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DYNAMIC AND ACOUSTIC RESPONSE
OF COUPLED STRUCTUREDENSE FLUID
AXISYMMETRIC SYSTEMS EXCITED
BY A RANDOM WALL PRESSURE FIELD

by
C.SOIZE , ].M.DAVID and A. DESANTI

ABSTRACT

A numerical method for predicting medium frequency random vibrations of
coupled fluid/structure axisymmetric systems excited by a random wall pressure field
is described. The structure is inhomogeneous, viscoelastic and linear and occupies a
bounded domain. The internal inhomogeneous fluid is compressible and occupies a
bounded domain. The external homogeneous fluid is compressible and inviscid. The
structure and the internal fluid are analyzed by the finite element method and the
external fluid by an integral equation method. An application is described, and the
numerical predictions are compared with experimental results.



I. — INTRODUCTION

The method uses a numerical model to predict the
stationary response in the medium frequency (MF)
domain of dynamic axisymmetric coupled fluid/strue-
ture systems excited by a random wall pressure field.
The structure is inhomogeneous with a linear visco-
elastic behavior and occupies a bounded domain of
space. It is coupled to an inviscid, compressible,
homogeneous external fluid occupying an unbounded
domain of space and to a compressible inhomogen-
eous internal fluid occupying a bounded domain of
space. The fluids can have any density (light or
heavy). The entire coupled system is axisymmetric.
The excitation is a given which is a random wall
pressure field, stationary in time, inhomogeneous in
space, applied to part of the interface of the structure
with the external fluid. It is axisymmetric, i.e. the
probability law for this field and therefore all its
moments are invariant by rotation around the axis
of symmetry of revolution. The aim is to calculate
the power spectra in the MF domain of the stationary
random response of the coupled system, i.e. acceler-
ations of the structure, pressures in the internal fluid
and, possibly, pressures in the external fluid, i. e. noise
radiated in the near field and the far field. The
system can have any geometry in the generatrix plane.
The same is true of the geometry of the internal
acoustic cavity and the geometry of the structure/ex-
ternal fluid interface. The structure can have any
boundary conditions.

Under these conditions, we use the finite element
method to numerically analyze the structure and the
internal fluid and a general integral equation method
for the external fluid.

As it is the MF domain we are investigating, inter-
mediate between the LF domain for which the modal
density of the structure is very small and the HF
domain for which it is very large, the number of
degrees of freedom (DOF) of the discretized system
is generally sufficiently large with respect to a model
corresponding to the LF domain.

The state of the three-dimensional (3 D) coupled
system is obtained by 3D synthesis of the various
states of the circumferential orders n of the Fourier
series expansion along the polar angle 6 of the cylin-
drical coordinates. In effect, although the excitation
field is axisymmetric, any occurrence at time / is not
an axisymmetric pressure field. The excitation field
therefore has nonzero components on all circumferen-
tial orders n, and not only on n=0.

In the first part (Secs. II and III), we give the
equations governing the coupled problem and indicate
the numerical methods used to construct the fre-
quency response function of the discretized coupled
system. In the second part (Sec. IV), we construct the
stationary solution. Finally, the third part (Sec. V)
concerns an application for which the external and
internal fluids are dense (water), the wall pressure
field is due to the boundary layer turbulence of an
external flow and the structure is a viscoelastic shell.
We give the numerical predictions for a wide MF
band and comparisons with experimental results.

NOTATIONS

For x=(xy,...,x,) and y=(y,,...,»,) in R", we

denote {x, y)=3 x;y; and ||x|*=(x, x). Con-
i=1

sidering C as the complexification of R, we denote
for x and y in C:

(x, y)= g x;y;={x, 5> and [[x][*=(x, x),

where y is the conjugate of y. Let K=R or C, n and
m be two positive integers. We identify the vector
space of linear mappings of K" into K™ with the
matrix Maty (m, n) with dimensions (m, n) and whose
elements are in [, and space K" with Mat, (n, 1).
Let QeMat (n, m). We denote the transpose matrix
of Q as Q7, the conjugate matrix as 0 and the adjoint
matrix as Q*=07. Let L2(R, C™) be the space of
functions - U(1)=(U, (1), ..., U, (1)) defined dr-
almost everywhere on R with values in C™, whose
square is integrable, equipped with the scalar product:

(u, )= 'f U@, V1)) dt,

R

and the associated norm || U|||=((U, U))*/%. For any
U in L*(R, C™), the Fourier transform (FT) of U
is the mapping w— (# U)(w)=U(w) belonging to
L?*(R, C™) such that for almost any w in R:

(33(w)=f exp(—iwd) U,()dt,  je(l, ..., m).
14

For almost every 7 in R, the inverse FT is given
by:

Ui(=2m)~1 f exp (iwt) U, (w) dw,

Fell; s ym),



In the case of a quantity f depending on x and ¢, the
notation f always designates the partial FT with
respect to r.

II. — FREQUENCY
RESPONSE FUNCTIONS
FOR 3 D COUPLED SYSTEMS

First we give the formulation for a sufficiently
general 3 D case. The necessary additions for axisym-
metric systems are given in Section IIL.

II,l. — GEOMETRY OF THE- COUPLED

SYSTEM

The physical space R?® is referred to a cartesian
reference system Ox;x,x; and we denote as
x=(x,, X, X3) the generic point of R* (Fig. 1).

Fig. 1. — Geometry of the coupled system. General case.

Let Q be a bounded open domain of R®, simply
connected with regular boundary ¥, (C° and C' by
E

parts). The structure and the internal fluid are con-
tained in Q.

