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HYDROELASTICITY OF SLENDER BODIES
IN AN UNBOUNDED FLUID
IN THE MEDIUM FREQUENCY RANGE

by

F. CHABAS (*) and C. SOIZE (**)

ABSTRACT

We study in this paper the feasibility, in the medium frequency domain, of
a slender body asymptatic formulation, for the hydro-elasto-acoustic calculations,
previously developed in the low frequency range.

For a slender body with an axisymmetrical outer surface, submersed in an
unbounded compressible fluid, this formulation deals with the construction of the
hydrodynamic coupling and radiation operators.

We give a criteria that determines the frequency domain of validity of the theory
as a function of the circumferential and longitudinal wave numbers n and m and for
a given geometry of the structure. The analysis of this domain for physical structures
shows that the theory may be extended as is to the MF range for the subspaces
n>0 but has to be replaced by the general formulation for the subspace n=0, in
this frequency range.

Special programs have been developed to take this distinction into account, the
tests validating these programs show the efficiency of the method from a numerical
point of view,

Keywords (NASA thesaurus): Structural analysis — Hydroelasticity — Slender
bodies.

(*} ONERA Research Engineer.
(**) ONERA Head of Research Group.
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L — INTRODUCTION

In order to situate the problem examined herein,
we briefly summarize below the analysis methods
developed for hydroelastoacoustic calculation in the
low frequency (LF) and medium frequency (M)
domains at ONERA’s Structures Department.

Let us consider a linear, viscoelastic, solid medium
with instantaneous memory {the structure) which
occupies an open bounded domain Q, of R? with a
relatively regular boundary ¢Q,=ZUTI. The sur-
face Z is in contact with an inviscid compressible fluid
which occupies the open, unbounded domain Q of
R®. We note as N the unit vector normal to JQ,
external to Q, (Fig. 1}.

Fig. 1. — Diagram of the coupled
fluid-structure system.

Let u(m, t) be the displacement field of the elastic
medium §, and F(m, t) be a surface force field
applied on 8Q, We will note as p(m, t} the pressure
field in the fluid Q.

The equation for the linear vibrations of the
coupled fluid-structure system are around a position
of static equilibrium written in the Fourier domain
for the time variable ¢ :

veeR, (—o*M+ionC

+K—a?Bg(@)u(@)=F©) (1)

where M, C and K are the positive-definite symmetri-
cal, real linear operators of mass, damping and stiff-
ness of the elastic medium Q, and By (w) is the linear
hydrodynamic coupling operator which expresses the
actions of the fluid on the structure when surface X
is deformed. This operator By(w) which depends
only on the fluid density pg, the speed of sound ¢y in
the fluid and the geometry of surface Z in the refer-
ence configuration, is symmetrical, complex {but not
Hermitian) and can be written:

YoeR, ~w? By (m)

=—a’My(@)+ioCy®) (2)

where My (w) and Cy(w) are the added mass and
dissipation by radiation at infinity operators and are
positive-definite, symmetrical, real, linear operators.
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The pressure j{m, ) in any point m of Q is then
given by the equation:

p(m, @)= —0?Q, ()]s (®) (3)

where 1|y is the restriction on I of the solution # of
(1) and Q,.(w) is the hydrodynamic radiation operator
which also depends only on py, Cp and Z.

All the operators introduced have infinite dimen-
sion and, for any geometry of Q, (and therefore of
%), only approximations can be constructed using
appropriate methods.

A. — SOLVING OF THE COUPLING EQUA-
TION

The general method for approximating operators
M, C, K and B, (w) consists of projecting them on a
suitable functional basis { b, (m) }, . derived from the
weak formulation of the coupling equation (1), We
then attempt to find the solution i of (1) with the
form:

+ o

l;(m,(l)) = JZ:L Uk (w) by (m), 4

mell, oweR

The approximation consists of conserving only n
vectors of basis b,, where n is finite and the approxim-
ated solution is obtained by solving the matrix equa-
tion on C":

(—? [{1]+i 0 [C]+ K] - ? 1By @) [01=(F]
where:

[M]kk-‘= < Mbp.b, >
[C]kk‘= < Chy, b, ¥
(Kl = < Kby, b >
[U]k = Uk (©)

[%]k = ((ﬁ s by | ane))anc
[EH (@)= ({(By (@) by y 5, by )
XV, WP =.Jn Cp(m), w(m) ) dm
¢ (7)
(v, w)s =j {o(m), w(m) ) dS (m)
5

where (v, w)> is the Euclidian scalar product of v
and w on R®

The various methods developed are related both to
the selection of basis b, and to the method used to
compute [By (@)l =By (@)} by 5 be s

The criteria involved in this choice are:

— the LF or MF frequency domain for the choice
of basis b;

— the geometric characteristics of X for the calcu-
lation of [By(w)].




