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HYBRID NUMERICAL METHOD FOR SOLVING
THE HARMONIC MAXWELL EQUATIONS.
IIT. ITERATIVE ALGORITHM, CODE
AND VALIDATIONS

by

J. J. ANGELINI(*), Ch. SOIZE (*) and P. SOUDAIS (*)

ABSTRACT

In this third part of our three-part paper we first describe an iterative method for
solving the linear equations of the problem. We make wide use of the mathematical
properties established in Part I. Then the paper deals with the general computer
code developments. This HEM 3D code is validated through applications concerning
(1) a perfectly conducting dihedron with comparisons with experiment; (2) a perfectly
conducting sphere experiment; and (3) dielectric spheres in homogeneous and
inhomogeneous cases with and without a perfectly conducting kernel. Analytical
comparisons are provided for the cases (2) and (3).

Keywords (NASA thesaurus): Electromagnetic wave — Scalter propagation— Nu-
merical method — Finite element method — Integral equations.

(*3 ONERA. BP 72, 92322 Chiitillon Cedex, France.
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[. — INTRODUCTION

In this third part of our three-part paper, we first
present the iterative algorithm for solving the linear
system of the problem, making extensive use of the
properties we established in Part 1.

We then discuss the aspects concerning the develop-
ments of the general HEM 3D code and its validation,
which is obtained by working on examples for which
there exist either an exact solution or an experimental
one available. These examples validate the whole of
the formulation put forth in Parts 1 and IL.

II. — ALGORITHM FOR SOLVING THE LINEAR
SYSTEM OF THE PROBLEM

I1,1. — MAIN NOTATION OF LINEAR ALGE-
BRA

Let m be a positive integer, and the euclidian
space R" with respect to its canonical base is asso-
ciated with the usual euclidian scalar product

(X, Yy=3> X;Y,. LetC" be thecomplexified form
i=1
of B™ associated with the hermitian scalar product

il

(X, N=3Y X;¥=(X,¥Y) and with the norm
f=1

i=
[ X]|=(x. X}'7?, where Y=(¥,, ...,
conjugate of ¥=(Y,, ..., ¥, )eC".

Let K=R or € and m, p be two positive integers.
We will identify the vectorial space L (I€”, K"™) of the
continuous linear applications of K” in K" with the
matrix space Maty (s, p) of dimension (m X p), whose
clements are in & and the space K™ with Maty (s, 1).
Let QeMatg(m, p), and we use 'Q to denote the
transposed matrix of @, § the conjugate matrix, and
0*="'0) the adjoint matrix,

Y )eC™ is the

11,2. — STATEMENT OF THE PROBLEM

We saw in Part I that the problem is solved in
two phases, to skirt the problem of the irregular
frequencies.

In the first phase, we calculate a solation that may
be disturbed by the irregular {requencies (solution of
the system (65-1) of PartI). In the second phase,
based on the soluiion of the linear system {63) of
Part [, this disturbance is suppressed and we can
therefore construct the desired solution (see
sections VII and VIII in Part I).

The linear system (63) of Part I adapted to the
finear process is associated with an invertible, sym-
metric, complex matrix. A hermitian matrix could
be set up, but it would not have the property of
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positivity. So we retain the initial structure and solve
the linear system by an iterative “minimum error”
method [2, 14, 16, 18]. Tt should be noted that the
matrix of the numerical operator (63) of PartI is
very hollow and similar to the unity matrix. Conse-
quently, we have always observed a rapid convergence
of the algorithm for a numerical cost that is entirely
negligible compared with the other costs.

All of the numerical cost is due to the first phase.
To present the algorithm we have developed for this

solution, we will start by distinguishing between two
cases.

IL,2. 1. = First Case: Algorithm Without Lagrange
Multiplier

This is, for example, the physical situation of a
perfectly conducting body, in which case, according
to Part I, equation (65-1) includes no multipliers and
the numerical adaptation leads to a problem of the
following type.

We consider the linear system on C”

AX=S (1)
in which 4eMatg (1, m), § is given in the image of
A, and with the following properties. A is a noninver-
tible symmetric complex matrix with a kernel that is
real and a real part that is definite positive in the
complement of the kernel:

Selm A4 (2-1)
A='4 (2-2)
ker 4 =real vectorial subspace (2-3)
Ré(AX, X)>0, V¥ Xdker 4 (2-4)
Under these conditions, we have:
kerd LImdA (3)

and there exists a unique solution of (1) in TmA. We
then solve (1) by an iterative method based on the
Generalized Conjugate Residual algorithm {3, 2, 6,
14]. This algorithm is deduced immediately from the
algorithm that we present hereafter, for the case with
constraints, but the parts relative to the constraints
are just cancelled.

Nete 1. The kernel of A4 is due firstly to the carte-
sian numerical adaptation of the tangent fields on the
surfaces, and also possibly to any irregular frequen-
cies, in addition to the usual parts, e.g. the zero
divergence functional condition, treated using cons-
traints. As we explained in section VII,1 of Part I,
the way the algorithm constructs the solution in
Im A = (ker AY" allows us not to introduce Lagrange
multipliers, so that we can require the fields to be in
the tangent space.