(1) The external fluid occupies the domain external
to Q, i.e. the open unbounded domain Ly=R*\Q
of R?® with boundary Y=Y U where ) N}, =&.

E EO E1l EO E1l

Below, part 3 is undeformable.

EO

(2) The structure is a continuum which occupies
the open bounded domain S of R® contained in Q,
with  regular  boundary a4S=) U}, with

so 51

Y NY, =, where ) is the part on which the structu-
igl dfslplacements asrz zero. In addition Y is a part
of ), the structure/external fluid beifllg coupled
throi;gh ¥

E1

(3) The internal fluid occupies a domain denoted
L, which is an open bounded domain of R3 contained
in Q\S, with boundary Y=Y U) with

I Io I1
Y N Y=, where ¥ is the part of ), which is unde-
0 It 10 1
formable. The structure/internal fluid is coupled
through Y. In addition, ¥ "), = and ) is a part
Il I ;¢ I1
of Y. To simplify the description, we will assume

51
that y =Y UY.
S1 Ei Il
(4) Finally, we denote as N=(N,, N, N;) the unit

normal to ), external to S and to > external to Q.
5 E

We denote as N’ the unit normal to ) external to L.
I

Therefore, N=—Non Y.

Il

1,2. — EQUATIONS OF THE COUPLED
SYSTEM VIBRATIONS

The equations are written in the Fourier domain
for variable ¢ and are relative to the linear vibrations
of the coupled system around a stable equilibrium
state taken as reference state. To simplify the descrip-
tion, we use the 3 D linear elastodynamic formulation
for the structure with a single field. In practice,
and for reasons of modeling, we are generally led to
consider the structure as a union of 1D, 2D and 3D
media.

In the present case, the structure is a continuum §
whose displacement field is denoted

x, t—u(x, f): SxR—R?

(1) External fluid: the external fluid Ly is inviscid,
compressible, homogeneous, with density py and
acoustic velocity ap (acoustic fluid). Let v, ¢y and
pp be the velocity, velocity potential and pressure
fields. Herein, we assumed that there is no source
term in the external fluid. For xe L;=L;\U} and

E

we R, we have:
o= grad (T)Ea Pg=—iwpg (BE- (D

Potential ¢ is the solution of the external Neu-
mann problem:

2
e we A .
Apg+ ;q)g=0 in Lgp
E

L% 5

a—(PF::gE(u) on ZE (2)
ai’! _;i (I)E =02,

ar ag

log|=0(""), r=|lox|| =+



where g, (u)=0 on Y and éE(li)=iw<ﬁ[Eﬂ, N> on
EO

2., where #|g, is the trace of  on Y.
E1 El

(2) Internal fluid: the internal fluid L, is compres-
sible, with constant density p, and acoustic velocity
a;. It is assumed that there is no source term in the
internal fluid and we denote as p, the pressure field
on L, xR with L, =1L, U}: We assume the fluid to

be governed by the equanons established in [27, 57],
where @, is the solution of the internal Neumann
problem:

= iW-P-r-‘I’J in L,
2
div (1 +iwh;) grad )+ — ¢, =0 in L, 3)
ay

~

d
(]+iw'lf)7(m=g,(ﬂ) on )
oN’ I

where g,(u)=0 on . and g, (#)=iw (ily,,, N') on
10

Y, where iy, is the trace of « on Y . Coefficient A,
T n

is real and depends on x and w For X, = 0, we have
a conventional inviscid compressible fluid (acoustic
fluid). For certain models, it is advantageous to have
an inhomogeneous dissipation term depending on the
frequency to simulate loss phenomena in the neigh-
borhood of walls of the acoustic cavity or in certain
parts of the fluid domain L,.

(3) Structure: the structure is an inhomogeneous,
anisotropic, linear viscoelastic solid continuum § with
density ps. The components of the stress tensor are:

O (@)= A (x, W) & (@), J, k. b, ie{l, 2, 3},
with the Einstein convention for index summing,
where €, (1) = (6, 4;+ 8;1,)/2 is the strain tensor and
where ay,, (x,w) are elasticity constants which verify
the usual symmetry properties, are functions of x,
depend on w and have values in C [9, 32, 34, 57, 62].
By hypothesis, there is no volume force applied to S.
The structure, coupled with the internal and external
fluids, is governed by the following equations for any
win R, je{l, 2, 3}

“w'zpsﬁj—ﬁkcjk(ﬁ)=0 in S
ijNk= —(Pr +ﬁ11)Nj+f on Z 4)
51
i,=0 on )
50

where x, t—=f(x,1): ) xR—>R is a given external
51

force field applied to the structure and
X, wi pry (x, w), (Tesp.x, wi—= pp, (x, w)) is the func-

tion of Y xR in C, with support ) (resp. ), and

51 Il E1
such that for any w in R, p“ (resp. pg,) is equal to

the trace of p, on Y (resp. pzon Y)).
Il E1l

IL3. — EQUATIONS FOR THE VIBRATIONS
OF THE DISCRETIZED COUPLED SYSTEM

The state of the discretized coupled system is repre-
sented by the three fields u, ¢, and o, which are
solutions of the coupled problem (2)-(3)-(4). For any
w in R, problem (2) has a unique solution [45, 49,
55,-57} which canbe written ¢z =iw %, (§; (7)) where
A, is a linear operator which can be characterized

by an integral equation formulation on surface Z [1,
E

37]. pg; can then be expressed as a function of # in
(4). This yields a symmetric (but not Hermitian)
variational formulation of the problem (3)-(4) where
the only unknown fields are # and ¢, and which
involves the operator &, [27, 49, 55, 57]. This prob-
lem in u, ¢, (and therefore the problem (2)-(3)~(4) in
4, @, ®p) has, for any w in R, a unique solution
which can be analyzed.

