function with vector values:

o = M) =(r (0), 2, (@), A;(w)) (64)

defined on ]0, + oo with values in (]0, 1D° = R3, con-
tinuous by parts.

It will be noted that A is a bounded mapping.

Let Y(0)={Y,; (), Y;(»), Y;(®)} be the random
variable defined on (&f €, P) w1th values in R? such
that for o fixed and for je{1, 2, 3}:

)
N
For je{1, 2, 3}, the probability law for Y;(w) has
a density p;(w, y;) which is written:

—d—
27\,()

Y, (0)=X; (65)

p;(@, y)= { A (@) (u:}](y) (66)

Therefore, Y;(w) #-almost surely takes on its
values in the interval [—A;(w), A;(@)] =[—1, 1]. It
is centered:

Y;(@)=6(Y;(0)=0 (67)

and its standard deviation is written:

Ay (). (68)

Considering the impedance of the X; values, the
probability law for Y (@) has a density py (@, »),
where y=(y,, ¥,, ¥3) which is written:

3
Py ) (@, Y)= n p;(o, J’j)- (69)

ji=1
1V,4.2. — Modeling of the mechanical parameters

(a) Modeling of the equivalent mass

For any ® in ]0, + o[, p(®) is modeled by the
random variable:

p()=p(o)(1+Y, () (70)

where © — p(w)=6(p(w)) is the average equivalent
mass function of the fuzzy per unit surface defined
on ]0, +co[ with values in [0, +co[ continuous by
parts. Therefore, p(w) is a random variable which
takes on its values in [0, + oo with mean p (), stan-
dard deviation o,(®) given by (67) for j=1 and
® — () is P-almost surely continuous by parts.

(b) Modeling of the rate of dissipation

For any o in [Q, 4+ o[, £(®) is modeled by the
random variable:

E(0) =L () (1+Y () (71)

where © — p(0)=¢&(u(w)) is the average equivalent
mass function of the fuzzy per unit surface defined



on 10, + o[ with values in [0, 4 co[ continuous by
parts. Therefore, p(w) is a random variable which
takes on its values in [0, + cc[ with mean p(w), stan-
dard deviation o,(w) given by (67) for j=1 and
o — p () is Z-almost surely continuous by parts.

(¢) Modeling of the modal density

For any o in [Q, + o[, n(m) is modeled by the
random variable:

n(w)=n(w)(1+Y;(v) (72)

where © — n(w)=¢& (n(w)) is the mean function of the
modal density of the fuzzy, defined on [Q,, + co[ with
values in 0, + o[, continuous by parts. The random
variable n(w) 2-almost surely takes on its values in
10, + o[ with mean n(w), standard deviation o;(w)
given by (67) for j=3 and ®—n(w) is P-almost
surely continuous by parts.

(d) Summary of the parameters of the fuzzy consti-
tutive law

— For @=Q,, the constitutive law of the fuzzy
depends on:

(1) three deterministic functions, i. e.: the equivalent
mean mass |(w@) per unit surface, the mean rate of
dissipation &(w) and the mean modal density n(w);

(2) random fluctuations around these mean values
whose dispersions themselves depend on the function
© = L (@) =(k; (), 1y (0), A ().

For o fixed, if ||A(®)|/s — 0, then the mechanical
parameters approach the deterministic mean values
and if || A (@) ||; - \ﬁ, the dispersion introduced on
the mechanical parameters approaches the maximum
value.

— For w<Q,, the constitutive law depends only
on the parameter of equivalent mass per unit surface.

— The cutoff frequency and the six deterministic
functions p, &, n. A;, A, Ay are the parameters of the
law and are therefore considered givens.

1V,4.3. — Modeling of the natural frequencies of the
Sfuzzy

In this section, we describe the probabilistic cons-
truction of the fuzzy natural frequencies ®,(®) pour
0=Q,. For o fixed, [Q, + [, ®,(o) is modeled by
a random variable defined on (.7, ¥, 2) with values in
Q. +cof

This random variable depends indirectly on the
parameters n(m) and Ay (w). It is for this reason that
w, (o) does not appear in the list of parameters of
the fuzzy constitutive law summarized in IV,4.3d.
Considering (56) and (72), the distance 2 £(®) between

1/2£(w}I _____________

two natural frequencies w,(®) in the vicinity of ® is
a random variable which is written:

1

2e(0)=—————.
n(o)(1+Y;(w)

(73)

By construction, knowing that Y;(w)=y;, we will
assume that the conditional probability law:

Pmp(m) (d E), m[y3) =P, () ((:), ml)’a) do

of random variable ®,(w) has a density which is
written:

= 1 -
Po, (@ (@, ®|y3) =T(m) L& o), 0+e n (@) (74)
i.e. considering (73):
pw,(m)(a’ ﬂ)|y3)=§(m)(l+y3)

X I[tﬂ“b(m. y3)-m+b(m.y3)]((‘6) (75)

with b(w, y;) given by:
1

S (76)
2n(w)(1+y,)

b(w, y;)=

The graph of the conditional density is given in
Figure 5.