A . 1. — Selection of bases b,

(a) In the LF domain, two methods have been
developed:

- The first consists of taking for b, the cigenmodes
of vibration Vs, of the elastic medium, conservative in
a vacuum. They are such that:

— o M5, + K\, =0. (8)

These eigenmodes are numerically determined by
the finite element method.

For the LF domain, a very small number of modes
is sufficient, i e. n is less than a hundred. This
method is developed and used in [4, 5, 9, 14, 23 (1)
and (2)),

The second consists of taking for , the eigenmodes
of vibration Yf of the conservative elastic medium
placed in the associated bounded incompressible fluid
medium. They are such that:

— f (M + My (0) ¥5 + K =0. 9

Here again, the modes are numerically determined
by the finite element method (structure and fluid) and
truncation can be carried out for the LF domain with
a small value of n. The advantage of the second
method is that the s values already account for the
major part of the influence of the added mass. This
method normally leads to a smaller value of » than
the first. However, the calculation of (9) is more
cumbersome than that of {8) since the model also
includes the degrees of freedom of the fluid, This
method is described in [19 and 21},

(&) In the MF domain, calculation of bases {, and
Yf becomes very difficult or even impossible in the
present state of numerical analysis and the most
powerful computers (this is due to the fact that the
modal densities become large and there may be sev-
eral hundred or several thousand modes to be calcu-
lated).

This is why we developed a direct approach which
uses the finite element basis used for modeling the
structure. In this case, it is not necessary first to
solve an eigenvalue problem of type (8) or (9}, but n
is very large since it is actually the number of degrees
of freedom of the structure model and the mesh is
relatively fine for the MF domain (n is equal to sev-
eral tens of thousands). This method is described in
[23(3), 24, 25, 26 (1) to (3)].

A.2. — Selection of the method for computing [B,; (©)]

Operator By (w) results from solving the external
Neumann problem in unbounded domain Q, related
to Helmholtz’s equation relative to bounded surface
Z. A method which is well suited to this type of
problem consists of using the formulation by integral
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cquations. We will limit ourselves herein to this
approach, which applies both to the LF domain and
the MF domain.

(@) For a surface £ of R? with any geometry, which
is the general case, a singularities method, which gets
around the problem of irregular frequencies, was
developed. It is described in [1] and is used in [5 (1)
and (2), 9, 14 (1) and (2), 25, 26 (1) to (3)] both for
the LF and the MF domain. It can process any
bounded surface £ of R? and a free surface in Q can
be taken into account.

(b} For a slender surface X, use of this geometric
property can be considered to develop a method for
constructing Bg(w) at a lower cost than with the
general method mentioned above in point {a).

Such an approach was developed for slender
axisymmetrical surfaces £ in the LF domain (for the
coupled problem, this does not require the elastic
body ©, to be of revolution; only ¥ must be). The
results obtained are developed in detail in [23 (1)),
summarized in [4] and the comparisons with general
numerical methods and experimental measurements
are very good [20, 23 (2)]. These results were estab-
lished mathematically and were only validated for the
LF domain. In [24], we studied to what extent the
LF results could be extended to the MF domain and
how they should be modified.

We give these results below.

B. RADIATION CALCULATION

After solving the coupling equation (5), the radia-
tion is obtained considering (3) by the following
approximation:

pim, 0)=—0 ¥ U,()(Q, @b (10)
k=1

The construction of operator Q,, (©) projected on
traces b, |y of the basis vectors is carried out at the
same time as the construction of [By(@)] by the
methods mentioned above in point A . 2.

C. — ORIENTATION OF THIS PAPER

As was already explained, the purpose is to replace
the general 3D method for constructing hydrody-
namic operators By (w) and @, (w} by a simplified
method, less costly from a numerical standpoint,
when surface Z is slender and axisymmetrical.

In [24], we demonstrated that it was possible to
extend the mathematical results obtained for the LF
domain in {23 (1) and (2)] to any frequency domain
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and accordingly to the MF domain. Thus, regardless

of the reduced wave number K= oLl fixed, where L
F
is the length of Z, the asymptotic result obtained in

[23 (1) and (2)] remains valid when the slenderness

R .
parameter e= ~iﬂ approaches 0, where R, is the

largest radius of the surface of revolution Z.
Unfortunately, the asymptotic result is not uniform
in K, i.e. for K fixed, there exists g,(K) such that

¥ e < g, (K), the asymptotic result applies. However,
in real situations, the opposite problem is
posed. The slender structure, and therefore

surface £, is given and has a fixed slenderness para-
meter € (which is in the neighborhood of 1/5 to
1/15), which means that it is not possible to make it
approach zero. Therefore, if the coupled problem is
studied for a wide range of values of K| it is necessary
to know the domain for which the asymptotic theory
is valid. This analysis of the domain of validity was
conducted and led us to modify the asymptotic theory
for the MF domain.