A finite dimension approximation can then be con-
structed. As the internal fluid is inhomogeneous, it
and the structure are analyzed by the finite element
method [13, 33, 64]. To construct an approximation

of 2, with a finite rank, surface ) is meshed with
E

finite elements which are compatible on ) with the
E1

finite elements of structure S. Let mg and m; be the
number of DOFs of the models of the structure and
of the internal fluid L; respectively. We denote as
U(HeR™, F(r)eR™ and &,(1)eR™, the nodal
unknowns of the structure, the external nodal forces
applied to the structure and the nodal unknowns of
the internal fluid due to the finite approximation in
space of fields u, f and ¢,. Then, for any w in R,
the equations of the discretized coupled system are
the matrix equation on C™, m=mg+m, which is writ-
ten by blocks:

o[ Mst M) 0 }
0 _MI

+iw|:CS(W)+CE(W) G :|
GT —Cr(w)

0 KJ’ CDI 0
where:

(1) For the structure: M, Cg(w) and
K (w)eMatg (mg, mg) are the mass, damping and
stiffness matrices which are positive-definite symme-
tric [6, 7, 14, 48, 67]. The dependency on w of Cg



and K is due to the presence of viscoelastic materials
[9, 57, 68].
(2) For the internal fluid:

M, C,(w), K,eMatg(m;, m;)

are the mass, internal dissipation (term in A;) and
stiffness matrices which are symmetric, M; and K,
being positive-definite and C;(w) being nonnegative.
Matrix C; depends on w via A; and is not a priori
positive-definite, since A; can be zero in certain parts
of domain L;. Matrix GeMatg(mg, m;) is the cou-
pling matrix with the structure [27, 57, 68]. It can
be noted that all the signs of the second equation (5)
(that in ®,) have been changed. This makes it possible
to have a symmetrical formulation for the coupled
problem. In addition, the formulation chosen for the
coupled internal fluid introduces only one DOF per
node.

(3) For the external fluid: M;(w) and
Cg (w) e Maty (mg, my) are the added mass matrix and
the matrix of dissipation by radiation to infinity.
They are symmetric and nonnegative. Numerical
methods and general programs [25, 26] were devel-
oped to construct My (w) and Cg(w) as well as radia-
tion in the fluid L;.

(@) For a surface of revolution ), or any 3D sur-
E

face, an integral equation formulation is used [1, 37].
This formulation was validated for the LF domain
[20, 25, 37, 39], and for the MF domain [21, 22, 23,
25, 40, 55, 56, 57].

(b) Where Y is a tapered surface of revolution, an
E

asymptotic method was developed. It allows a decre-
ase in the numerical costs. The theory is developed
and validated in [17, 50] for the LF domain and in
[11, 52] for the MF domain.

11,4, — FREQUENCY RESPONSE FUNCTION
OF THE DISCRETIZED SYSTEM

We set V()={U@®), ®,(N}eR™ F(1)={F(1), 0}
eR™, m=m,+m,;. Equation (5) is written Z (w) V' (w)
O x R4, where Z (w) e Mat (m, m) is the impedance of
the discrete coupled system. In the usual framework
of elastodynamics of solid media and subject to hy-
potheses on x, wi— A, (x, w) which are not restrictive
for the applications, it is determined from the varia-
tional formulation that for any w in R, matrix Z(w)
is symmetric, non-Hermitian, inversible, and that the
associated frequency response function
wi— H(w)=Z(w)~! is a bounded function of R in
Matc (m, m), H(w) being symmetric and non-Hermi-
tian. Under these conditions, for any Fe L% (R, R™),
the solution of (5) is a function VeL?(R, R™) such
that:

Viw)=Hw)Fw), VYweR. (6)

A combined time-frequency numerical method with
two scales was developed to construct function
wi— H(w) over a wide medium frequency band for a
reasonable numerical cost, knowing that m is very
large in the MF models [57]. This method is imple-
mented in hydroelastoacoustic software systems [25,
26, 68].

M. — FREQUENCY
RESPONSE FUNCTION
FOR AN AXISYMMETRIC
COUPLED SYSTEM
EXCITED
BY A WALL PRESSURE FIELD

III,1. — GEOMETRY, SURFACE £ AND AXIS
SYSTEMS

(1) Geometry: We consider the coupled system
described in Section II,1 but whose geometry and
mechanical properties are axisymmetric with an axis
of revolution Ox;,.

(2) Cylindrical coordinates: With the cartesian coor-
dinates of point x=(x,, x,, x5) are associated cylindri-
cal coordinates x=(0, r, z) such that x,= —rsin,
x,=rcosB, x;=z. The origin and orientation of
polar angle 0 are indicated in Figure 2.

— i

Fig. 2. — Cylindrical coordinates

and local cylindrical axis system.
The generatrix plane 6=0 is therefore Ox,x;. The
local cylindrical reference system is the direct
orthonormal reference system (e, ¢,, e,) attached to
point x=(0, r, z).

(3) Surface Z: the wall pressure field p (excitation

of the system) is applied to the surface = < Y defined
E1

by:
Z={x|6€]0, 2n[, r=R(z), z€)z, z,[}  (7)

where Re C' (Jz, z,[, R*) We denote as s the curvi-
linear abscissa of the generatrix of £ whose origin is



the point (0, R(z,), z,), and which points positively in
the direction of increasing z. The curvilinear measure
ds on the generatrix of  and the surface measure dx
of T are expressed as a function of the parameterizing:

ds=(1+R (2)*)'? dz; dE=R(z)d0ds(z), (8)
where R’ (z)=dR (z)/dz.