11,2.2. — Case 2: Algorithm With Lagrange Multi-
pliers

This case corresponds to the numerical adaptation
of equation (65-1) of Part I, which is of the type:

A M¥I[X] TS
M0 A 0
with AeMat(m, m). MeMate(p, m), XeC", LeC?,

Se (™ m and p being strictly positive integers, and
we look for a solution under the following hypotheses:

(4)

A='4 (5-1)

ker 4 =real vectorial subspace
ker M*={0} (5-3)
ker AN ker M={0} (5-4)
R&(AX, X)>0, ¥ Xé¢ker 4 (5-5)

We will be studying this case in detail in section III.

Note 2: (i) Hypothesis (5-3) means that the con-
strainis are independent and implies that the matrix
MM*eMate(p, p) is a definite positive hermitian.
We have ker M5 {0}, though, otherwise problem (4)
would have no solution.

(it) Hypothesis (5-4) allows us to write a conse-
quence of the accretivity property (5-5) in the form:

Re(4dX, >0, YX#0, Xeker M (5-5)

Note 3: Assuming that we have solved the system
on C™
AX=5 (6-1)
with the constraints:

MX=0 (6-2)

where AeMat,(m, m), MeMatg(p, n), SelmA,
A='A, kerA is a real vectornial subspace,
ker M*= { 0 }, ker A@ker M =C", then the solution
of (6) is equivalent to the solution of:

bl e

and the unique solution is such that A=0.

9

That is, it is obvious that the unique solution of
(6) is the solution of (7). Let us prove its unigueness.
Let { Xy, Ao } be the kernel of the operator (7):

AXy+ M* i =0; MX,=0 (8)
Let Yo=M¥h,=—A4X,. We then have:
YoeIm A M Im M* = (ker A M (ker M)*

<(ker A@ker M)*=(C")*={0}.
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Whence hoeker M*={0} and
Xoekerd MkerM={0]

IL2.3. = General Case for the Formulation of Part, I

The situation of section I1,2.2 is a special one
because of the presence of the hypothesis (5-4), which
is not verified for the general case with the numeri-
cally adapted system (65-1) of Part [. But we verify
that this case can be interpreted as a direct sum of
cases | and 2 described in sections 11.2.1 and I1.2.2.
That is, considering the operator (65-2) of Part I, we
see that those tangent fields that are likely to be
disturbed by the irregular frequencies are not cons-
trained. The algorithm we will be studying in
section [II then constructs the solution in the space
that verifies the constraints, and for the fields distur-
bed by the irregular frequency in the image of the
operator, and this space does have an intersection
reduced to {0} with ker A.

IIE. — ANALYSIS OF THE ALGORITHM WITH
LAGRANGE MULTIPLIERS

In this section, we describe and analyze the algo-
rithm adapted to (4} under the hypotheses (5). We
present it without conditioner, to study its properties.
We then give it with the conditioner, and all of the
properties remain valid.

The algorithm we have developed is derived from
the Generalized Conjugate Residual algorithm, The
structure of the system is used and the constraints
imposed by the Lagrange multiplier are treated in a
special way.

The Generalized Conjugate Residual algorithm is
usually presented for real matrices with a definite
positive symmetrical part. An algorithm can easily
be deduced from it for a complex matrix with definite
positive real part, by separating the real and imagi-
nary parts. The algorithm is certain to converge,
then, in 2m iterations, in which m is the dimension
of the complex sysiem. It is preferable to establish
an algorithm that has the same minimization and
orthogonality properties of the descent vectors, and
has certain convergence in m iterations. The cons-
tants, A and o, are then taken as complex. This
approach therefore provides a way to accelerate the
convergence, and we have in fact observed this nume-
rically.

We have chosen to treat the Lagrange multiplier
in a special way. If we treated the linear system
globally without worrying about its structure, the
only thing that we could say about the algorithm
constructed is that it converges toward the unique
solution, which verifies the constraints. Here, we
require that the constraints be verified at each itera-
tion, so that when we stop the algorithm before con-
vergence we have an approximate solution verifying
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the constrainis. We will verify that all the properties
of the Generalized Conjugate Residual algorithm are
retained in slightly modified forms.

[1I,1. -~ ALGORITHM WITHOUT CONDI-

TIONER

IT1.1. — Definition of the Algoriihm

Let X, be some given element in C” such that
MX,=0. This element, used for initialization, is
generally taken to be zero except when we resume
the iterations after a halt.

The algerithm is written as follows:

Initialization
X, =X, Xoeker M (o-1)
solution in 1, of : MM*n,=M(S—AX,) (5-2)
MFEX, =M*n, {9-3)
r=—S+AX,+M*r, {9-4)
=0 (9-5)
Ap,=—Ar, (9-6)
Herations on n
solution in =, of : MM*n,=MAp, (10-1)
- A
"= (r", i-)u) ’ (]0_2)
| 4p,—M*,|?

Xn+1=Xu+Aupu (]0'3)
M*)\.H{»l“—”M*?\."*A"M*E" (10'4)
ru+1=rrr+Au (Ap""*M* T[n) {10"5)
test: || ruey |Sellr|| = stop {10-6)

. Ar ., Ap,—M*m,

Compute G:|+ ) =( ’n+i P|$ znr)
| 4p—M* | (10-7)

for i=1, ....n
Pos1= "yt Z U'f:+117i (10-8)
i=1

(10-9)

App=—Ar .t Z Gfm—lAPi
i=1

i

Note 4; (1) Tt is noted that the algorithm requires
only one product per 4 per iteration (and this is
Arye )

(i) According to point (i) of note 2, the linear
systems (9-2) and {10-1) are a unique solution. Solu-
tion (10-1) in fact allows us to write the following

decomposition ol A p, on the two orthogonal spaces
Im M* and ker M :

Ap,=M*m, +(Ap,—M"n,).