We give the main results obtained below, referring
the reader to [24] for demonstrations.

1l. — HYPOTHESES AND NOTATIONS

The notations and hypotheses
paragraph I are taken,

The system is referenced in a fixed cartesian refer-
ence frame OXYZ of R®. A generic point of R* is
represented by its cylindrical coordinates (X, R, 9) in
the cylindrical reference system with axis OX associ-
ated with OXYZ. The distance between two points
m(X, R, 8 and m’(X’, R’, &) is noted p(m, m’) or
again:

p{X—X, R, R, 8—0)=[(X-X)
+R?+R'Z—2RR’cos(6—6]"2

introduced in

(11)

The following hypotheses are introduced:

H1 — The linearized problem around a reference
configuration is analyzed.

The 3D displacement field of surface T is noted
Usim, 1), meZ.

This field is not particular and is not necessarily
axisymmetrical.

H2 — Surface T is axisymmetrical, with an axis of
revolution OX and a finite length L. Its generatrix

_is described by the function X+ Ry (X) defined on

[0, L] with values in R¥, assumed sufficiently regular
for T to be C!. Thus, for any point m of Z, the unit
vector N normal to X inside Q can be defined, if
function m— N (m) is continuous. We set:

Roy(X)=dRo(X)/dX,  h(X)=(1+Ro(X)?)'™. (12)

Rech. Aérosp. n® 1886-4
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Actually, hypothesis C! can be weakened by taking
%, as type C° and C! by parts. The numerical analy-
sis developed in [24] is based on this weakened
hypothesis. The programs developed thereby allow
sharp angles to be taken into account.

The slenderness hypothesis of surface £ is written:

E=Rmzx/£’<1’ Rmax=supXE[O. L]RO (X) (13)

H3 — The fluid is inviscid and compressible with
constant density pr. The speed of propagation, as-
sumed constant, of sound in the fluid is noted C and
the velocity field is noted V(m, 1), mefl. Under
these conditions, for any point m € Q, a velocity poten-
tial ® (m, 1) can be defined such that:

V (m, t)=grad,, @ (m, t) (14)
and the pressure is written:
a0
P(m, t)=—Pp5;(m, ). (15)

IH. — EXTERNAL NEUMANN PROBLEM
RELATED TO HELMHOLTZ’S EQUATION
(case of any surface)

It is attempted to find the harmonic solution with
the form:

ug (m, 1) =1z (m, 0)e'®" (16)
®(m, )=0(m, w)e'* (17
p(m, )=p(m, 0)e'* (18)

where m — ity (m, ®) [or m—{(m, ), m—pm, o) is
defined on T (or on {2) with values in C* (or in
). Considering equation (15), this gives:

pm, @)= —iops@(m, o). (19)

Under these conditions, ¢ is the solution of the
following external Neumann problem:

-~ -
Ap+ -——z-cp=0 dans Q (20)
Cr
%(?n, w)y=F(m, ) sur £ (21)
8¢ ,® ~ 1
—(m, w)—i—op(m, m)‘=9(-5),
N Cr ] r @)
for
r=llom|| - +eo
setting:
F(m, )=io {u;(m, @), N(m)> (23)




where m+— F(m, ®) is a function defined on I with
values in €.

For any o fixed in R and any function m s F(m, w)
in C°(Z, C), problem (20) to (22) accepts a unique
solution @ continuous in Q {(and even in R3) which is
written:

P(m, 0)=(R,(F)(m), mel

where 4, is a linear operator of C°(Z, C} in
c (@, ).

The hydrodynamic coupling operator By () is then
defined by:

((By (@) ig, 53))s
=«~ppf<E‘E,N>{%m(<ﬁz,w>)}dcr 25)
z

where do is the measure of the surface borne by
Z. The radiation operator @,, is defined by:

Q. (@) ttg=—p, B, ({tiy, N D) (m).

TLet G(m, m) be the elementary solution of
Helmholtz’s equation in R* which verifies:

(26)

2

AG, (m, m')+ % G, (m, m)=5, (m) (27)
F

-and compatible with (22), It is written:

g (/Cp)p (m, m")

G, (p(m, m))=~ (28)

1
4n p(m, m"
setting G, (m, m)=G,(p(m, m").
Then, the solution of (20) to {22) can be searched
for in the form of a single layer v, ® §;, where
msv, (m) is continuous on Z; this then gives:

¥YmeQ, ¢ (m, w)

zJ v, (M) G, (m, m")do (m?).  (29)
E

The density of single layer v, borne by X is then a
solution of the integral equation associated with (29):

1
VYmeZ, F(m, co)=§vm(m)

+ '[ v, (m)
£

It is known that equation (30) does not have a
solution for certain values weR called irregular fre-
quencies, whereas problem (20) to (22) always has a
solution YoeR. In the present case, this is not a
problem since form (30) is used only to.find the
asymptotic sclution (e~ 0) which is explicitly ob-
tained for any oeR.

oG, (m, m’)

AN G do (m”).