(4) Local physical reference system on X: in any
point x of X, we define a local physical direct
orthonormal reference system (b,,b,, b;) attached to
point x such that b,=e,, b,=N, by=e, A N where
N always denotes the unit normal to Y, and therefore

E
to Z, external to Q (Sec. II,1). The orthogonal (3 x 3)
matrix used for transition from the local physical
reference system to the local cylindrical reference
system depends only on z and is written:

1 0 0
Z@)= [0 af2) B |; )
0 —-B@@ ()

a(z)=(1+R"(2*)""%  B@)=R(Dx(2).

III,2. — FOURIER SERIES EXPANSION OF
THE FIELDS

Problem (2)-(3)-(4) is expressed in cylindrical
coordinates and the components of the structure
displacement field u are expressed in the local
cylindrical reference system. We denote as
U B, r, z, f)eMatgz (3, 1) the column matrix of com-
ponents u,, u, and u, of u on (e, e,, e;). For any
fixed r, z and 1, fields B—u(0), 0z(0), ¢,(6), p;(0)
and p, () are periodic, with period 2n. The Fourier
series expansions of these fields with respect to 0 are
expressed:

— For the internal and external fluids, if g denotes
any one of fields ¢g, @;, pg or p; with scalar values,
we have:

qg@®,r,z,0=73 {q¥(r z t)cosnb

nz0
+q%(r, z, )sinnB}. (10)
— for the structure, we have:

A®,r,z, 0= {Qs@O) UL, 2 1)

nz0
+Q,s(mO) UYL (r. 2, 0} (11)
where:
sinn @ 0 0
Qs(n0)= 0 cosnb 0 :
0 0 cosnB

cosn 0 0
Qusnb)=1 0 —sinn® 0 (12)
0 0 —sinn®

where

{q®(r, z, NER, AP (r, z, ) eMatg (3, 1)}

and {g'} (v, z, N eR, Y% (r, z, ) e Matgy (3, 1)} are the
symmetric and antisymmetric parts respectively for
the circumferential index neRN.

Considering the particular choice of the physical
local reference system on Z, we first verify that for
any x on X, representation (11) is invariant if the
components of field » are expressed in the local physi-
cal reference system, since we have:

R(2)" Qs (n0) 2 (2)= Qs (n6);
R (2)" Q45 (n0) R (2)= Q45 (n6). (13)

II1,3. — FREQUENCY RESPONSE FUNCTION
OF THE DISCRETIZED COUPLED SYSTEM

The methodology is the same as that described in
Sections I1,3 and II,4. The 1D and 2D finite element
meshes concern only the generatrix plane of the
coupled external fluid/internal fluid/structure system.
Let m'=mjg+ m] be the total number of axisymmetric
DOFs introduced in the model of the structure and
the internal fluid. The nodes of the structure mesh
on the generatrix of X are equipped with the local
physical reference system. The force field applied to
the structure is written:

x, 1> f(x, )=-px. D1;(x)N(x) (14)

and therefore has a nonzero component only along
b, of the local physical reference system.

Let N < m' be the number of DOFs of the structure
relative to the generatrix of £. For any ne N, equa-
tion (6) gives:

v (w)=H® (w) FP (w);
Ve (w)=H™ (w) E &) (w) (15)

where V() and V() in R™ (or F{(¢) and
FY% (1) in R) are the nodal unknowns of the structure
and the internal fluid (or the external applied nodal
forces) due to the finite approximation of the symmet-
ric part and the antisymmetric part of fields {u, @}
(or of field f) for the circumferential index n. The
frequency response matrix H™ (w)eMat(m’, N) is
constructed for each n with the general programs
mentioned in Secs. II,3 and I1.4.



Let W(t)=(W,(1),...,W.(r), be the L DOFs
observed of the 3D system. We have:
W)=Y {T9 7P W)+THVEmw)} (16)
nz0
where TM and TY,eMatg (L, m') are real constant
matrices constructed very simply from equations (10)
and (11). For the numerical computations, we can
only preserve a finite subset 4" of N in sum (16).
The contents of this set 4" are related to each problem
analyzed and the convergence with respect to n must
systematically be checked numerically. Finally, using
(15) and (16) yields the desired frequency response
function of the 3D coupled system:
W= Y {HE W) F w)+HZ W FR} (17
ned
where H{®(w) and H'}(w) are the matrices of
Mat. (L, N) such that:

HY w)=TPH" (w), HRZW=THEH"(w). (18)

As in Section IL4, functions HY' and HY} are
bounded functions of R in Mat. (L, N)

1II,4. — EXPRESSION OF THE NODAL FOR-
CES DUE TO THE WALL PRESSURE FIELD

Considering the use of the local physical reference
system on Z, the work of the force field f defined by
(14) is expressed:

3‘(!)=J S0, ulx, 1)) dE(x)
z

1 _F J.zﬂp(ﬁ, 2 ) uy (0, 2, N R(2)d0ds(z) (19)

zp 0

where, to simplify the expression, we set

p(®,z )=p(®, R(2), z, ) and

u, (0, z, N=u,(0, R(2), z, )=<Cu(x, 1), b, (x) ).
Considering (11) and (13), we have:
u (6, z, )=y {uf’, (z, )cosnb

nef
—ul 5 (z, Hsinn}. (20)
Substituting (20) in (19) yields:
7=y {79 O+TH0}

net

TO(H)=— f J i p®, z 0uf; (1)

zg 0O

xcosnBR(z)dOds(z) [ (21)

z 2n
TU()= f ‘ j p®, 2,04, )

zp VO

xsin n0 R(z) dO ds (2).

