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STRONG COUPLING BETWEEN INVISCID FLUID
AND BOUNDARY LAYER FOR AIRFOILS
WITH A SHARP EDGE.

II. 2D UNSTEADY CASE
FOR ISOLATED AIRFOIL
AND STRAIGHT BLADE CASCADE

by

C. SOIZE (*)

ABSTRACT

This article deals with 2D unsteady aeroelasticity in cascades of blades with
sharp leading edges at positive incidence, not completely stalled, in a compressible
flow. The upper surface boundary layer, which separates at the leading edge and
reattaches on the airfoil, has a significant effect on the prediction of the steady and
the unsteady aerodynamic forces. We present the mathematical and physical models
of the boundary layer, and the proposed method for solutions with strongly coupled
inviscid fluid and boundary layer. The inviscid fluid predictor, based on the small
transonic perturbation isentropic Euler equations, uses an unstructured finite element
mesh of the computation domain. We give some numerical results with wind tunnel
comparisons for an isolated airfoil and for a blade cascade. Several steady and
unsteady cases are studied. A guasi-steady simplified approach is also proposed to
determine the unsteady aerodynamic forces in cascades.

Keywords (NASA thesaurus): Aerodynamics— Boundary Layer— Aeroelasticity —
Cascades.

(*) ONERA, BP 72, 92322 Chitillon Cedex.
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I. — INTRODUCTION

The developments discussed herein are in the frame-
work of blade cascade aeroelasticity studies.

The case investigated is that of a cascade of blades
with sharp leading edges and small linear vibrations
around a steady positive incidence, not completely
stalled, in a compressible flow. Under these condi-
tions, the upper surface boundary layer separates on
the leading edge and reattaches on the airfoil.

The developments presented concern the steady and
unsteady compressible case.

The analysis of experimental results for such blade
cascade configurations [7, 12, 19, 20, 30, 34, 38, 39,
43, 44, 45, 46] shows that viscous effects are predomi-
nant for predicting the unsteady aeredynamic forces.
In addition, it is this particular case of an upper
surface boundary layer separated on the leading edge
and reattached on the airfoil which causes large un-
steady movements of the reattachment point because
of the airfoil vibrations. These reattachment point
movements completely condition the values of the real
part and imaginary part of the unsteady aerodynamic
forces. For this type of configuration, methods based
on a model with inviscid fluid alone are therefore not
sufficient. The reader is referred, for instance, to the
synopsis work [7] giving a large amount of data on
wind tunnel measurement campaigns and comparing
the measurements with results supplied by computa-
tion codes based on inviscid fluid models. Except at
very low incidences, where the upper surface bound-
ary layer is separated very little (reattachment point
in the first 5 to 10 percent of the chord), whenever
the incidence increases, the predictions given by the
codes are unsatisfactory. It is necessary to introduce
an upper surface boundary layer and to use strong
coupling between the inviscid fluid upper surface
boundary layer for the unsteady (as well as the steady)
model in order to analyze these configurations.

In [2}, we developed an inviscid fluid/boundary
layer strong coupling model for the steady incompres-
sible case on an isolated airfoil. The main purpose
of this work was to develop a strong coupling algo-
rithm plus a boundary layer model for the separat-
ed/reattached situation, considering the high bound-
ary layer turbulence corresponding to this case, in
particular in the separated upstream region. Turbu-
lence plays a major role in this case on where the
reattachment point is located. We developed this
model using the data base [8] of wind tunnel measure-
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ments relative to a flat plate with sharp leading edge
at an incidence of 4 degrees and with a Reynolds
number of 400,006. Pressure measurements were
available for the plate as were measurements of all
the boundary layer parameters (8,.96. A, integral tur-
bulent friction. longitudinal turbulence, etc.) The
comparisons between the wind tunnel measurement
{8, 39] and the results we obtained for strong coupling
applying the model developed to this flat plate and
to the Pflenminger-Sulzer blade profile (PFSU) for
incidences from 4 to 7 degrees and with a Reynolds
number of around 2,500.000 were highly satisfactory.

In the developments discussed below, we therefore
intergrally preserved the boundary layer model
without any changes except, obviously, adaptation of
the equations to the new hypothesis of compressibil-
ity. We also preserved the same principle for the
strong coupling between the inviscid fluid and the
upper surface boundary layer, /. ¢. boundary layer
treatment in inverse mode and inviscid fluid treatment
in mixed mode including inverse mode on the upper
surface and direct mode on the lower surface. Here
again, we adapted the strong coupling formulation
and solving method to the specific features of the
inviscid fluid predictor in compressible state, based
on the 212 small transonic perturbation isentropic
Euler equations, solved a combined physical variables-
entrepic variables formulation by a finite element
method with an implicit time scheme [3, 6]. The mesh
of the computation domain made with triangular
finite clements is therefore unstructured.

The code developed is a steady and unsteady 2D
compressible code (subsonic, transonic and low super-
sonic) capable of treating isolated airfoils (in free
space or in a channel) or straight blade cascades
whose stagger angle and relative pitch are arbitrary.
It can be used for inviscid fluid alone or for strong
coupling between the inviscid flud and an upper
surface boundary layer separated on the leading edge
and reattached on the airfoil (airfoil not completely
stalled).

