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1. INTRODUCTION

We will study the dynamic analysis of some general
mechanical linear systems in the medium frequency
(MF) range. To simplify the mathematical devel-
opments, we will only consider the discretized sys-
tems which have a finite number of degrees of free-
dom (DOF). This introduction has four parts. First,
we will introduce some notations and definitions.
In a second part we will explain the problem in tak-
ing a particular and classical mechanical system. In
a third part we will briefly introduce the general
problem which will be developed in details. In the
last part we will give the outline of this paper.

1.1 Notations and definitions

LetU = (U, ..., U,) beaC™ vector and Q
a linear operator from C™” to C". In all this paper,
we identify the U vector with the (m x 1) column
matrix of its U; components. In the same way, the
Q linear operator is identified with its (n X m) ma-
trix on the canonical basis of C” and C”. To sim-
plify the notations we take the same symbols for
the matrices. The C” complex vector space is
equipped with the usual scalar product and the as-
sociated norm:

(U, V)= (U, V), = 371, UV, (1)
U= Ul = (U, U2, (2)

where V; is the complex conjuguate.
Let H,, = L*(R, C™) be the Hilbert vector space

of all the C™-valued mappings + — U(r) almost
everywhere (a.e.) defined on R such that

12
Ul = (froopge) <+= o

The mapping U— || U || » from H,toR* isa
norm on H,,. The associated scalar product is writ-
ten as

U, V)= (U, D) = [ U0, Vi dr. (@)

For any V € H,,, the Fourier transform (FT) of
V is the mapping w — (¥V)(w) = V(w) belonging

to H,,, such that for a.e. » € R:
P,(w)=Le-‘m’w(r)d;, €l ..omb. ()
For a.e. 1 € R, the inverse FT is given by
vu)éif wt (w)d {1 m}. (6)
b —21‘; RE jlw)dw, A TN 1 1 8

We have the Plancherel’s equality for any U and
Vin H,,.:

1 =
o (U, Viim:
o (7)

1 y
oz U o

(U, V)

([

1.2 Particular case of an elastic structure in vacuo

Let us consider a linear elastic structure in
vacuo, i.e. without external or internal fluid and
so on. Theoretically, the linear vibrations of an elas-
tic, viscous, heterogeneous, anisotropic structure
occupying a bounded domain in R* space, slightly
damped, can be studied without difficulty if we
know explicitly the spectrum {w;}, j € N of eigen-
frequencies for the associated undamped system,
and the corresponding modal basis {¢;}, j € N. In
practice, for such a structure, the modal basis is not
explicitly known and must be calculated numeri-
cally by using finite element method.

For the high frequency range, the excitation fre-
quencies are high enough to use specific methods,
like that, asymptotic methods and the SEA method.

For the low frequency (LF) range, the excitation
frequencies are low enough for the response to be
of the modal type. Therefore, only the first modes
of the structure intervene in the response.

We are interested in the MF range which is the
intermediary frequency range. In this MF range, all
the principal elements of the structure, the “‘exact”
geometry, the boundary conditions play a funda-
mental part in the response of the mechanical sys-
tem. Let us note first of all that the structure must
be finely discretized into finite elements in this MF
range. This leads us to reason using discretized sys-



tems with a large number of DOF. For instance, 30
000 or 40 000 DOF’s may be necessary.

Let m be the number of DOF. Let Mg, Cs, and
Ks be, respectively, the mass, damping, and stiff-
ness (m X m) real, symmetric, and positive definite
matrices of the discretized linear heterogeneous an-
isotropic viscous elastic structure. The vibrations
of this structure are fully described by the fre-
quency response function (f.r.f.) which is the con-
tinuous and bounded mapping w — T(w) defined on
R with values in the (m x m) complex symmetric
matrices:

T() = [-w*Ms + ioCs + Ks]™'.  (8)

The T(w) matrix is associated to the linear dif-
ferential equation on C™, which governs the linear
vibrations of the discretized system