But in addition, for € {S, A4S}, we have:

TP ()= j LI @ 0, u (2, 1) ) ds ()
=r @ 0 ul, (2 0 ds(2). (22)

Identification of (21) and (22) yields, for any » in
A" and zin Jzq, z,[:

2n
£ @ 0= —R(z)f 2@, 2, 1) cosnO.dB )
i (23)
fi22(z f)=R(Z)j p (8, z, 1)sinn@ do. S
0

Let @, ..., @y be a basis of interpolation relative
to the finite element mesh of the generatrix of surface
Z. Functions z+— @;(z) are defined dz-almost every-
where on ]z, z;[ with values in R, integrable on
lzo, z,[ with respect to ds(z). Then, the components
of F () and FYk(7), which are defined by:

Fﬁ'f’,-(f)=r Sz 1) 9(2)ds(2),

Z0

1e{s, 45}, (24)

are written, for je{l, ..., N}

z in
FP,(n= _J 1 j p(®, z, ) cos n O dbdy,(z)
z0 0

7y 2% (25)
Ffrg_j(r)=j J p(0, z, f)sinn® dd dy,(2)

zg O
where:

dp;(2)=9; () R (2)ds (2). (26)

IV. — STATIONARY
RANDOM VIBRATIONS
OF THE AXISYMMETRIC COUPLED SYSTEM
SUBJECTED TO AN AXISYMMETRIC FIELD

The (external fluid/internal fluid/structure) axisym-
metric coupled system considered in Section III is
subjected to a random wall pressure field on X, sta-
tionary in time. It is attempted to construct the
second-order characteristics of the stationary
response, . e. the spectra on a wide MF band [53, 57].



IV,1. — MODELING OF THE EXCITATION

Let x=(0, R(z), z) be a point of £. The wall
pressure field applied to X, p(x,7). xeZieR is a
stochastic field defined on a probabilistic space
indexed on X X R with values in R centered, second-
order, stationary in quadratic mean for variable ¢
[18, 28, 35, 41, 51]. We denote the mathematical
expectation as E.  The mean function

x, 1—E(p(x, 1)

of this field is therefore zero and its cross autocorrela-
tion function defined on X x X X R is written:

R,(x, x', )=E(p(x, t+1) p o 9 (27

As the field is second order, we have:

E(p(x, D*)=R,(x, x,0) <+ o0,

28
VieR, VxeZ. 28)

Since p (x, 7) has values in R, R, verifies the follow-
ing property:
R,(x, x', =1)=R,(x, x, T),

(29)
Vx, x'eZ, VzeR.

It is assumed that field p(x,7) is continuous in
quadratic mean and therefore x, x’, 1= R(x, x', 1) is
continuous on Ex X xR and, for any x and x' in
¥, its cross spectral measure has a spectral density
x, x, w—8,(x, x', w) :EXEXR— C:

B.x, o T)=J\ €™ S, (x, X', w)dw. (30)
R

Considering equation (29), we have
8.6, &, —wy=8,(x, x’, w);

S, (x, x', w)=8,(x', x, w). (31)

The spectral power density of the stationary process
(p(x, 1), teR) is denoted @,(x, w)=S5,(x, x, w) for
any fixed x.

Conventionally, we have:

VxeZ, E(p(x, D*)=R,(x, x, 0)

=.|‘ ®,(x, wydw < +o0. (32)
R’

Below, for x and x'eX, we will also denote
S,(x, x',w)= 8,0, z, 0, 2, w).

Field p is assumed to be axisymmetric in quadratic
mean, 7. e. its cross spectral density verifies the follow-
ing properties.

(AX1) For any z and 2’ in ]z, z,[ and for any w in
R, we have, for any 8,:

§,(0,+86, z, 8,+0. 2, w)=5,(0,2 0,2z, w). (33)

Function S, depends only on 6—0" and we will
now denote it S,(0—6', z, Z', w).

(AX2) For any z and 2’ in ]z, z,[ and for w in R,
function Y S, (v, z, z', w) of [~ 2m, 2] in C verifies
the properties:

Vye[—2m, 0],
S,(y+2m, z, 2, w)=8,(7, 2, 2, w)
Yyel0, 2n),

S,(y—2m, 2,2, w)=S,(1, 2,2, W)
Yye[—2m, 27,

(=1 5.2 W=S00 5 z',w)

(34)

IV,2. — SECOND-ORDER CHARACTERISTICS
OF THE NODAL FORCES

Considering the hypotheses, it is verified that proc-
esses F{(1),, neN, Ie{S, AS} defined by (25)
indexed on R with values in RY are second-order,
centered, stationary, continuous in quadratic mean,
dependent and that their spectral and interspectral
matrix measures have densities
S (w)e Mate (N, N) for any n and n' in N and for
any I and J in { S, A4S}, such that:

mr(@)=EFP+1)FF (07
= J exp (iwt) ST 5 (w)dw (35)
R

which, for any jand kin {1,..,N} and w in R, are
expressed:

(%7 (W)=, j ’ J ", (2) diy (2)

zo z0

2 2=
XI j g (n0) g, (n' 6)

0 1]
S,(0—8,z 2, w)dodd' (36)
where
K (w) e Matg (ms, mg),
gs(y)=cosy, g5 (y)=siny. We then demonstrate the
following results (as the proof is somewhat long, we
cannot give it herein [54]):
Let ¢o=2m, ¢, =n. Then, considering hypoth-
eses (33) and (34), for any j and kin {1,...,N} and
any we R, we have:

ES,A.S':EAS.S:__I’

Vaz0, VYn'20, S%%s(w)=5Siss(w)=0
Vnz0, Ya'20, [SE% W]p=2¢,8,.

zy (24 2
X j '[ duy(2)dp,(z")| cosnyS,(y,z,2',w)dy (37
zp vzp 0

Yanzl, Vnzl,

Ynz0, ¥Yn' =0,
where
d,,=1if n=n"and$,,=0if n#n".