(30)
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IV. -~ THE RESULTS
FOR A SLENDER SURFACE X
OF REYOLUTION

We now consider the hypothesis of paragraph II,
introducing the dimensionless wave number:

K=woL/Cy (31)

For any meZ, the linear operator %, ,, is defined
such that for any m+~— v{(m)} continuous on Z:

9G, (m, m’)

NG do{m’).

“?!E,m(v)=f v{m’) (32)

The asymptotic solution is then given by (29) with
v,, a solution of (30) fore =0, i.e.:

I )
YmeXZ, F(m, o)= Evm (m) + lim %, ,(v,). (33)
£+ 0
Result 1. — For any 3D Neumann condition with

the form F(X, 0, @)=F,(X, ®)e™, neZ, then the
single layer density is written v, (X, §)=v,_,(X)e™
and, YD >0 fixed, YK>0 fixed, there exists £y(K)
such that Ve =g, (K), for any X in [0, L]:

1
%a. X (Vm. n)'“ 10 (n) v

5 m‘ m.n(X) éD

(34)

where 1,(m)=1if n=0 and 1,(n)=0 if n £0.

Result 2. For any 3D Neumann condition
X, 0> F(X, 8, ) continuous on [0, L] x [0, 27], then
VYD >0 fixed and ¥ K> 0 fixed, there exists g, (K} such
that Ye<e, (K), for any meQ:

| R, (F) (m)— R, (F)(m)| < D (35)

where
(#,(F)(X, R, 0)
L "2n
=j '[ v‘w::c'.ﬂ'(F)Gm(p(‘X_‘Xv‘-' R’
0 JO

Ry (X), 80 do (X", 8) (36)
do (X', 8)=R, (X)h(X")dX" d¥’ (37)

and where s .. o is the linear operator defined, for any
fixed X’ and &, by:

Ay (F)=2F (X', &, 0)

1 2n , . ., 2
_(ﬂL F(X’, 87, 0)do )(m) (38)

The proofs of these two results are given in [24]
and [23 (1)].
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Comments on the results

For any function S, in C°([O, L], C), the operator
U, y Is written:

@c.x(sn)=JL S.(X)g.. (X, X)dX"  (39)
o]

The expression of g, , is given in [24]. Result 1
shows that for any K positive fixed and for any X in
[0, L], %, x(S,) approaches, not uniformly with re-
spect to K, 0if n> 1 and S(X)}2h(X) if n=0, when
e—=0.

This is due to the fact that for € -0, g, (X, X))
approaches 0 for n > 1 and the measure 8, (X)/2h(X)
for n=0, where 8,(X") is the Dirac measure at
point X.

For ¢ fixed and small, an equivalent of g, (X, X")
is calculated in [23 (1)]. The numerical analysis of
this equivalent allows the following interpretation to
be given:

{(#) Case n=0

For ¢ fixed and small and X fixed, the function
X'+ g, o(X, X) has a graph like that shown in
Figure 2.

‘ge,o(x, X'}

-
0 X L X'

Fig. 2. — Graph of the function g, o{X. 0}.

The smaller & the more the mass of measure
2. o (X, X)dX’' is concentrated in point X. At the
limit, for £ —+ 0, this gives, as we indicated, the Dirac
measure on point X within a constant. Thus, for €
fixed and small, in order to be able to use the asymp-
totic results, the function X'—»S,(X") must be
constant on the window defined by g, ¢, i.e. it must
be possible to write:

L
JSO(X’)&,O(X, XNVdX '~
0
L
So(X)J g.0(X, X)dX'. (40)

0

This situation is illustrated in Figure 3.

- 9,0 (XX

Sp(X)

(
1
I
%

xJ

0 X L
Fig. 3. — Correct asymptotic situation.

However, when K increases, which is the MF or
HF situation, with & still fixed and small, function §,
generally oscillates increasingly and equation {(40) is
no longer verified. This sitnation occurs when the
spatial wavelength associated with S, is of the same
order of magnitude or less than the efficient width of
the window (Fig. 4).

L9 X

Fig. 4. — Incorrect asymptotic situation.

At the limit, if the spatial wavelength approaches
zero, reasoning on the stationary phase shows that
%, x(So) approaches zero, as in the case where n > 1.