Rech. Aérosp. — n° 1992-4
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(i) To simplify the presentation of the algorithm,
we have not introduced the buffer vectors that are
indispensable to the programming.

{(iv) The algorithm is presented while retaining all
the vectors p,. In practice, it is possible to conserve
only #” with n" <.

II1,§.2. =~ Properties of the Algorithm

We will be showing that the definition of the algo-
rithm that uses the solutions (9-2) and (10-1) requires
that the approximation X, of rank # of the solution
remain within the space in which the constraints are
verified:

MX,=0,

n

Ynzl,

that the iterative computation of the remainder holds
to its definition:

r,=AX, +M*k,— S,

that the definition (10-2) of A, be capable of minimiz-
ing i, || in the A p,— M*x, direction and therefore
that the sequence {||r,||}, is decreasing monotone,
that the definition (10-7) of &}, requires:

(Apyy— M*R,yq, Api— MFr)=0, Yign.
We will prove these properties and a few useful
relations up to the rank a+1 by assuming
ll2:1i#20, ||Ap;||#0 and [|Ap,—M*x||#0 up to
rank », then we will verify that if ||r, ||#0 we. have
|22 [0, |42, |0, ||4p,—M*n,||#0, and that
it e |20 then |y 1#0, || 420 |0,
HAp,s —M*7, . ||#0, which proves by recurrence
that the algorithm cannot degenerate. We will finally
see Lhat this algorithm constructs a remainder of
minimum norm in the space generated by the projec-
tions in ker M of the App. that the algorithm termina-
ies in /1 iterations at most.

Proposition 1: Under hypothesis (5-3), ker M*={01},
the algorithm is such that Vnz 1,

MX,=0; Mp,=0; Mr,=0 (1n
Proof: — Let us show that the relations (11) are
true for n=1. According to the initialization (9-1),
X, ekerM so MY, =0. By multiplying the two
members of (9-4) to the left by A, and considering (9-2},
we have Mr,=0. From (9-5) we deduce Mp,=0.

-~ We reason by recurrence. Let us therefore
assume that we have (11) up 1o order n. Then, by
multiplying the two members of (10-3), (10-5) and
(10-8) to the left by M, and considermg (10-1), we

get the equalities (11) to the n+1 order.

Proposition 2: The algorithm is such thar Vnz1:

ry=AX,+ M)~ S (12)



Proof: Summing the equations (10-3) from 1 to n,
we get:

n=1
X, =X+ Ap;
j=1

i=

(13)

Similarly, by summing (9-3) and (10-4) and then
{9-4) and (10-5), we get:
n—1
M*h,=M*n,— Y A;M*m;

i=1

(14)

n—1
== SHAX FMEg+ Y A (Ap— M w) (15)

j=1

By substituting (13) and (14) in (15), we get the
proposition.

Proposition 3: If || Ap,— M*x,||#0, the definition
(10-2) of A, achieves the minimum of ||r, .|| in the
A p,— M*®, direction, and for any nz 1 we get:

||f'n+1ué||"ui| (16'1)
(f'” + 12 A pr:) =0 (] 6-2)
Proof: — We write the norm of the remainder

using (10-5):

” ".r1+1 ”2= ” ?'"”2 +/_\u (?'", A])"_M* TC”
+An (A Pe™ M* s J'")"' An Krz “ Apu m M* T, ||2

= “ Py ”2 + ([” (Au + “{)ﬂ) (/_\n 'i'—b—ﬂ) —_ _L%
ﬂ" (I” CI"
=P+ (A2, 2) -2
a, d, a

with:

a,= “ Ap".... M* T, “2
b= (1 Ap,— M*1,)

R

This last expression shows that the minimum of
|7+ 1 ||* is obtained for

b" (}."’ A p" - M* T[")
An= = 3
a, | 4p,— M*m,|?

_ ....(r"’ AP;;)+(M";:a Ty

— fAp,— M|

which does correspond to the definition (10-2), con-
sidering Proposition 1.
— We then have:
l(f'", Apll) |2

lrws P =lirllP -
i A4 p,—M*m,|?

Fraea[P=[ml?

(a7
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— We multiply (10-5) to the right by Ap,:
(rn+ | A pn)= (}'”, A pu) + Ar: (A pnu M:k TC", A pr!)'

Considering the solution (10-1) we deduce from this
that:

("'n+ 1» A pn) = (."", -A pu)
+ A" (A PH‘— 1‘4* Tf”, A pn - M‘k nn M
The definition (10-2) of A, then proves (16-2).

Proposition 4: If" || Ap,— M*x||#0, 1<ign, the
definition (10-7) of the o, ., shows thar:

Apy Apye,—Mim,, . }=0
(A} ! +;' +1) (18-1)
for i<n+1
(Api—M¥m, Ap, o —M*m,, )=0
’ !-+1 +1) } (18-2)
for if<n+]
(Ap,s1. Api— M*w)=0 for i<n+1 (18-3)
and the property (16-2} is extended as follows:
(Ap;, Foe)=0 Vi<n+l (19)
Moreover:
(Apn-*-b "‘u+])2m(A rn+15ru+1) (20)

Proof: Considering the solution (10-1), the equa-
tions (18-1), (18-2) and (18-3) are equivalent and so
we just have to prove (18-3).