S:’is".',as (w)=S5%. ’.’s (w)
S’:q's? as(w)= S?q‘sr.' 4s(w)=0



IV.3. — SECOND-ORDER CHARACTERISTICS
OF THE RESPONSE

Let n. be the cardinal of A" We consider
the linear convolution filter {F@ (1), F& (),
ne A"} —» W(1), whose frequency response function
defined by (17) is a bounded function of R and
Matg (L, 2N n,). Under these conditions [19, 28, 35,
38, 41, 51, 58], the process { W (7). 1€ R} indexed on R
with values in RE is second-order, centered, stationary,
continuous in quadratic mean and its spectral matrix
measure has a density Sy (w)eMate(L, L) which,

_considering result (37) is expressed as follows for any
win R: o

SwOn= T {HY () S35 00 HE ()*

ned”

+HYL (W) S s W HG O0)*} - (38)

For any n in .47, we set:
SY (w)
= H™ (w) S& % (w) H™ (w)* € Matg (m', m'). (39)

Then. considering (18), equation (38) can also be
written:

Syw= Y TSP 17

ne At

+e, TSP WTE"™) (40)

where g,=0 and g,,,=1. We note that for an

observation DOF W, () with form (10) or (11), i.e.:
W)=Y {[V§"(w)];cosn8,

ne A

:l:[Vg’S’(w)]jsinnGD} (41)
with any 8,, we have:

[Sw (W)]jj= Z [S(I:l} (w)]jj' (42)

ne A

V. — APPLICATION:
HYDROELASTOACOUSTIC RESPONSE
IN DENSE FLUIDS
TO AN AXISYMMETRIC
TURBULENT BOUNDARY LAYER

V.l. — MECHANICAL SYSTEM STUDIED

The geometry of the coupled system studied is
schematically illustrated in Figure 3. Itis a 3D system

of revolution with axis Ox;. We use the notations
of Section I1,1.

i ey U

r/ “2,0 Transverse wall X2

[ — ——— %
Leq Sphere i
ﬂ o o MR P———s

Fig. 3. — Geometry of the generatrix plane
of the coupled system.

The two characteristic geometric dimensions are
the length / and the radius r (Fig. 3). Surface )’ isa
E

slender surface: r/l < l. The structure S (solid part
considered deformable) is an elastic shell made of
composite materials. The internal acoustic cavity L;
is bounded (1) by the internal surface of elastic shell
S; (2) by an undeformable sphere centered on the
axis of revolution Ox;; (3) by a transverse wall; and
(4) by an undeformable part of }_ (see Fig. 3). The
E

external fluid L; and the internal fluid L; are dense
(water). We have

ay=ag=1,500m/s, pr=p,= 1000 kg/m>.

Below, with the angular frequency w (rad/s), we
associate the reduced frequency:

kr=wrla, a=ag=4dj. (43)

The system is placed in a low velocity external
flow with constant infinite upstream velocity ¥, with

direction —Ox,. On surface ) develops an axisym-
E

metric boundary layer which is attached and turbulent

on part T of ¥, and therefore of ), (Fig. 3). Velocity
El 51

V', is sufficiently small so that the hydrodynamics of

the external flow is decoupled from the elastoacoustic

problem. Structure S is therefore excited by the

turbulent wall pressure field applied to £ = ), and it
51

is the second-order characteristics of the coupled
system’s response which are sought, i.e. the spectra,
on a wide MF band: kre B=(3, 25), of the acceler-
ations of structure S, the pressures radiated in Lg and
mainly the pressures in the internal fluid L. The
analysis and the results given below correspond to a
velocity V,, for which the spectral measures of the
turbulent wall pressure excitation on I and the system
response were made [46]. For this case, the flow, the
mechanical system and the wall pressure field on z
are axisymmetric.



V,2. — MODEL OF THE TRANSVERSE SPEC-
TRUM OF THE TURBULENT WALL PRES-
SURE FIELD

For the flat wall turbulent boundary layers, theoret-
ical and experimental data are available on the wall
pressure spectra in the homogeneous case (for
instance, see [S, 8, 36, 44, 59, 61, 65, 66]). As regards
models, one of the first was proposed by Corcos [15,
16], then subsequent improvements were proposed,
for instance, by Chase [12] and Ffowes Williams [30,
31].

In the present application, wall X is not flat, there
is a variation in the curve radius of the generatrix of
Z, and the pressure field is not homogeneous. For
this case, from the standpoint of numerical predic-
tions, the first step consists of determining the exter-

nal potential flow around the body of ¥, for ¥V
E

fixed. This allows us to estimate the external velocity
Ug(z) for computation of the boundary layer with
weak coupling between inviscid fluid and viscous
fluid. The second step is computation of the bound-
ary layer, which allows the laminar, transition and
turbulent regions to be estimated, yielding z, and
therefore Z, and the boundary layer parameters (criti-
cal Reynolds number, displacement thickness, friction
coefficient, ete.) [2, 3].