I
1
1
I
I
|
1

w

0 W € ) e <0+ E o)

Fig. 5. — Graph of the conditional
probability density

It is natural to introduce such a conditional proba-
bility law for @, (w) knowing that Y; (w) =y because,
since the distance between two natural frequencies of
the fuzzy in the vicinity of @ is £(w), knowing that
Y, (w)=y;, the probability of presence of a natural
frequency on an interval with  measure
2g(w)=(n(w)(1+y;)) ! is equal to 1. Furthermore,
if the modal density n(w)— + o0, the conditional
probability must approach the Dirac measure at point
o, since the probability of presence of a natural fre-

quency ®,(w)=o then approaches 1. The model
proposed has these properties.
A simple calculation gives:
tg’{u)p(m)lYg_(u)):yS}:m (77)

& {(0,(0)—0)*|Y;(0)=y;}
1

“Ra@iaery 0



The probability law Pmp(m,(di'o, w)of ®, () has a
density given by:

Pm,(m}(a% m)=J. Pmp(m)(a)s ®|y3)ps (@, y3)dy; (79)
R
which, considering (65) and (75), is written:

pmp(m) (& (D)=h(a), 0)) 1[m—a(m).m+a(u}1(a)) (80)

where:

h(@, 0)=n() if oelo—b(®), o+b(w)

Swy= L (s @) =1
el 1613 () 1 () (0 — ©)? 2 e

if: oe[o—a(w), o—b(@)]U[o+b (), o+a()]

yielding:

1
T 2n(@) (1-y (@)

a(w) b(w)
The graph of p,, () (®, ®) is given in Figure 6.

p(.dp (w) (w' w)

D) pm e e e =i

|
|
I
|
I
|
w—a (w) w
w—blw) w+blw)

Fig. 6. — Graph of the probability density
of natural frequencies.

Finally, the probability law for random variable
{Y(w), o,(w) } with values in R* has a probability
density which is written:

Py (@), 0 (@) (o, y, )

=p; (@, ¥1) P2 (@, ¥2) P53 (@, y3) Py, (@ ©]y3). (83)

IV,5. — EXPLICIT FORM OF THE PROBABI-
LISTIC FUZZY CONSTITUTIVE LAW

We obtained the following result on the basis of
the above hypotheses.

For Q, u, &, nand A given, the probabilistic consti-
tutive law for the fuzzy is described by the family of
second order random variables {z(w, 1), we]0,
+ o[}, defined on (&7, €, 2), with values in C such
that for Z-almost any ae o/, the function ® — z(w, A,

1
“2n@) (140 ) &2

a) is continous by parts on ]0, +oo[ and z(w, &) is
written as follows for any we]0, +oo[:

2w, M) =z(o, V) +2z(0, }) (84)

where:
(a) z(w, A)=&(z(w, 1)) eC is the mean of random
variable z(w, &) and is written:

z(o, l)=ﬂm21_((a), M+iol(o, ) (85)

as functions- ® - R(w, L) and ©—I(w, &), with
values in R and R¥ respectively, are continuous by
parts on ]0, +co[ and are given by equations (92),
(93), (100), (101), and (104).

(b) Random variable z0(m), A)=z(o, A)—z(w, 1)
is a centered, second order random variable.

Let #'; be the vector subspace with dimension 3 of
L*(oZ, R), (Sec. 11,8), generated by the orthonormal
real random variables X,, X, and X; of L%(4, R),
defined in Sec. IV,4.1. Let Z be the complexification
of #z. Then % is a vector subspace of L?(«#, C)
whose elements are the centered, second order ran-
dom variables { with complex values which are writ-
ten:

L= 2 X0 (86)

where ¢; are complex constants given by:
c;=6(CsX)), je{l,23}. (87)

Let zg(w, %) be the second order random variable
with values in C, centered, in @, which is the best
approximation of z(w, A), i. e. for which the distance.
to zp (o, 1) is the same as the distance from z2 (o, 1)
to Z. Such a point z; (o, }) is said to be the projec-
tion of z§ (w, 1) on # or again the equivalent stochas-
tic linearization of z2(w, A) by an element of %.