We write {10-9) at order i, multiplied to the right
by Ap, —M*n:

(Apy, Ap)—M*m,)
=—(dry, Ap,— M*n)+03(dp,, Ap,— M* 1))
The definition of o} does prove the property (18-3)

at the first order.

We assume the property to be true up to the order
i, and in the same way we multiply (10-9) to the right
by Ap;—M*n; for j<n+1:

(Apyey. Apj— MFR)=—~(Ar,,, Ap;— M¥* )

+ 2 O"f.H(APia Ap;— M* ch)

i=1

According to the recurrence hypothesis, all of the
terms in t.h.e sum are zero except (Apy, Ap;— M*x).
The definition &/, | then proves:

(Apyiis A])j_M*ch)=0

- To prove (19), we again proceed by recurrence.
The property for n=1 is the property (16-2). We
assume it to be true up to order n, and then we
multiply (10-3) to the left by A p, (i<n);

(Ap,-, ,l‘”+1)=(A Pis J',,)+f_\,,(AP;, A])"_M* TC")
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The property (18-1), combined with the recurrence
hypothesis, shows that:

(Ap, rys,)=0, i<H
and we have (16-2) (4 p,, #,, )=0 for i=n.

— The property (20) is deduced from (10-9) multi-
plied to the right by r,, :

(Apn+1: Fut 1)

= _(A ".n+1! ru+1)+ Z 0-f|+1 (Apl" J"ll+ 1)

i=1

Considering (19), we do get (20).

Proposition 5: Having presenied the algorithm (9)-
(10), under the hypotheses of the problem — accredivity
(5-5) Re(AX, X)>0, VX¢ker A and the property (5-
4)— kerd Mker M= {0 }, it cannot degencrate.

= If ry.#0 then

Py 70, APy 1 #0, Apys—M*m, #0,

and it is still possible to compute A, | and o\, .

~ If r,s1 =0, then the algorithm stops on the exact
solution.

In all of the following, we consider only the case
[|r:f|#0 for i=1, ..., (a+1).

Proof: This result is established by recurrence. At
order |, we have i=1, ..., (n+1). Since r, #0, then
p, #0 and p, eker M (Proposition 1) considering (5-
4) Ap,#0. Let us assume that Ap —M*m, =0,
Then

Re(Ap,, p1)=Re(M*=n,, p;)=Re(r,, Mp)=0

since p, eker M. But this is in contradiction with the
property (5-5):

¥ Xeker M, X#0, Re(4X, XH#0.

Since ||r;]|#£0 up to order n (or else the algorithm
would have stopped on the exact solution, || p;||#0,
|4 p:i#0, and || 4 p,— M*n;|| 520, properties (16) to
(20) that have been shown, hold up to the rank #-F1
(they do not make use of {|p,o, [|#0, || 47,4, || #0,
| Apps,—M*m,, |50 As  Jlr,4q11#£0,  then
Proposition 1 combined with (5-5") proves that
Ré(Ar,s1qs Fysq1)>0 and therefore, according to (20):

(20

We conclude from this that {p,.,||#0 and
| 4w |#0. Assuming [|Ap, s, — M*x,.,||=0, we
replace Ap,., by M*m, ., to use Proposition I:
Re (A Pot1r Ut l)

=Re(M*m,, ., 1, )=Re(m, , Mr,)=0.

Re (Aprﬂ‘l! J'"+ 1)?&0

which is incompatible with (21).
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Proposition 6: The vector families {A p.—M*m, },,.
VAP, b {pa by and {1, }, are each free and we have:

(roers Ar)=0  for j<n+I 22)

Proof: Since |[r||#0, Vie{l,....n}, by
Proposition 5 we then have |Ap,—M*m |0,
Vie{l, ..., n}. The property (18-2),

(Ap;—M*m, Ap,—M*n)=0 (1<j<nand i#]),

then shows that the family {Ap,—M*mx,{, is free
and orthogonal. We then draw from this the property
for the family { 4 p,}, and then for {p, },.

We then show by recurrence that the {p,}, and
{r.}, families generate the same space. That is,
the property is evident at order |, considering the
mnitialization (9-5). So we assume it is true up to
order n.  The recurrence hypothesis and (10-8)
show that the space generated by vectors {p;},
ie{1, ..., n+1} is included in the space generated
by {r}ie{1, ..., n+ 1} The family {r,}, is there-
fore free and the two spaces are identical.

To show (22), we multiply (10-9) to the left by

ru-{-l:

J
(o1 A.Uj): Sl (AR "j)+ Z ‘3}+1 (Fysr1s AP

i=1
Considering (19), this does give us (22).

Proposition 7: The algorithm constructs the best
approximation of the solution In the .affine space
Xot{Ap,—M*xw, ..., Ap,— M*n,}, that is, where
701 || is minimum. Proposition 6 then proves that
the algorithm terminates in m iterations at most.