Finally, a model of the cross spectrum is chosen
for the wall pressure. This spectrum depends on the
external velocity Uy and the boundary layer param-
eters [46, 54]. It should be noted that for the case at
hand, much less data are available on the spectrum
models [4, 43] than for flat walls.

(1) General properties: the turbulent wall pressure
field p (x,f), xeZ, teR, verifies the properties discus-
sed in Section IV,1. Its cross spectral density can
always be written:

S, (¥, 2, Z', w)
=(Q,(z, W)@, (', W) 2T (y, 2, 2/, w) (44)

where @, (z, w)=8,(0,z 2z, w)=20 is the auto-
spectrum.  The complex coherence function T :
[—2m, 2x] % ]z,, z,[ %)z, ;[ X R —» C must have the
following properties:

L(—v, 2,z w)=C(y,z 2, w)
I(y,z z', —w)=I(y, z, 2', w) (45)
IT(v,z 2, w)| < 1; L,z z w)=1.
(2) Wall X and wall pressure autospectrum: we did
not use a model to determine  and the autospectrum
®,(z, w), since we had data on the transition region

and the experimental wall spectra [46] from measure-
ments made on the wall.

(3) Model for complex coherence: as we had no
experimental data for this function, we constructed
a model based on the flat wall complex coherence
I'(E, m, w), where || and |n| are the longitudinal
distance (in the direction of the flow) and the lateral
distance (perpendicular to the direction of the flow)
respectively of two points in the plane of the flat wall.
This function T': R* —C should verify properties
similar to (45):

F(=& —m, w)=TE n,w
FEn —-w=IE n,w (46)

ITEN w1 TO0w=1
and the property related to symmetry of the flow on
a flat wall:

FE —mw)=T(E n,w. (47)

The longitudinal and lateral correlation scales,
Ly(w) and L,(w), at frequency w are given in this
case by:

Ll(W)=f i IT( 0, )| d;
¢ (48)

Lz(w)=f IT(0, n, )| dn.
0

We used the following model for L [54]:

(v, 2z 2, w)=T (E(z 2), n(v, 2, 2), w)
8@z 2)=5(2)=s(2) (49)
N 2, 2)=R,(z, 2)g (1)

where:

® z5(2): [z4, z;] » R* is the curvilinear abscissa
function of the generatrix of £, introduced in Section
IIL,1;

® y—g(y):[—2m, 2n] - R is a function such that
g(—2m)=g(0)=g(2n)=0 and:

Vye[—2m 0], g(y+2m)=g(y)
Vyel[0, 2n], g(y—-2m)=g(y)
Vye[—2m, 2n], g(—7)=g(y).

oz, 2+ R (z, 20): [26; Zi] %[5, 2] = R* is a
function relatcd to the generatrix z+— R (z) and verify-
ing R,(z, 2)=R,_(Z, 2).

It should be noted that the structure of model
(49) is necessary for equations (45) to be satisfied,
considering the fact that we have (46), and for equa-
tions (34) expressing the axisymmetric character of
the turbulent wall pressure field to be satisfied. For
instance, model n(8—0', z, 2)=0R(z)—0'R(z) is
not invariant around Ox; and would not be correct.



For the configuration analyzed, we chose:

R, (z,2)=0.5(R(z2)+ R(z")) (50)
¥ o —-mEfEn
gy)={y—-2n if mt<y<2n (51)
y+2rn if —2rLy<—xm

and for I we chose Corcos’s model [15, 16]:

IE n,w
=exp {iEwU ' —[§| Ly(w) " —|n| Ly(w)™1}

Low)=U.0115|w)~Y L,(w)=U,(0.7|w]~* _?(52)

U, =0.65 Uy

where U, is an average on z€]zy, z,[ of the external
velocity U (z) and U, is the associated average con-
vection velocity. For our application, in the fre-
quency band aB/r considered, scales L, (w) and L, (w)
are very small compared with radius r and the
response is relatively insensitive to the scale models
used. For instance, using Chase’s model [12] for T’
gives scales which do not significantly differ from
model (52) for the parametric domain considered [24].

V,3. — FINITE ELEMENT MODEL OF THE
COUPLED SYSTEM

We use the method described in Sections II and
III. Figure 4 shows part of the finite element mesh
of the generatrix plane containing elastic shell § and
part of the internal acoustic cavity L,. Structure S is

Fig. 4. — Mesh of part of the generatrix plane: elastic shell
and part of the internal fluid domain.

not meshed with mean plane shell elements but with
viscoelastic solid 2D elements, axisymmetric n by n.
The generatrix of ) is also meshed to construct the
E
coupling matrices with the external fluid. On the
part Zﬂ (Z UZ), the mesh consists of the trace of
7 51 10

the mesh of the structure and the internal fluid on )
E

The characteristic dimensions of the finite elements
of Sand L, and of ) are small compared with the
E

wavelengths involved in S, L, and L for any w in
aBjr.

V.4. — EXPRESSION OF THE SPECTRAL DEN-
SITIES OF THE NODAL EXCITATION FORCES

For any ne A", the only nonzero terms of (37) are
expressed as follows, considering (44), (49)-(52) and
according to the computations:

21 [*1
LSE.’&..(.M:lljk.=2..qu.. f AE(z, 2Y), w)
0 9

X&,(z, 2, w)dB;(z, w)dB, (', w) (53)

where
dB; (2, w)=(®, (z, W)"? dy; (2)
A w)y=exp(iEwUs ' —|E| Ly (w)™") )
y = =F Y 54
g"(z. Zr) W): LZ (H)Rm("—: L ( )

Ri(z, 2)+n* L2 (w)

[1—(cosnn) \
xexp(—nR,(z, ) Ly (w)™ ).