The random variable z; (w, A) is then written:

3

zp(o0, )= ) X;(—0?R;(o, M) +iol(o, 1)) (88)
j=1

where, for any je{l,2, 3}, the (functions

®—R;(w, &) and 0 —» I;(w, ) have values in R and

R™ respectively, are continuous by parts on 0, + oo

and are given explicitly by equations

(94)-(106). Furthermore, by noting:

[ A (@) ]| =Sup {2, (), Ay (@), As(@)}  (89)
for any o fixed and for any je{1, 2, 3}, we have:
R, (@, 1) =0, } =)
L )=>0 if [[A(a)],—0

(c) From the standpoint of construction of the
probabilistic fuzzy law, we choose as law:

z(w, l)zf(m, A)+zp(o, A) (91)

where z(w, 1) is defined by (85) and Zp(m, A) is de-
fined by (88) (form (84) is not used directly).



(d) We have the following equations and :
p(w) if wel0, Q] (14+y)
e L ¢ Jo(o, x, y)=———=[Arctan Y, (®, x, »)
R(w, V)= ; -(DE(O\))E((D){3((D, A) ©92) n /1—=x%
if ©e[Q, +of —Arctan Y _ (o, x, y)] (101)
0 if well, Qf 2
(o, 1) = ( n Yo x, )=t O
Lo M= Jo?p(@n(o) Jo @ 1) o Ll
(93)
L if oe[Q, + oo 1 2
ST PR T
Lp@h@ i oe ol e
. ] (94) ol S5 By s (102)
R (o, A)= cu;._l(co)g(m)—s)»1 (@) J;5 (@, A) i
J3 Jy (@, x, y)= (x—E&(@)Jo (o, x, y) (103)
if we[Q, +xo[ o ~
JB(G)! X; }(}= 1 = (1+y) Logl:[U+(m’ J’)+W+ ((01 X, .V)][U—(m’ )')—W_ ((D: X, J’)I]
on(w) 4 /T1-x7 [U, (@ »)— W, (0, x, NIU_(0, )+W_ (o, x, y)] (104)
U I -1 ; l
0 if welo,Q + (@ })_( ing(m)(l+y)) *
R,(0, M) = ¢ op(e)n(o) \/j Js (o, &) W, (o, x, y)=2/1-x° 1+;
e T 2 e - s ‘2mg(m)(1+y))
X gl el J4(@, % 9=y (@ % ) (105)
0 if wel0, QJ i
k 3 ! Js (o, x, y)=m(x—§(fﬂ))13(m, x, ). (106)
Ry(o, W)= ( mg(m)g(m)l3 ) 4(0, }) (96) S
if we[Q., +of
(e) Elements of the proof
0 if welo, Qf
11(0}, k}: ngg(w)ﬂ(w)'_]_"ll (CD)JO ((D, ;L) (A) P?‘OOfOfPOnt IV,S a
, \ﬁ Considering equation (54) or (57), we have:
if welQ, + o]
B g, N=tiale 1) == Ria, Dol 1)
0 if wel0, i
where:
Lo M= T py(0)n(e) X1, 4
T T el (%8) R(@, )=6(R(@ 1), I =60, 1)
Lif welQ, +o]
0 if wel0, Q[ which yields equation (85). R and I now remain to
\/ﬁ’ i ‘be calculated.
Lo V)= {-e?
sim b= o p@nio)r tsh@b o Case 1: we]0, O
if we[Q, +oof Considering (55) and (70), we have:
where for ke{0, 1, 2,3,4,5}:

1 1
Ji(o, l)=—J dy,
e 4 _g

Xv[ dy3 Jy (0, § (@) [1+21; (@) y;], s (@)y;) (100)
-1

R(w, M= p(0)=~€(p(0)(1+Y,(0)=p(0)

since £Y,(0)=0. Furthermore, according to (55),
for any @ and any A, we have I (w, A)=0 and therefore
I(w, )=0. For o in]0, Q[ we can infer (92) and
(93).



Case 2: 0e[Q,, + oo

With the
dy=dy,dy,dyj:

convention  y=(y,, V2 ¥3)ER,

r(o, y, (I))
R(@(1+5) @0} [(@*/0?) — 1 +4E (@) (1+52)7]
1 (@*/0*)—1)* +4(@%0?) § (@) (1 +,)?