MsU(r) + CsU(r) + KsU() = F(1),  (9)

where U(r) is the (m x 1) column matrix of the
unknown nodal displacements. U(r) = dU(r)/dr,
U(t) = d*U(¢)/dr?, respectively, the velocity and the
acceleration. The (m x 1) column matrix F(z) rep-
resents the equivalent nodal excitation forces. At
the present time we consider deterministic excita-
tion. )

Letbe F € H,,; then F € H,,. Let U be the FT
of U defined by the following equation for a.e. w in
R:

U(w) = T(w) Fw). (10)
Then U is into H,, and U is usually called the forced
vibrations. Indeed, if U(¢) is the solution of eqn (9)
for t > 1y, such that U(#) = U, and U(zy) = U,,
then

,EEL 10(2) = 0() | = 0. (11)

Let us investigate what are the possibilities to apply
LF method for solving MF problem. In LF range,
linear vibrations of structures can classically be
solved: M1—By direct numerical time integration
of eqn (9); M2—by a numerical time integration of
the equations in the truncated modal basis {®,, . . .,
®,} with p < m. This is the modal synthesis in the
time domain. M3—By calculating the f.r.f T(w) de-
fined by eqn (8), which can be (a) carried out using
the truncated modal basis:

T(w) ~ 2f1=y hj(w) O,B], (12)
where hj(w) is the f.r.f. relating to the modal co-
ordinates. This is the modal synthesis in the fre-
quency domain; (b) or carried out directly calcu-
lating, for each value of w considered, the T(w)
matrix given by eqn (8).

If applied to MF, the methods described above

for LF would lead to the following adaptations in
use:

(1) For a broadband MF excitation, the M1 method
requires a long integration time with a very small
integration time step. Consequently, the total num-
ber of the integration time steps is large. As the
order of the matrices is very large (e.g. m = 30 000),
there are many numerical difficulties (numerical
noises. . .). On the other hand, the data processing
of a such job is tricky. Nevertheless, the substruc-
turing technique is easy.

(2) Methods M2 and M3 (a) require the calculation
of the vibration eigenmodes up to a high order (e.g.
1000 eigenmodes). As the discretized system has a
large number of DOF, it seems difficult (1) to di-
rectly determine the necessary truncated modal
basis and (2) to compute with enough precision the
eigenmodes and to separate numerically the eigen-
values, considering the current state of the art in
numerical analysis for solving a large generalized
eigenvalue problem. The substructuring analysis is
possible, but not very easy. At the present time and
for the MF problem, the modal approach is not
really efficient and is very expensive in CPU time
and I/O. Method M3 (b) involves finding the solu-
tion to the complex linear system:

[— ©®Ms + ioCs + Ks] Ulw) = F(w), (13)
carried out for each w. If the calculation is to be
carried out only for a few values of w, this method
is then very effective in the MF range. This is true
when the excitation is one or several rays. But if
the excitation is a broadband signal, as is often the
case for both deterministic and stationary random
excitations in the MF domain, numerous values of
w must be considered. It is also the case for a direct
broadband dynamic identification (e.g. 2000-4000
Hz). Moreover, method M3 (b) should normally
lead to the consideration of very many values of w,
because the elastic medium being bounded and
slightly damped a priori, it seems difficult to assume
a slow variation of the mapping w — T(w) in an MF
band before any calculations are made. This ex-
cludes, a priori, a calculation involving only a few
values of w and the cost of this method may then
appear prohibitive. We present in this paper a nu-
merical method for the MF range, based on the fol-
lowing principles. An MF broadband B C R~ is
written as B = U,B,, where B, is a narrow MF
band. For each B, band, the vibration equation will
be directly solved by a technique of multiple scales
which uses, simultaneously the advantages of both
the M1 and M3 (b) methods. Moreover, the sub-
structuring technique is very easy to use. On the
other hand, the proposed MF method allows one
to solve the general case which is introduced in the
next section.

1.3 The general problem considered
In the last section, the Mg, Cs, and Kg matrices
do not depend on w. In the present paper we are
































































