For weaB/r, the oscillations of function T may be
rapid on a mesh. It is therefore necessary to accu-
rately make the quadratures of (53).

For this reason, we were led to consider a submesh
of the generatrix of X to compute (53).

Let Z, <Z,< ... <Z, be the abscissas along
Ox, of the N nodes of the mesh of S located on the
generatrix of . Let
zo=X;<X;<...<Xy<Xy,;=2z;, such that
Z;=0,5(X;+X,.,). We consider the submesh defined
by the (N+1) nodes of the generatrix of X, with
coordinates X; and ¥;= R(X)) in plane Ox, x,. Since
the mesh of the structure is very fine, it is legitimate
to use a linear interpolation for the geometric quanti-
ties. The j-th submesh is therefore a linear 1D element
with the interval #;=[X;, X, ] as parametric domain
in z, with which is associated the parametrizing
ae[—0.5;0.5], and we have:

:=\|’j(a)=(Xj+Xj+1)/'2+u'(Xj+1_Xj)Efj
R(2)=(Y;+ Yo )2+a(Y; , —Y) (55)
ds (z)=1; db, '
A-j: [(Xj+ 1 _Xj)2 + (Yf+ 1 Yj)Z]m-

By the construction of the structure mesh, valid for
any w in aB/r, we can use a constant approximation
per submesh of the normal structural displacement
field to compute the nodal forces. This amounts to
taking in (26):

9;(2)=14(2), Vzelz, z]. (36)



Finally, as an initial approximation, and consider-
ing (56), it is legitimate to write:
Vze #;, dB;(z, w) = R;®@;(w)"?ds (2) } 57)
Vze £, Z'e€f. E (2,2, W) =&, s

where we set:
R;i=R(Z)=05(Y;+Y;41);
Q;(w)=0,(Z;, w); (58)
En, 5 W)=6,(Z;, Z, w)
Under these conditions, equation (53) is written:
(S5 0l
=2¢, A R Ry (D (w) By (w))1/?
ézn. Jjk (w) Ajk w) (89

where we set:

A Jjk (w)

1/2 12
=J f AEW; (), Uy (@), w)dada’.  (60)

-1/2 J—1/2
Setting [54]:
b, =L (W) '—iwU;'eC;
5,=0 }

6
5;=5(X)), (1)

5j+1=5j+ ;"J"

the explicit computation of (60) gives:
(a) For k < :

A (W)= =yl b5) " (1—exp(—14;b,)
X (1—exp (M b,))exp (= b, (s;—5)). (62)
(b) For k=
A=At B +b,1) =072 (B2 b7
+4;2 (b, 2 exp(—A;b,)+b; 2exp(—A;b,)). (63)

As matrix S% %(w) is Hermitian, we therefore have
its construction for k> j.

V,5. — ANALYSIS BY THE NUMERICAL
MODEL AND COMPARISONS WITH EXPER-
IMENT

The analysis was made on a Cray 2 using a hydroe-
lastoacoustic program based on the above develop-
ments [25, 26, 68]. A specific analysis of convergence
with respect to the circumferential orders n (A" — N)
was conducted. The experimental results used for the
comparisons were taken from study [46]. Figures 5
to 8 illustrate the quality of the prediction made by
the numerical model.

In these figures, the reduced frequency kr is on the
abscissa and lﬂlog(lOIZSp(kr)) is on the ordinate,
where S, (kr) is the spectral pressure power density
in a point of the internal fluid. Figures 5 and 6

are relative to comparison between computation and
measurement in two representative points of the inter-
nal fluid, located in the regions near the internal
surface of the elastic shell, and Figures 7 and 8 show
two representative points located on the surface of
the sphere

S (kr)
10 lo ( ) Measurement . —
l B10 1012 Computation —-o—-
h D,
o] T e
'U:' R e A
=
i kr
T T T
'3 8 15 20 25
S (kr)
1 10 log ( £ ) Measurement .
7 1\ ;12 Computation —o—-
@] ey
= o e ——
ol L —
L, kr

3 8 15 20 25

Figs. 5 and 6. — Comparison between computation and meas-
urement of the pressure spectrum in the internal fluid in two
points near the internal surface of the elastic shell.

VI. — CONCLUSIONS

We described a numerical method which allows
predictive computations to be made of the stationary
dynamic responses in the medium frequency domain
for coupled bounded structure/bounded compressible
internal fluid/unbounded compressible external fluid
axisymmetric systems with a linear behavior and
excited by an axisymmetric random wall pressure
field. The hydroelastoacoustic program developed is
very general. It allows any geometries and boundary
conditions to be taken into account in a generatrix
plane, the structure and internal fluid being inhomo-
geneous.

The application described, relative to a composite
elastic shell coupled with dense external and internal
fluids, shows that the numerical model gives a good
prediction by comparison with experimental results,
for a wide medium frequency band and for which, as



Skl » Measurement __,_
10 log — | Computation --o—-
10 10~ 12
m ‘I-’-'.D“‘-'e-a\&
T kr
8 15 20 25
Sp(kﬂ Measurement__,__
10 log,, fg) Computation —.—o—.—
. 107
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Figs. 7 and 8. — Comparison between computation and meas-
urement of the pressure spectrum in the internal fluid in two
points of the surface of the sphere.

the coupled system response is not of the LF type,
difficulties arise with numerical methods using modal
representation. The program developed also allows
analyses to be made for purely 3D cases, i.e. not
axisymmetric.
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