(107)

i(o, y, ©)

2@ (1+7) (@) (1 +2,) @/0)
T (@) — 1) +4(0/0?) E (@) (1+y,)*

(108)

Then, according to (58) and (83), we have:

B(m, l)=j Ar(m, Y, (’I])Py (), wp (w) ((D, Vs E"))dyda‘)
R

!((ﬂ, ?‘-) ='[ Ai(m" yr E))pY (m),mp(m)(mv y! El')) dyd(:)
R

Using the following primitives for x]0, 1[:

J'uz (w*—1+4x2)
du
(u?— 12 +4u?x?

w42 1—x%u+1

1
=u— Lo
4 /T=x2 g[uz—z

J' udu
(W —1)* +4u? x?

=l

1 i 2 =1
————Arctg| ——
4x [T—x* 2x /T—x?

yields equations (92) and (93) for we[Q, + ], J,
and J, being given by (100), (101) and (104). The
last proof of point IV,5a results from the hypotheses
introduced.

(B) Proof of point IV,5b

Case 1: we]0, Q[
Considering (54), (55), (65), (70) and (85), we have:

] (110)

Ay (w)
NE

Identification with (88) yields zp(w, A) =122 (0, A)
where:

70 (0, M) =—0’p(0)

)

Ay (w)
\/-?; ]

I, (o, )=0 and R;(w, })=I;(w, 1)=0

for je{2, 3}, yielding (94) to (99) for w€]0, Q[.

Case 2: we[Q,, + o]

Using the theorem of orthogonal projection in the
Hilbert spaces, we can infer that point z, (®, A) sought
is such that:

&{[22 (o, N)—2p(0, V)]g}=0,  Vged.

Since z; (@, L) e, it is expressed:

Z X;c;(w, X). (111)
Furthermore, according to (84),
2 (o, M)=z(0, A)—z(o, A).

Taking X,, X,, X, respectively for g yields for ke {1,
2,3k

€ {(z(o, M) —2z(0, 1) Z X;¢(@ V)X, }=

which yields, according to (63) and since X, is cen-
tered:

c;(0, N)=&(z(o, VX)), je{l,2 3} (112)

Separating the real part from the imaginary part
and identifying formulation (111) with (88), equations
(112) give, with (65):

3
R, (o, A)=l‘_{;)cf(mm, NY),je{l, 2 3}
J

(113)

3
Lo, A)=l*({o)rs’u(m, NY), je{l,2,3}. \
j !

Equations (113) are expressed directly using (107),
(108), (83):

3
R; (o, sz\.(fm)

Xj y;r(o, y, 0)
4

Xp!' (w), mp(m](mi Y, E-D) dyda-)

3 &
Ij((D, 1)3)\‘\(;)) XJ;ﬁ,Vﬁ(Q Vs (JJ)
J

X Py (o), wp @) (@D Vs ®) dy do.

Conducting the calculations as for mean values
yields equations (94) to (99) for we[Q, + [ The
proof of the last statement of point IV,5b is simple
to obtain.



V. — PROBABILISTIC ANALYSIS
OF THE VIBRATIONS
IN THE MASTER STRUCTURE
IN PRESENCE OF STRUCTURAL FUZZY

V, 1. — DISCRETIZED IMPEDANCE OF THE
MASTER STRUCTURE

As was indicated in paragraph I, 1, the master
structure designates all the mechanical systems which
can be modeled of the complex mechanical system.
Furthermore, in Sec. IL1, we assumed that
domain D, occupied by the master structure was
bounded. This means that the state variables of the
master structure are fields defined on the bounded
domain D, (').

For the MF linear dynamic analysis, the master
structure is modeled by the finite element method.
The master structure state variables are therefore
discretized on a finite element basis of domain D I i

Let N be the number of DOFs of the finite
element model of the master structure,
U®)=(U, (1), ..., Uy(t)) be the element of CV of the
nodal unknowns and F(t)=(F, (), ..., F ~ (1)) be the
element of CV of the applied equivalent nodal
forces ().

For any ®eR, the three real operators of
RY, M (), C (o and K(w), which are the mass, dissi-
pation and stiffness operators respectively of the mas-
ter structure, are symmetrical and positive definite.
We will assume that:

M,C and KeG(R, £(RY)). (114)

For any weR, the discretized impedance of the
master structure is written: (%)

Zs(0)=—0*M(@)+ioC(0)+K (o) (115)

Considering the above assumptions, it is easily veri-
fied that:

Z;eG(R, Z(CYy). (116)

(') It should be noted that it is always possible to reduce the
problem to this situation. For instance, if the master structure
consists of a main structure which occupies a bounded domain
located in a compressible fluid which occupies an unbounded
domain, the equation for the coupled system vibrations can be
written using only the state variables of the main structure, by
introducing the hydrodynamic coupling operator formulated with
the state variables of the primary structure. This operator is
constructed, for instance, using an integral equation method [1,
81, 82, 83).