Proof: We first show the following property:

(rj’ A[)"+1WM*TE"+1)=(I'1. Apn+l_M$Ttu+l)} (23)
JEn+l

To do so, we muitiply (10-5) written for j<n+1 to
the right by A p, ., — M*®,,

(rj+l" Ap,ai— “‘/[’knu-%l)z("‘j’ Apyo— M, 00)
+A;(Ap—M* ﬂj’APnH‘M* Tyst)

Considering (18-2), we get:

" A
(fj+1sAPn+1 M*m, . )

=1 Apyey— M¥m, .4), Vi<n+1
and in particular
Re(rjs Apn-?l_M* Ttr:-?-l)
=Re(ry, Apur;— M*7,. 1), Visnt1



We write [[7,,,]|* using (15) and the initializa-
tion (9-4) while using (18-2) 10 analyze the
(Ap;— M*n;, Ap;— M*nj) terms for i#/:

n

”"m—l Hz:”f& “2"' Z AfAp—M*m, r)
iz 1

+ 3 Ai(ry Api— M ry)
i=1
+ N A7 || Api MEm )

i=1

The Aj necessary for ||r, ., | to be minimum on the
orthogonal vectors A p,— M*n; are found by follow-
ing the same line of reasoning as in the proof of
Proposition 3:

= —{r, Api—M*m)
| 4p:— M |

'
i

We then use (23) and then the Proposition |
(M r,=0):

Al= —(rp Ap—M*m) _
A p— M* )

= {ry A py)
” AP:‘_M*“«'HZ

Proposition 8: Let @, be such that:

| (A rﬂ’ J.N) |2 [H n
¢, = 3 = (24_1)
H f'"“_[EA[)”_‘M* ﬂ:n“?‘ Kn
1— _ E(A L rn)[ . — [(A[)", pn)! .
T Ty n 3 2
Frall? |LPH |I° (24-2)
— H A])H_ M* Tc" ||_
" ]
Then there exists a real @, such that:
Vizl, 0<@uS@,<I (25-1)
Hf'"+1 H=”"u”\/1 P, (25”2)

Proof: The equality (25-2), with ¢, given by (24} is
found from (17) with (20). For the middle part of
this same equation (24-1), we again use (20) which,
considering Proposition 1, can be written:

(A s I'") =—(4 Pus f‘") == (Adp,— M* s "-n)

We then get (24) by replacing », with (10-8), using
the orthogonality relation (17-1) and Proposition 1.

According to Proposition 1, hypothesis (5-5), and
since || r, || %0, we see that Yn21, I, is strictly posi-
tive, Inf [(4X, X)| is a lower bound of

Xeker M, ] X||=1
it, the set { Xeker M, | X||=1} is closed and of empty
intersection with ker 4 (hypothesis (5-4)), so Inf

denoted ¢, is attained and is nonzero:

Inf [, Za, with ¢y >0
Py e N

(26-1)

We remember that if we have ker M=1Im A, 4, is the
norm of the smallest nonzero eigenvalue of A.

The vector p, satisfies the same conditions as r,
and the lower bound found for 7, is also a lower
bound for J,;

Inf J,2a, with  a;>0 {26-2)
fy.o el
Finally, we can verify that
” Aprr__ ‘FW* T[n 12:“ A]}n ”’2 - ” M* TEH ”2
which yields:
K= ”"”’"l"
7,112
and therefore
Sup K, = Sup | AX|?=bg
ppone i Yeker M. || X {|=1
(26-3)

with hy>0.

The three inequalities (26) then lead to (25-1).

ML2. — ALGORITHM WITH CONDITIONER

111,2. 1. — Definition of the Conditioner

To condition problem {4), we introduce the
hermitian, definite positive conditioning matrix
DeMatg (m, m):

D*=D; (DX, X)>0, VXeC" | X|#0 27

Consequently, there exists an invertible L eMatg (m, m1)
such that:

D=LL* (28)
HI1.2.2. — Construction of the Algorithm With Condi-
tioner
Take X and S in € such that:
X=LX, §=L*§ (29)

Problem (4} is then written:

[ . Mj [X] [S]

. = (30-1)
M o0 [ 0

A=L*AL, M=ML (30-2)
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It will be noted that problem (30) does not derive
directly from hypotheses (5), e. g. A#'A. However,
following the line of reasoning developed in
section IIL,1, we verify that all of the properties of
the algorithm previously established still hold. For
example, we still have ker 4 1 Im A.

Using variable change (29), we arrive at the algo-
rithm with conditioner.

111,2.3. — Algorithm With Conditioner

The algorithm that follows is given in a form that
minimizes the number of operations. This avoids
having to show the products by L, L* or L™

Let X, be some given element in C™ such that
MX,=0. This element, used at initialization, is gene-
rally taken to be zero except at times when the iter-
ations are resumed after a halt.

We introduce the operator Proj:C™—C"™ such
that

¥ TeC™ we have h="Proj (1)

with:
(MDM*yn=MDT (31-1)
b=M*n (31-2)
The algorithm is written as follows:
Initialization
X, =X, Xoeker M (32-1)
T,=5—A4X, (32-2)
b, =Proj(T)) {32-3)
Y,=bh, {(32-4)
p=—T,+5, (32-5)
r=Dp; (32-6)
o1 15=(Dpy, p1}=(r1. p1) (32-7)
pi= T (32-8)
u, =Ary (32-9)
g =Ap,=—u (32-10}
o= —{ry 4y) (32-11)
Iterations on n
b,=Proj{g,) (33-1)
=g, b (33-2)
T,=De, {33-3)
l|enl3=(De,s €)=(T, c) (33-4)
u'Jl
el o+
X, o1=X,TA,p, {33-6)
Yoo =Y, — A0, (33-7)
Pur1= Pt ALC, (33-8)
Far1= PPust (33-9

H P,;+1H12)““_“(Dpn+§a Pus 1)={Fus1s Pusr) (33-10)
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test < || purslloZeflpills = stop (33-1D)
”r!+l:‘4ru+l (33_12)
. De.
Compute o . _ (s, D)
(De;, ¢} (33-13)
for i=1, ..., n
pu-i-l = "“'f'"_*_l‘l' z 0':;4.1[)1- (33—}4)
i=1
(f'r1+l.= —“r1+1+ Z Ufl-i-lqj (33'15)
i=1
0"u+1= _("'n+1! q"+1) (33'16)

Note 5. (i} The algorithm is presented with all of
the vectors p,, g, ¢;, but it is possible to retain only
i’ with n' <n, in practice.