Consequently, the character of the convergence
towards the asymptotic solution, not uniform in K,
implies the following practical conclusiens for n={:
for ¢ fixed, there is a change in the behavior of the
solution as a function of K and there is a wide range
of values of K about which nothing can be said. It
is almost hopeless to wish to select the type of
solution. In effect, for any Neumann condition, the
wave spectrum of the contribution n=0 which is
written:

Se (k)zl[L e* XS (X)dX (41)
G

can simultaneously have significant values for small
values of k (situation of Figure 3), for large values of
k (situation of Figure 4) and for intermediate values
of k. This situation is encountered, for instance,
when the vibrations of surface ¥ are longitudinally
localized in space. Therefore, for n=0, the asympto-
tic result can no longer be used unless € is very small,




in accordance with result 1. But, as we will see in
the next paragraph when studying the domain of
validity, this leads to values of & which do not corre-
spond to real structures. Thus, for n=0 we are the-
refore led to dropping the asymptotic result in the
MF domain. We will come back to this point.

(b) Casen > 1

However, for n 2z 1, g, (X, X') approaches zcro
and the problem does not occur. On the contrary,
as we will see, the higher K, the better the asymptotic
result. Actually, for n > 1, the convergence is uni-
form in K.

REMARKS

Another way of interpreting these results is to note,
according to (34}, that the single layer does not have
a spatial memory in the direction of slenderness X if
surface Z is sufficiently slender. This result, similar
to the strip theory, means that the circumferential
integral of the sources in a section with abscissa X is
not modified by the adjacent section with abscissa
X+dX.

Thus, (33) and (34) show that for n > 1, the integral
of the sources of a section is compensated for to a
certain extent, since the deformation of T is then
isovolumic. The equivalent source of the section is
then equal to twice the Neumann condition, whereas
for n=0, as the deformation of X involves a variation
in volume, there is no compensation in 2 section and
the source equivalent to a section is equal to only
once the Neumann condition (within the curvature).

It is this lack of compensation in a section for =10
which means that the solution does not converge
uniformly in K and that for ¢ fixed, the longitudinal
spatial memory reoccurs for certain values of K,
although it does not occur when £—-0, for any
fixed K.

V. —ANALYSIS
OF THE DOMAIN OF VALIDITY

We now propose to establish a domain of validity
for the theory, i.e. to find a criterion giving pairs
(g, K} [or (g0(K), K)] which verify the asymptotic
result (34).

To do so, we first define parameterizing as follows.

Helmholiz's equation (20) is written as follows in
dimensionless variables and cylindrical coordinates
{(R=R,_,. 7" X=Lx)

- 5~
gr r* 902

ey 5
2 2 g2 2
S el K =0,

2o 1
I
a? ¥

(42)
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Let us assume that @ (x, , 8) has the form:
Qlx T, e)=F(r)ef*"”e='"9,}

43
melN* (43)

nelN,
where n is the circumferential wave number and m

the longitudinal wave number,
Substituting (43) in {(42) gives:

2 2
dF 1 5{§+[82(K2 —mzﬂ:z)—n—z]F(r')=0. (44)
"

Since sup r(x)=1, we will use as parameter:
xef[0, 1]

F=e2(KZ—m?nh)—n’ (45)

A. — METHOD FOR EVALUATING THE
DOMAIN

To simplify the calculations, we assume that £ has
a constant radius,

Under these conditions, the operator %,  defined
by {32) has the following dimensionless expression:

82 1 f*rn
U, (8= —wj J s(xVcos(n7)
! 21 0 Jo
(1 —cosr)( - if - ia)e"""cdx’ dt (46)
(LR
where

p,=[(x—x)*+2&* (1-cos )]*1* (47)

and integral equation (30) becomes:

f(x)=%s<x)+%c.x(s), xel0, 1. (48)

Evaluation of the domain consists of numerically
calculating, for different values of parameters ¢, K, n
and m, the “exact” value of f by (46)-{48) for a given
function s and estimating the error between the exact
solution and the asymptotic solution using the two
following scalars:

=]l
Co=1—7L (49)
(A
Lr=2)s]]
Cor="—"—F7—" (50)
: 1]
where || . || represents the norm of L2 ([0, 1], R).

For the numerical calculation of (46), the integra-
tion domain [0, 1]x [0, n] is divided into rectangular
blocks and quadrature is carried out by a method of
2D trapezoids. For each of the blocks containing
the singularity, the integral is converted to polar coor-
dinates and the integration is carried out on the polar
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angle by a trapezoid method, the integration along
the polar radius being carried out algebraically. All
due precautions were taken as regards convergence
of the quadrature as a function of the meshes.

The calculations were carried out for two types of
source densities:

- s{xy=sin{mnx) which represents an unlocal-
ized longitudinal deformation shape and allows esti-
mation of the error in each point k=m = of the wave
spectrum of any function s;

— s(x)= M which represents a
T{X—xg)

deformation shape localized on the point with

abscissa xy and is used to estimate the overall error

for a function which has a rectangular window type

wave spectrum where the width of the window is

proportional to m.