(*) In order to simplify the theoretical framework, the devel-
opments which follow will be formulated on discretized equations,
sO as not to have to manipulate operators with an infinite dimen-
sion. The functional aspects of the MF method have already been
discussed [78, 79].

(%) If the excitation is random and stationary in time, then F(f)
is an intermediate deterministic quantity related to the second

V, 2. — DISCRETIZED IMPEDANCE OF THE
STRUCTURAL FUZZY

The fuzzy is applied to the part I' of boundary
@Dy, of Dy, (Sec. 111, 1). Using the results of Sectio-
n III, the matrix [Z(w)] of the probabilistic impe-
dance operator Z(w) relative to the canonical basis
of RY is obtained by assembly of the fuzzy finite
elements (Sec. 111, 4.) (%), (9).

The following general hypotheses, compatible with
the developments of Sections III and IV, are introdu-
ced on the fuzzy operator.

(@) Let L be a positive integer and
© = A(w)=(A; (), ..., A, (®)) be a mapping defined
everywhere on ]0, +oo[ with values in (J0, 1[)tcRE
(therefore A is bounded), continuous by parts. We
set:

[2(0) [0 =Sup (i (@), ..., A(@)  (117)

(b) For any we]0, + cof, the probabilistic imped-
ance operator, Z(w, A(w)), of the fuzzy depends on
parameter A(w) (7), and is a second-order random
variable defined on («#, €, 2) with values in Z(C")
such that we have #-almost surely:

Z(ow, N)="Z(o, 1), Vwel0, +oo] (118)
0 —Z(w, AMw)
is continuous by parts on 0, +oo[  (119)

Z(w, N)=Z(ow, ) +Zz(w, 1) (120)
(¢) The deten’ninisti; impedance
Z(o, M)=¢ {Z(w, ) }e £ (CY)
is the mean of random variable Z (o, 1) and is written:
Z(o, ))= —mzl_i(cn, M+iol(o,A) (121)

where: (1) for any o in 10, + [, R(w, A () and
I(w, A(w)) are two symmetrical linear operators of
Z(R");

(2) I(o, () is a positive operator (°);

(3) Mappings © — R(w, 2 (w)) and 0 - (o, A (o))
are continous by parts on ]0, + oo,

order moments or those of the stochastic excitation field. This
quantity allows computation of the moments of the vector process
which is the solution (see [80, 83]).

(*) For instance, the mass, dissipation and stiffness of the master
structure are functions of o if there are viscoelastic materials, if
there is coupling with an inviscid compressible fluid occupying an
unbounded domain of space, etc. (see [7, 83]).

(%) The fuzzy finite elements use only the DOFs of the master
structure relative to boundary T

(®) The assembly is made with respect to all the degrees of
freedom of the master structure.

(") To simplify the expression, we will in some cases use A
instead of A(w) below.

(%) YUEeRY, |U[y#0,
(o, M) U, Udy20.



(d) The random fluctuation Z; (o, &) of the impe-
dance with values % (C") is written:

Z‘F ((D, 7\' (0.))) . Z

£ 5 I ;
X,(—of R (o, A (w))
+iol(o, A(o) (122)

where:

() X, X,,..., X, are random variables defined
on (&7, €, 2) with real values, mutually independent,
each random variable X, being centered, with unit
variance and with a uniform probability law
Py, (dx)=p (x)dx, where p(x) is defined by (60) (")

(2) For any we]0, + o[ and any le{l,..., L},
R,(w, %) and I,(w, A) are linear operators of #(RY)
and are symmetrical.

(3) [, (», A) is a positive operator.

(4) Mappings © — R;(w, A) and ©— I;(w, L) are
continuous by parts on 0, + oof.

(5) For any we]0, +oo[ and any le{l,..., L}, if
|2 (@) || =0, then:

IR (o, A(w)) Iy = 0;

(123)
1,(@, A () ly = 0.

V,3. — REMARKS

(1) It can be verified that all the hypotheses intro-
duced in V,1 and V, 2 are compatible with those of
Sections III and IV. The parameter A introduced in
point V,2 a has the role of parameter A defined by
(64).

(2) If only one fuzzy law of type (91) is introduced
in the modeling, then L=3. If M subsets of stochas-
tically independent fuzzy finite elements, each of type
(91), are introduced in the fuzzy model, then L=3 M.