(i) We have introduced buffer vectors (T, b,, 7, 1)
which are practical for the computer process but are
of no mathematical relevance.

(iii) It will be noted that the vector Y., contains
the rank n+ 1 approximation from the A* ) part of
the solution.

(iv) Tt will also be noted that the construction of
each b, given by (33-1) requires that the linear system
(31-1} be solved, which is done by the conjugate
gradient method preconditioned by the diagonal.

(v) Tt is possible to drop the sequence of vectors ¢;,
but this means computing Proj (»,) and therefore hav-
ing to solve an additional linear system.

IV. — HEM 3D SOFTWARE

A general code called HEM 3D (standing for “mul-
tidomain Maxwell harmonic electromagnetism’) has
been developed on the basis of the theory explained
throughout this three-part paper. It can currently
simulate the general case of multiconductor, multidi-
electric volume bodies.

IV,1. — GENERAL ASPECTS
The computer structure was developed in the fol-
lowing context.

1. The code is written in FORTRAN 77 standard
to make it easier to implant on any 64-bit machine.



2. It is written with optimum vectorization possi-
bilities in mind for CRAY-type vectorial processors.
The loops in the program were also colored, to deal
with the assembly of the local operators.

3. The code can handle very large 3-D problems
with no I/Os during the solution. Dynamic memory
management was incorporated.

4, The code architecture was organized to allow
rapid instaflation on parallel-processor computers.

IV,2. — DATA STRUCTURE

Each dielectric volume domain Q, with its bound-
ary 8Q, is meshed on its own. So the data structure
for a given problem is defined by:

— the volume grid data of each dielectric body £,
with the material characteristics;

— the surface grid for each boundary 9Q,;

— the surface grid for the boundary of each con-
ductive body.

The formulation requires the elements to be grou-
ped:

— volume group: four-node tetrahedrons;

— outer conductive surface group (I,): three-ncde
triangles;

— outer dielectric surface group (I',): three-node
triangles;

— dielectric-conductor interface group (I',): three-
node triangles;

— dielectric-dielectric interface group (I',,): super-
position of three 3-node triangles.

The code automatically groups these elements {and
subgroups them according to their material characte-
ristics, i. e. homogeneous, inhomogeneous, isotropic,
anisotropic, lossy and nonlossy). The code also auto-
matically orients all of the surfaces.

V. — APPLICATIONS AND VALIDATION

This section presents a number of applications that
allow us to validate the different points of the formul-
ation. We find:

— The case of the perfect conductor. The results
are compared with analytical results for the sphere,
which validates the treatment of the irregular frequen-
cies for a volume object, then with the case of the
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cone-sphere for which there is a point effect, and
finally the case of the dihedron compared with expe-
rnimental results, which validates the treatment of slen-
der objects.

— A nonlossy dielectric. The case of the sphere
is compared with analytical results, validating the
dielectric volume part and the magnetic induction
zero divergence constraint.

— The hybrid case of a dielectric with a perfect
conductor, A sphere with metal core is compared
with analytical results, to validate the treatment of
the dielectric perfect conductor interfaces.

— The hybrid case of two lossy dielectrics. Two
concentric spherical layers are compared with analyti-
cal results to validate the treatment of dielectric-
dielectric interfaces.

All of the analytical solutions we have used for
the spheres were obtained by Mie’s series expansion,
presented in [21].

V.. — PERFECT CONDUCTOR

V,l.1. — Metal Sphere

The object considered is a sphere of radius
a=1m made of a perfect conductor. We analyze the
equivalent cross section (RCS) for a bandwidth
of [0.8, 5.0] meters. The grid of the surface I, pre-
sented in figure ! has 578 nodes and 1,152 elements.
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Fig. 1. — Grid for the metal sphere.
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The data computed for this configuration is compared
with analytical data in figure 2, the ordinate being

RCS (dB.m?)
124
107 %
8]
Gj f f\;\y/
4 ¢
| .‘oc{
24 |
o] \/ 1 (1/m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Numerical o
Analytical

Fig. 2. — Computation of RCS
on & metal sphere.

2
10 log,, lim 4nR? :; Hz,
R—w
field at a distance R from the object and E, is the
incident field.

The irregular frequencies within the band being
analyzed are known exactly in this case [26, 10], and
correspond to wavelengths 0.82 m, 1.08 m, 1.40m
and 2.28 m.