B. —— THE RESULTS

The results are given in Figures 5 to 8 with a box
showing the ranges of variation of the parameters
used in calculation. Parameter I is on the X-axis and
the error constants C, andfor C, , expressed as a
percentage are on the Y-axis.

Range of variation
of the parameters

0001 <e<05

1<m<60 Cl%)  Cyp1 ()
0<< k=150 2 Co {8
n=0 150 .
s {x) = sin mwx +
fix)=1/2 s {x) + Ug (x) N
L.1.% % AAAnAQJQA a .
W &
504 5+ 4
2 2 2 .2
..a._...++.,:++4é"-?" ! ‘E (k —mn )._
—400 - 200 0 200 400

Fig. 5. — Validity domain for n=0.
Unlaocalized deformation shape.

Range of variation
of the parameters Cy1 +)
0.001<e<0.5 C= ¢f
1 <m<860 C (%]
0 <k E)<.. 150 150 ) .
n =
sin mwx °
s{x}= ——— 100+
a9 2 4 2 o - +*
f{x)=1/2s{x} + sl 4+
Ue {X) + ++
++++ + ++20 E2 (k2_m2,n,2)
— 400 — 200 0 200 400

Fig. 6. — Validity domain for n=0.
Localized deformation shape.
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Range of variation
of the parameters
0,001 <e<0b
0=<k=150
1€<n=<10
1 <=m= 60

sin marx
mX +
Fix)=1/2s (x)+Ug {x}| +
C=C> 1=

Nf—1/2s10?
TEIITE +

s{x})=

4

—-400 ~200 © 200 400 600
Fig. 7. — Validity domain n = 1.
Unlocalized deformation shape.
Range of variation
of the parameters (%)
0.001 <e<05 | .
0<k<180
1<n<10 *
1<m= 860 200
g {x) = sin mrx ]
fix)=1/2s(x) + Uglx) [+
— - 1004 + +
c= C; 1 . .
Hfe1/2s1 % b+ +
+ . 4
Hfll LI
+ e (K —mi ) —n?
—400 =200 O 200 400 600

Fig. 8. — Validity domain for n = 1.
Localized deformation shape.

— For deformations of T of the bending type
(n > 1), the validity criterion is written:

e2(K2—m2a?)—n? <0 (51)

with, on the whole, an error below 5%.

This criterion shows, which is interesting, that for
K fixed, the larger m and n, the higher € can be.

— For deformations of T of the torsion and
breathing type (n=0), the difficulties mentioned in
Section IV arise, i.e. a change in behavior of the
solution.

To preserve the asymptotic result, the criterion is
written:

e |K2—m?n?| < L. (52)
Unfortunately, for high values of K, this criterion

generally leads to € too small to be applicable to real
structures.



Therefore, although the asymptotic result is mathema-
tically valid for n=0, it is of no practical use which
leads us to construct the exact solution by the direct
method for this case.

VL. —METHOD
FOR CONSTRUCTING OPERATORS

The hydrodynamic coupling operator is defined by
(25).

A, — CASE OF A FULLY AXISYMMETRICAL
COUPLED SYSTEM

In this case, the displacement field 12|z(m, ®) can
be conventionally broken down, for its component
normal to X, into a direct sum of subspaces, with the
calculations made subspace by subspace.

For a field which is symmetrical with respect to
0=0, this gives:

Cutls, N> (X, Ro, 8)= 3 1,(X, Ry, 0)

nz0

3 w3 (X, Ry)cosnb.

nz0

(53)

Section V leads us to distinguish between two cases:

— For n=0, we have:

((By (w) u |z, J| Ne= ((B?-I (@) ';o: 1;0))2

=[BY(0)u5, 03] (54)
where B is calculated by the general method devel-
oped in [1] and used in [5 (1) and (2}, 9, 14 (1) and
(2), 25, 26(1) to (3)].

— For n > 1, we have:

((Bg (@) tyz, 0 ))x=((BY (@) 1, 1,)

=By (@)us, 03] (55)

where BY is calculated using the asymptotic result.

B. — CASE OF THE COUPLED 3D SYSTEM

The Fourier series development (33) of the 3D field
remains valid in this case. The coupling operator is
constructed with the form:

By (@)= B3 (©)+ BY (w). (56)

— B *{(®) is the operator applied to the 3D field
ii|; globally constructed by the asymptotic formula-
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tion associated with the partial breakdown:

<I;|zg1’ N>(X’ RO! e)= z J"(XV, RO: e)‘

nzl

(57)

This operator is constructed from equation (36),
algebraically removing the contribution of subspace
n=0 in (38). It therefore does not involve calcula-
tion of the axisymmetrical operator r=0 by the
asymptotic formulation.

§f,} {w) is the operator associated with subspace
n=0 applied to the 3D field ii|;. Insofar as it is not
possible to “unfold” an asymmetrical operator, we
propose the following approximation.