In the general case, L can take on any value.

V,4. — EQUATION FOR THE VIBRATIONS OF
THE DISCRETIZED COMPLEX SYSTEM

In the Fourier space, the equation for the vibrations
of the master structure with its structural fuzzy is
written:

(Zs(0)+Z(o, l(m)))ﬁ(w)=1:"(w),} (124)
wel0, +oof.

Considering (120), this equation can be written:

(Zse (@, M(@)+Zg (0, M(0) U(0)=F(e) (125)

(%) The random variables X, are therefore uniform and orthonor-
mal in L? (o, R).

where:
Zsp(o, Me)=Zs(@)+Z(o, M(o))  (126)
where Zg is a deterministic impedance and Z; is a

centered random impedance.

Result 1: According to the above assumptions,
o—Zg(w, A(w)) is a mapping belonging to
G(R, £(C")).

Proof: It can easily be seen  that
Zsp (0, A)="Zsp (o, &) and that © = Zg (0, A () is
continuous by parts on ]0, +oc[. In addition, consid-
ering V,2d, it is always possible to construct the
following breakdown of (121):

Z(o, N=—0Mg(o, V) +iol(o, ) +Kp(o, 1)

where, for any w€]0, + o[, Mg (o, A), I(®, 2) and K
r(m, }) are three positive symmetric real operators
(but not positive definite). Applying (115) and (126)
yields:
Zsp(o, M) = —o® Mgp(®, 1)

+ioCyr(o, 1)+ Kp(o, A)

where

Mgp(®@, ) =M(@)+f‘_’fr((0, A),
Csp(o, ) =C(w)+I(w, 4)

and
Ksr (@, 1) =K (@) +Kp (o, 1)

are three positive definite symmetrical operators of
#(RY). From this it can be inferred that
Ywel0, + oo, (Zgx (o, h(©))) ! exists and belongs to
#(CY) and that @ = (Zg (®, A(w))) "' is continuous
by parts on ]0, + oo[ and is therefore locally bounded.

V,5. — EXISTENCE AND UNIQUENESS OF
THE RANDOM SOLUTION

Let B, be the compact interval of R™ defined in
paragraph I1,9. Since Zg, belongs to G (R, & (C"))
according to result 1, there exists a positive constant
csp >0, independent of © such that:

VoeB, 1Zsg (o, l(m))’llNgj— (127)
Csr

and, setting
T (o, M) =—Zgp(o, A(0) ' Zp(o, A(w) (128)
we can write the following equation:

Zsp (00, M) +Zp (0, A ()
=Zgr (0, M) (1-T(w, L(w)). (129)



However, for any o fixed in B,, the operator
(1-T(o, A(w))) will be Z-almost surely invertible if:

IT(ow, M) Iy<1, P-as. (130)
1. e. considering (128), if:
1 Zp (0, h(w) 1y
} P-as.  (131)

< b
1 Zsp (0, (@) "'y

However, according to assumption V, 2 e, there are
two positive real constants A, >0 and ¢, >0, indepen-
dent of ®, such that for:

0< sup ||1.(@). 2, (132

we B,
we have:

sup 1 Zp (o, M) ly <cp<cgp P-as. (133)

we By

This is due to equation (122) for Z, to
equations (123) and to the fact that random variables
X, Z-almost surely have bounded values, since the
support of the probability measure of X, is

Under these conditions, inequalities

[-./3, /3]
( 12))/,-( I§() and (133) show that the mapping:
0 = (Zsp (o, M(0) +Ze (o, L) !

is Z-almost surely bounded on B,. We therefore have
the following result:

Result 2: There exists Az>0 such that for
Sup,. s, ||A(®)|.<k; and for any element F in
Hg (R, C"), the equation (125) has a unique solution
for dw-almost any o€ B,#-a.s.

G{m, M) =(Zsp(w, 1)

+Zg(0, M) ' F(e), P-as (134)

Mapping o — U(w, X(w)) is Z-almost surely essen-
tially bounded on B, with values in CV.

V,6. — EXPRESSION OF THE SOLUTION

Let A; be the positive real constant defined in
result 2. Then, if Sup|/A ()|, <A for any ® in

we B,
B,, we have :
+ o0
(1-T(w, V)™ =Y T(o, M, P-as. (135
k=0

the series of the right member of (135) being Z-almost
surely convergent. Applying equations (128), (129)
and (135) yields:

+ o0

(Zsp(@, M +Zp(0, ) ' = ¥ T(w, )*Zgp (0, A)~ .
k=0

Solution (134) can therefore be written:

+x

Uo, V=Y T(o, M)*Zg(o, V) F). (136)
k=0

Result 3: If Sup||A(w@)||,=<As solution (134) is
w-eBy
written for dw-almost any w in B,
+ @

Ulo, =00, )+ ¥ 0%, 1), 2as (137)
k=1

with, for k= 1:
L
U%e, )= Y x
=1
L
D) Xy By e Xy, 6’1”:):1 (@A) (138)

=1

where I, [, .. .1, is a multisubscript with length k and
with the convention UlY.. . (0, M)=U"" (e, 1) for
k=0.