The good agreement can be seen between predic-
tions by the formulation developed and the analytical
results, and chiefly that the irregular frequencies do
not disturb the solution.

where £, is the scattered

V,1.2. — Meial Cone-Sphere

The object here is a cone with an apex semi-angle
of 12.5°, tangent to a sphere of radius #=1m, made
of a perfect conductor. The RCS is studied for
the wavelength A=0.974 m, the wave vector of the
incident plane wave describing a 180" sector in a
plane (P) containing the axis of the cone-sphere, and
for two polarizations: HH [E being in (P)] and VV
[E being perpendicular to (P)]. The angle of incidence
0° corresponds to the wave whose vave vector is
carried by the axis of the cone and directed from the
cone toward the sphere.

The grid for the surface I', is shown in figure 3. It
has 1,610 nodes and 3,216 triangular elements.

BRRSS a..
Av.u 5 4v
vg v

Vot
'ﬁﬁ,‘v‘v‘f‘n

L" .%. DR
v »_

Fig. 3. — Grid for metal cone-sphere.
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The results of the computation are shown in
figure 4 for the HH polarization and figure 5 for the
VV polarization, reading the ordinate in

4R E|?
10 fo lim — -1
gwR_'00 jta,z“}:-}”z

15—
g
288 (4p)
na?
0 —
=15 —
-30 —
0 {degrees)
-45 T 3 T T 1 1
0 30 60 90 120 150 180
Fig. 4. — HH polarization. RCS of a cone-sphere with 12.5°

semi-angle at wavelength A=0.974 a (a being the radius of
the spherical part).

157
0
L(dg)
na?
0._
-15
.30 —
0 (degrees)
-4% T T | T i 1
0 30 60 90 120 50 180
Fig. 5. — VV polarization. RCS of a cone-sphere with 12.6°

semi-angle at wavelength »=0.974 a (a being the radius of
the spherical part).



V.1.3. — Metal Dikedron

The object is a wedge consisting of two perpen-
dicular  rectangular metal plates measuring
0.10 m=x0.15 m and 0.001 m thick, assembled along
their greater length.

The RCS is studied for the wavelength
A=0.0667 m (4.5 GHz) and the wave vector of the
incident plane describes a 120° sector in a plane (P)
normal to the edge of the dihedron. The incidence
origin corresponds to the wave vector in the plane of
the dihedral bisector, directed toward the acute angle.
Two polarizations are considered: HH [the electric
field E is in (P)] and VV polarization [E perpendicular
to (P))].

The grid of the surface ', is shown in figure 6. [t
has 778 nodes and 1,552 triangular elements.
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Fig. 6. — Grid for metal dihedron.

The computer results are shown in figure 7 for the
HH polarization and figure 8 for the VV, reading the

RCS in dB.m?
0 -
-5 4
-10 1
V
-15 1
-207 Incidence
¢ * {degrees
-25 T T T T T g ?
-60 - 40 -20 0 20 40 60

Fig. 7. — HH polarization. RCS of a right dibedron (two plates
measuring 10 x 15x 0.1 c¢m, set at 90°) at 4.5 GHz.
¢ Numerical
—  Measurements (ONERA/DES Camera 1)}

RCS in dB.m?

M 7N
2 “4./

- 25 1 LA

20 F

-35 |

) Incidence {degrees}
-60 -40 -20 0 20 a0 60

Fig. 8. — VV polarization. RCS of a right dihedron ({two plates

measuring 10x15x 0.1 cm, set at 90°) at 4.5 GHz.
¢ Numerical

— Measurements {ONERA/DES Camera 1)

_—_ - 2 E?
ordinate in 10 log;, lim 47 R*“—..
R [
The good agreement is visible between the numeri-
cal predictions and experimental measurements, taken
from a study by ONERA’s Systems Department.

V.2. — CASE OF A HOMOGENEOUS DIELEC-
TRIC SPHERE

We now consider a nonlossy, homogeneous, iso-
tropic dielectric sphere of radius ¢=1 m with the
following characteristics:

Case 1: Wavelength A=18m, g*=125-0.56;
[see formula (12) in Part I} and p*=p=1.1 {see for-
mula (4) in Part 1],

Cuase 2: A=23m,
wE=p=10

The bistatic cross section is studied for two planes:
HH (plane defined by wave vector k and electric field
E;) and VV (plane defined by &k and H)) for an angular
sector of 180°, with the angle origin corresponding to
the backscattered cross section.

A partial view of the grid is given in figure 9. The
outer surface I'; has 441 nodes and 878 triangular
elements. The dielectric volume is meshed by 1,304
nodes and 6,346 tetrahedrons.

The computed results are compared with the ana-
lytical in figures 10 and 11 for case I, and figures 12
and 13 for case 2. The ordinates read

2

10 log,, lim 4= R? 1| .

R~ I &

can be seen to agree well with the analytical reference
solution.

The results for this case validate the surface integral

operators and dielectric volume differentials as well

as the magnetic induction zero divergence constraint.

£*¥=1.25-0.56 and

The numerical results
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Fig. 9. — Partial and cutaway view of grid
for homogeneous dielectric sphere.

RCS (dB.m?)
20 5

Incidence (degraes)

180

-40 T T T T Y 1
0 30 60 90 120 150
Numerical O
Analytical
Fig. 10. — HH polarization, .=1.8 m.
Dielectric sphere.
RCS (dB.m?)
20—

.20

Incidence {(degrees)

180

-40 T T T 4 T 1
0 30 60 90 120 150
Numerical ©
Analytical

Fig. 11. — VV polarization, =1.8 m.
Dielectric sphere.
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RCS (dB.m?)
20 )

Incidence (degrees)

-30 T T T T T =]
0 30 60 30 120 150 180
Numerical o
Analytical

Fig. 12. — HH polarization, A=2.3 m.
Dielectric sphere.