Let my be the projection operator on subspace n=0
defined as follows for any function (x, 8)+— F(X, 8)
continuous on [0, 27}

(7 F) (X) = %rnmr, g)de. (58)

TJo

Let BY be the operator defined by (54) calcuiated
by the general method. By applymg (58) to @ and
69, BY, defines an operator B}, applied to the 3D field
which is informally expressed

(BHu|E’ Y e (59)

[BH “o: Uo] [BH Mot |29 o U|

The following approximation is proposed for Eg:

BY () =diag BY (0) (60)

. e., we restrict operator B, (0) to its diagonal. This
approximation was justified empirically by observing
that it gave fully satisfactory results.

VI, —EXAMPLES

General programs were developed from the formu-
lation described in this paper to process axisymmetri-
cal and 3D coupled systems. These programs calcu-
late the discretized coupling and radiation operators
on a finite element basis of the surface of the structure
in contact with the fluid. Two calculation examples,
one axisymmetrical and the other 3D, are given below
to illustrate the theory and validate the programs
developed.

A. — AXISYMMETRICAL CALCULATION

The elastic structure is a cylindrical hull with a
variable radius, closed at the ends, with an axis of
revolution Oz. It is submerged in water and its slen-
derness is £=0.043,
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TABLE !

Calculation n=0

Calculation by the finite ele-
ment method with the cou-
pling and radiation operators
constructed by the general
MF method

Fan=9.50 —

Modal calculation
(number of modes
of the truncated base: 6)

Fwer=9.20 Fwer=9.176

Ymax = 0.318.10°* Tmax = 0.318.10"

Pmax = 0.1590 Pmax = 0.1601
Pmax_ _ 4990 Pmax . 4737
Ymax Trax
i I H N
l\‘ ; \\ lf

N |

Axis of revolution

Axis of revolution

The reference calculation is carried out by writing
the coupling equations on the truncated modal base
and locating the peak frequencies of the coupled sys-
tem by a scattering method (see introduction). The
first six modes in each subspace were used. The
calculations illustrating the slender body theory use
the results of Section VI.— A} and the MF methods

TABLE Il

Calculation n=1

Modal calculation
{number of modes

Calculation by the finite ele-
ment method with slender

of the truncated base: 6) body model
Fay=13.60 —_—
Fawer=11.08 Fwer==10.845

Ymax = 0.409.10™

Ymax — 0.4005.1 0-4

Pmax = 0.55.10-1

Pmax =0404.1 0-1

Pmax _ 1343
Ymax

Pmex - 4010
Ymax

Axis of revolution

Axis of revolution
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TABLE i

Calculation n=2

Modal calculation
(number of modes
of the truncated base: 6)

Calculation by the finite
element method with slen-
der body model

Fary=8.04 —

Fwor=5.945 Fwer=6.023

Ymax = 0.2841.107% | Ymax = 0.295.10™

Pmax = 0.1841.10°? Pmax = 0.1878.10°2

Yrax
P P

Pmax - g5
Ymax

|

Axis of revolution Axis of revolution :

[26] for narrow bands with a width of 1 Hz centered
on the peak frequency in water.

For each mode studied, the structural damping rate
is £=0.01.

For both calculations, the finite elements of the
structure are axisymmetrical 2D with eight nodes,
with a nonaxisymmetrical displacement field. The
fluid mesh includes 73 nodes on the generatrix and
18 nodes on the half-circumference in the modal cal-
culation and 102 nodes on the half-circumference in
the slender body calculation.

TABLE IV

Calculation n=2

Modal calculation
(number of modes
of the truncated base: 6)

Calculation by the finite
element method with slen-
der body model

Fay=13.84

Fuwer=10.835

Fuwer=10.976

Ymax = 0,199,107

Ymax = 0.2010.10°?

Pmax = 0.1683.10°"

Pmax = 0.15562,107

Pmax = 70
Ymax

Pmax = 79
TYmax

P

]

\

Axis of revolution

Axis of revolution

|




For each subspace, the unit local excitation with
axis Oy is applied so as to adapt to the mode analy-
zed.

The mechanical observations of the coupled system
are the peak frequency in water, the normal wall
acceleration and the far field pressure. The pressure
calculation points are located on a circle in plane Oyz
centered on the structure and the results are converted
to a distance d=1m from the center of the structure

. !
(for a decrease in pressure in 5 )

All the results are given in tables I to IV and show
excellent agreement between the two
calculations. Concerning the calculation time, the
gain achieved by the method proposed is greater than

10, in spite of a much finer circumferential modeling
of the fluid.

B. — 3D CALCULATION

The elastic structure is a cylindrical hull centered
on point (0, 0, 0) with a constant radius, with axis of
revolution Oz closed at the ends by flat bottoms.