(1) U®(w, A)eC" is a solution of the following

deterministic equation:
Zgp(w, 1) U, 1) =F (o). (139)

(2) Elements UE‘]‘},Z_ 4 €C" for k=1 are the solu-
tions of the following recurrent deterministic
equations:

Zgp (0, ) U, | (0, )=0p,,  .(0,1) (140)

with 0, (®, 1) in C" such that:
Q:l, o lo, MN=—(—0’ le(ma )
'f'iwlgk(ma A')) Crgc_;n N

(141)

(3) Finally, we have:
{t— Qt, . .lk(t)}EHsn(R: ch)

142
(1=Up .;,‘(t)}eHB,(R,CN)} =

and all the derivatives of UY ;, With respect to ¢ in
the sense of the generalized function are represented
by function Hy (R, C"):

d?

U ueHp, (R, CY).

(143)

Proof: Identifying (136) and development (137)
term for term yields: ]
U, )=Zgp (0, 1) "' F(w) which gives (139), and



U (0, A)=T(w, WU (o, A). This second
equation is equivalent to the following recurrence:

U, N)=T(o, ) T* (o, 1), k=1
U (0, 2)=U0 (o, ).

Substituing equations (122) and (128) for Z; and
T gives, for k=1:
Zgp(o, 1) UP (o, )
L
==Y X,k(—mzR,k(w, A)

=1

+iol (o, ) T (o, 1) (144)

which gives (140)and (141) when the expressions of
U® and U*~ 1 given by (138) are substituted in (144).

According to result 1, and applying V, 2d(¢)(d) (4)
and (139) to (141), it can be seen that for F in
Hy (R, CY), functions ©—0, (o A(vw)) and
o—UP (o, A(0)) are essentially bounded and all
have the same compact support B,. They are there-
fore in L?(R, CV), giving (142). Finally, since the
support of U{¥ , is the compact inverval B,, Vg
positive integer, the function:

o- (i) U0 (o, (o)

has the same compact support B, and is essentially
bounded. It is therefore in L?(R, CV), from which
we can infer (143).

Result 4: Let cgp be the positive real constant inde-
pendent of w defined by (127). Let A;>0 such that
for Sup, . 5 || () || A the almost sure inequality
(133) is verified. This inequality defines the real
constant ¢, independent of ® such that:

d=-L<l. (145)

Csr
Let # be a positive integer =1, fixed and
I"J(x,(m, A) be the solution of (134) of order i such
that:

X
Uy (0, =00, }) + Y U%(w, 1) (146)

k=1

where U'® and U™ are as defined in result 3. We

then have the following estimation for dw-almost any
® in B,

HU(m, A) = Uy (0, V) ”N<°‘Y+1

” TIPS ;")”N , P-a.s. (147)

I

Proof: Equations (125), (129), (135) and (139) show
that solution (134), written with form (137), can also
be written:

U, ) =0y, (o, 1)

+ Y T(o, W00, 2 P-as

k=X +1

giving:
”U((ﬂa M—U(x)(m, A ”N
+a
< Y IT(o, W}
k=x+1
x| OO (@, W) [y, P-as. (148)
However, we have:
e 4 IT (@, ) 12+
Y oIT(@ M2 N _ 2as (149)
k= +1 1—1T(w, A) Iy

Finally, for any o in B,, we have

1T (@, M) Iy <1 Zgp (@, W)~ 1y

x1Zp(0, M) ly<E=q, P-as (150
Csr

Equations (148) to (150) lead to result (147).

'V,7. — EXPLICIT CONSTRUCTION OF THE

SOLUTION IN THE MF DOMAIN

In this section, we assume that A is fixed such that
result 3 is applicable. The solution exists, is unique
and can be constructed using equations (137) to (141).
Since N is generally large (several tens of thousands)
and the solution is sought on a wide frequency band
[, ] =R* (several thousand Hz), the MF method
described in [78, 79, 80, 81, 83] is appropriate to
numerically construct the solution. To be able to use
the MF method, it is necessary to give the standard
form to result 3.