RCS (dB.m?)
207

- 20
Incidence (degrees)
-30 T T T T I 1
0 30 60 90 120 150 180
Numerical o
Analytical

Fig. 13. — VV polarization, A=2.3 m.
Dielectric sphere.

V,3. — CASE OF A HOMOGENEOUS DIELEC-
TRIC SPHERE WITH METAL CORE

Let us now consider a metal sphere of radius
a;=0.8 m coated with a spherical dielectric layer,
0.2 m thick. The dielectric is homogeneous and iso-
tropic. Two cases are considered.

Case I: Wavelength A=18 m, &*=125-0.56/
and p*=p=1.1 (there is no magnetic loss in this
case).

Case 2: =23 m, e*=20~1.0jand p*=1.5-1.0j
{with magnetic losses).

The bistatic cross section is analyzed as in
section V,2.



A partial view of the grid is given in figure 14. The
outer surface ", has 356 nodes and 708 three-node
elements. The inner surface T',, has 289 nodes and
574 three-node elements. The dielectric volume is
meshed by 672 nodes and 2,073 tetrahedra.

Fig. 14, — Partial and cutaway
of grid for dielectric sphere with metal core.

The computations are compared with analytical
results in figures 15 and 16 for case 1 and figures
17 and 18 for case 2, reading the ordinate in

RCS (dB.m?)
207

10

Incidence (degrees)
-10 T T T T T !

u] 30 60 90 120 150 180
Nymerical ©

Analytical

Fig. 15. — HH polarization, A=1.8 m.
Dielectric sphere with conductive core.

10 log,, lim 4mR* 12

|£]° :
. Here again, a good
e E

agreement can be seen between the present theory
and the analytical reference solution.

RCS (dB.m?)
20
10
e
o
Incidence (degrees)
-10 T T T T T 1
0 30 60 90 120 150 180
Numerical )
Analytical
Fig. 18. - VV polarization, x=1.8 m.
Dielectric sphere with conductive core.
RCS (dB.m?)
20
10
0-
10
Incidence (degrees)
-20 T T T ] T 1
0 30 60 90 120 150 180
Numerical O
Analytical

Fig. 17. — HH polarization, 2=2.3 m.
Dielectric sphere with conductive core.

Among other things, this case validates the treat-
ments of the interfaces of the I',; type between a
dielectric and a perfect conductor. It has been verified
that the presence of the metal core does influence the
solution.
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RCS (dB.m32)
20
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0 -
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Incidence {degrees)
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0 30 60 90 120 150 180
Numerical ©
Analytical
Fig. 18. — VV polarization, A= 2.3 m.
Dielectric sphere with conductive core.
V.4, — INHOMOGENEOUS DIELECTRIC
SPHERE

As a last example, we present the case of an
inhomogeneous dielectric sphere consisting of one
internal diclectric sphere of radius a,=0.7 m, coated
with a dielectric layer 0.3 m thick.

The core sphere is a lossy, isotropic, homogeneous
dieleciric and its relative characteristics are
g¥=125-0.56 and p*=1.0-0.3;. The dielectric
layer is also homogeneous and isotropic, but its refa-
tive  characteristics are g¥=1.21-0.15; and
p¥F=1.0-0.154.

The bistatic cross section is analyzed as in
section V.2 for two wavelengths A=[.8 m and
A=23m.

Figure 19 gives a partial view of the grid. The
outer surface I', has 466 nodes and 888 three-node

Fig. 19. — Partial and cutaway view of grid
for inhomogeneous dielectric sphere.
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elements. The inner surface I',,- has 226 nodes and
448 triangular elements. The total volume of the
two dielectrics is meshed with 1,574 nodes and 6,416
tetrahedral elements.

The computed data is compared with the analytical

reference in figures 20 and 21 for A=18m
RCS (dB.m2)
20
10
0 —
- 10 -
- 20
-30-
-40-
Incidence (degrees)
-50 T f T T T 1
0 30 60 30 120 150 180
Numerical ©
Analytical
Fig. 20. — HH polarization, A=1.8 m.
Dielectric sphere in two concentric layers.
RCS (dB.m?)
20
10
0 —
-10
20
.30
-4
O Incidence (degrees)
-50 T T T T T —
0 30 60 90 120 150 180
Numerical o
Analytical

Fig. 2t. - VV polarization, A=1.8 m.
Dielectric sphere in two concentric layers.

22 and 23 for

2

10 log,, lim 4nR? IE |

R~ [l E:11®

other things, this case validates the formulation of

the transmission conditions on I, type interfaces

between two dielectrics. We have verified that the

presence of each dielectric actually does affect the
solution.

and figures A=2.3m, reading

on the ordinate. Among
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RCS (dB.m?) We have developed a first version of a general
20 3-D code dubbed HEM 3D. The various applications
we have made validate the whole of the theoretical
and numerical explanations in Parts I, 1 and the
present Part III of this publication.

This gives us a code for dealing with hybrid multi-
conductor-multidielectric volumes for general three-
dimensional geometric situations, and with dielectric
materials that may be locally inhomogeneous and
anisotropic. Wire elements and surface impedances,
which would make certain modelings easier, should
be introduced in this theory and in the code,

10+
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