It is homogeneous, isotropic, with length L=120,
thickness ¢=0.02, radius R=3 and is submerged in
water (¢c=1,500).

In this case, all the caiculations are 3D. For con-
struction of the coupling operator, the general
method [1] is used for the reference calculation and
the results of Section VL. —B) for the calculation
by the slender body theory. The coupled system
vibration equation is solved by the MF method for
the 5-15 Hz analysis band. An analytic calculation
of the eigenmodes of vibration in a vaccum of the
associated conservative structure shows that the latter
has more than 60 modes in this band, which is a
typical MF situation.

For this analysis band, an average structural damp-
ing rate for the dry structure of £ =0.003 was used.

For both calculations, only a quarter of the struc-
ture was modeled, taking into account the two planes
of symmetry with equations x=0 and
z=0. Modeling of the dry structure, which includes
420 hull elements with 8 nodes, allows circumferential
wave npumbers up to nine to be taken into
account. The discretization of the coupling operator
includes 820 fluid panels using all the nodes of the
structural mesh.

The symmetrical local excitation is applied to point
{0, R, 0) on axis Oy and is equal to 0.25 for the
modeled quarter of the structure.

Figure @ shows the square of the acceleration
modulus normal to the excitation point in decibels.
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2
A 10 LOQ:O"YIZ A 10 L0919 byl
— B0|Slender body theory — 60 Conventional

\ theory
- 70 \ - 70
— 80 \ 80

f{Hz) f{Hz) _
5 10 15 & 10 15
Fig. 9.

Comparison between the two calculations shows good
agreement, They give the same levels, the only
difference being a shift of approximately 1 Hz of the
peak frequencies in water. However, the magnitude
of this shift should be relativized. In effect, it should
be stressed that the frequency domain analyzed was
determined so as to obtain a model compatible with
the structural deformation modes and the acoustic
wavelengths in the fluid and leading to a reasonable
number of degrees of freedom (in this case
approximately 6000). This choice is actually very
penalizing for comparison of the results, since the
analysis band is very narrow comnsidering the high
modal density of the structure. In other words, very
high frequency resolution is required.

Accordingly, the shift relative to the analysis band
becomes minimal for a larger frequency domain (for
instance 100 Hz).

A ® Conventional theory
Slender body theory

B _
0.145 1073

Fig. 10. - Longitudinal deformation shape.

Figures 10 and 11 show the deformation shapes of
the structures in water on the generatrix and the
directrix containing the excitation point. The quantity
shown is the energy of the normal acceleration on the
analysis band, defined by:

éﬁ,:j |y(z)|2dr=lmj|§(m)|2dm. (61)
R 2]y

The values are normalized with respect to the maxi-
mum energy on the structure.
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— Slender body theory
o e Conventional theory

-— Slender body theory
® Conventional theory

— -5
88y = 014510

|
« 20dB 10dB

Fig. 13. — Far field pressure. Plane y=0.

—- Slender body theory
e Conventional theory

Fig. 11. — Circumferential deformation shape.

The spatial localization of the deformation shapes
and the small longitudinal propagation of the energy
show that it is an MF situation. Figure 10 shows the
large couplings of the circumferential deformation
modes.

Figures 12 to 14 show the far field pressure
radiation patterns (the depth of immersion is 70 m
from the free surface), in the planes with equation
x=0, y=0and z=0.

— Slender body theory

® Conventional theor
. s . ~ ¥ Fig. 14. — Far field pressura. Plane z=0.

The quantity shown is the energy in decibels of the
pressure on the analysis band expressed in
micropascals, i, e.:

é”P=IOIogm{iJ- |[3(m) lzdm}+60. (62)
2T Jg

The comparison between the two calculations
shows a maximum relative difference of approxi-
mately 57, which is satisfactory considering
approximation (60).

For this problem, the savings in calculation time
for construction of the coupling operator by the slen-
der body method is approximately 4. This gain
increases with the size of the model and should be
much higher for structures with a high number of
Fig. 12. — Far field pressure. Plane x=0. degrees of freedom {20,000 or more).
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VHI. —CONCLUSION

In this paper, we showed how the slender body
theory developed in [4] could be extended to the
medivm frequency domain, with the associated
numerical developments used to solve the problems
of hydroelastic coupling in an unbounded compressi-
ble fluid entering this framework.

The existence of a domain of validity of the theory
was shown and a simple way was given for determin-
ing it for a given structure.

From the standpoint of applications to real struc-
tures, the theory can be extended as is to the MF
domain for subspaces n > 0, but must be replaced by
the general formulation for subspace n=0 in this
frequency range.

This result led us to develop special programs
taking this distinction into account. The processing
performed to validate the programs shows the effi-
ciency of the method, which allows a significant
decrease in calculation costs.

Manuscript handed in on June 18, 1986
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