This is the point which will be developed below.

To simplify the expression, we introduce the follow-
ing notations:

M (0)=M(0)+R(0, (o)) (151)
€ (w)=C(w)+1{o, L(0)). (152)

Then, mapping Z, defined by (126) is written for
any

Zg(0)=—. /(0)+io¥%(0)+K(0). (153)

V,7.1. — Choice of frequency bands for the MF
analysis

In the MF method, the broadband is written
[o;, ®g]=, B, where B, are narrow MF bands and
the MF analysis is conducted for each band B,
[78, 83]. Such an analysis band, noted B,, is the
bounded closed interval of R* defined in Sec. IL 9.



such that Aw/Q,<1. We note as:
B" = ]Q" p— A—Gg, Q" + %{’
2 2

the associated open interval and as

BO=[:—7, Tm:' the centered LF band associated

with B,.

Since all the mappings .#, ¢, K, R, and I,
le{l,..., L} are continuous by parts on ]0, + col,
the set of points of discontinuity in [, ®;] of all
these mappings is finite. We can therefore always
choose the partition of [w,, ;] such that, for each
MF band B, all the above mappings are continuous
in any point ® in B,, We now assume that the
selected partition verifies this hypothesis.

V,7.2. — Frequency approximation of the operators
on an analysis band

Let A be any of mappings .#, €, K, R, or I,. Since
©— A(w) is the continuous, bounded mapping of B,
into #(R"), we can define the mean operator relative
to band B,

1 (9t
Ao Q,—Aw/2

We will note as .#,, %, K, R, , and I, , the
frequency approximations of the corresponding oper-
ators and define the following operators for any  in
B .

A, A (w) do. (154)

Zg p(@)=—0’ M, +i0E,+K, (155)
L

Z; (@)=Y X/(—0’R, ,+iol ). (156)
=1

V, 7.3. — Definition of the approximated solution rela-
tive to an analysis band

By construction, the approximated solution relative
to the frequency approximation of V.7.2 and for F
in Hy (R, C")is such that:

ﬁ"((!))=(ZSF’,,((D)+ZF|"((D))_lﬁ((l)), '@'a- S, (157)
It can easily be verified that o — U, (o) is Z-almost

surely essentially bounded on B, with values in CV
(see result 2).

V,7.4. — Convergence of the approximated solution
on an analysis band

Considering the above assumptions, it is easy to
check that for any positive real &, however small,
there is a Aw>0 such that:

[10-10,[[vse, 2-a.s. (158)

where U is the solution defined by (134) and devel-
oped in result 3.

Remarks: (1) The approximation method is
obviously interesting from a numerical standpoint if
M, %, K, R, and [, vary sufficiently slowly in w for U
to be approximated sufficiently closely by U, with a
bandwidth Aw which is not too small. This method
has already been used and is justified in [7, 81, 82,
83]. (2) Actually, criterion (158) also applies to the
choice of the bandwidth of B,

V,7.5. — Construction of the approximated solution
on an analysis band

The construction is given directly by result 3 in
which the frequency approximation V, 7.2 of the
operators is used. For dw-almost any ® in B,, we
therefore obtain:

+ o

U,@=02w+ Y 0%@w), 2as.
k=1

W)=Y x... (159)

=1

L

X Z X11 XI;' L XI;; 6}?!2, e .Ik,n(m)

k=1

where U and U |, belong to H 5, (R, C") and
have Fourier transforms given by the following recur-
rence:
L (U2, =0,
i e } (160)
y(Uz:...:k.m Q.!l...l;‘,n)=0= k=1

with @, . ,in Hg (R, C") and given for k=1 by:

Q!l. i .1k.n(m)= _(_mlek,n
+iol, JUE-Y 4, (@) (161)

iz, .

and where % is defined by:

L (U 0)=Zsr ,(@) U,(@)—0,(©). (162)

The recurrence calculation (160) therefore requires
solving the following standard MF problem:

For 0, in Hp (R, CY), calculate the solution U, in
Hp, (R, C") of the equation & (U,, §,)=0, i.e. of:

(o' M, +i0%,+K)U,(@)=0,0). (163)

The solving method and the developments required
for solving (160) are given in Part II of this paper.



VI. — CONCLUSION

We have given the theoretical developmental ele-
ments of an attempt to construct a probabilistic model
of the structural fuzzy in linear dynamics of complex
mechanical systems. In Part II of this paper, we give
the additional developments concerning: numerical
analysis of the problem, its implementation in a
program, examples of processing on beams, plates
and shells.
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