All the numerical results given herein are compared
with wind tunnel measurements [7, 34, 39, 46] and
are relative to a PFSU blade profile at the same
Mach number of 0.5 for two configurations, each
treated in steady and unsteady state. The first con-
figuration corresponds to an isolated airfoil in the
wind tunnel channel for five steady incidences from
3 to 5 degrees at a Reynolds number of 3,400,000,
and an unsteady configuration associated with pitch-
ing, with an amplitude of 0.5 and a reduced frequency
k=0.25. The second configuration is a blade cascade
with a stragger of 59.3 degrees, a relative pitch of
0.95, for steady incidences of 4, 6 and 8 degrees,
with a Reynolds number of 1,000,000 and associated



unsteady configurations for which only the central
blade vibrates (so-called canonical configuration),
with a pitching amplitude of (.3 and reduced frequen-
cies x from 0.3 to 2.0,

For all the computation cases, we give the steady
and unsteady computations for the inviscid fluid
alone and for the strong invisicid fluid/upper surface
boundary layer coupling. This will show the major
influence of taking the upper surface boundary layer
into account in the model.

Finally, we give a simplified analysis, useful for
unsteady aeroelasticity, much less costly than a real
unsteady analysis, which yields a good estimate of
the unsteady aerodynamic forces for the cascades and
for the domain analyzed using real steady computa-
tions alone conducted with strong coupling (spécial
quasi-steady method).

IL. — BASIC HYPOTHESES
FOR CONSTRUCTION OF THE MODEL

H,1. — HYPOTHESIS ON THE FLOW

The work was based on the following hypotheses:

(H1) The airfoil has a sharp leading edge with a
positive incidence. It is stationary or moves slightly
around a steady configuration.

(H2) The flow is steady or unsteady, compressible,
with a high Reynolds number, two-dimensional on
an isclated airfoil or on a straight blade cascade.

(H3) The boundary layer on the airfoil upper sur-
face is thin, 2D, turbulent, compressible with a high
Reynolds number, separated on the leading edge and
reattached on the airfoil. The curvature terms in the
boundary layer equations as well as the inertia time
terms for the unsteady states can be neglected (see
remarks below).

(H4) The lower surface boundary layer does not
have to be taken into account in the model (see
remarks below).

(H5) The external inviscid fluid flow is steady or
unsteady, compressible and isentropic.

(H6) The airfoil surfaces are without thermal effect
and the apparent Prandtl number is close to unity.

Remarks concerning hypothesis (H3).

The elimination of the inertia time terms from
the boundary layer equations simplifies the numerical
computations without deteriorating the quality of the
unsteady solution for the applications concerned.
Therefore, in this unsteady model, the inviscid fluid
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is taken in its complete unsteady formulation whereas
the boundary layer is taken in a quasi-steady approx-
imation. For unsteady cases, we therefore strongly
couple the unsteady inviscid fluid with the quasi-
steady boundary layer which leads to introducing
an approximation, but this is not a problem in the
framework of hypothesis (H3).

A decrease in the accuracy of the unsteady predic-
tion for low reduced frequencies could be expected
because of this simplification, which consists of
neglecting the inertia terms in the upper surface
boundary layer equations and which therefore leads
to constructing only an approximation of the
unsteady solution. However, the results obtained
with the simplified quasi-steady complete method (see
Section VIII) show that the results obtained at low
frequency (k=0.28) are particularly good.

It shouid be noted that the same strong coupling
formulation is used to calculate steady states. The
equations solved are then complete and there is there-

fore no such approximation for construction of the
steady states.

Finally, we did however preserve the boundary
layer time terms in the discussion below, dropping
them only at the end. This gives a better understand-
ing of the level of approximation introduced when
they are neglected.

Remarks concerning hypothesis (H4).

All the computation/measurenient comparisons
made and discussed for the airfoil type of interest
here and in the context of blade cascade aeroelasticity
analyses show that this simplifying hypothesis is legit-
imate,

2. -
SYSTEMS

GEOMETRY AND COORDINATE

For both isolated airfoils and straight blade casca-
des, the airfoil considered, with a sharp leading edge,
has a chord denoted L and the upstream flow velocity
is denoted ¥,. The reference Reynolds number is
denoted #:

a}ﬁﬁm I?UJL/!’IO’ I’iO=['71lx10m5’ (1)

This expression is developed in Section 111,3.1. All
the quantities of the problem are made dimensionless.

The reference geometric configuration of the
dimensionless airfoil with unit chord is given in an
OXZ cartesian coordinate system. The leading edge
is the origin O and the trailing edge is point F with
coordinates (Xp, Z,) where Xp=1.

The
and is

parameterized in X
differentiable  function

upper surface is
described by
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X=Z7(X): {0, Xp]— R*. To simplify the notations,
we denote the upper surface as X Z (X) and we limit
the introduction of the notations that follow to this
expression. The transposition is straightforward for
the lower surface.

Let M, (X, Z(X)) be the current point of the upper
surface in the reference configuration. We denote the
unit normal in point M, of the airfoil pointing out-
wards from the airfoil as 11(M,) and the components
of n(My) in OXZ as o, and B,. We therefore have
ar+Bi=1.

Let x be the curvilinear abscissa with origin O
pointing from O to F for the upper surface, X the
abscissa of F, My xz the local cartesian coordinate
system in point M, with curvilinear abscissa x, My =z
the vector pointing along » (M) and M x the vector
pointing along the tangent vector. We have the
equations:

dX =0, dx; dZ=—u,dx. 2
Let (a, b) (resp. (4, B)) be the components of
a vector of the plane expressed in the M,xz

{resp. OXZ) coordinate system. We have:

a n _ull A
Hin el |
b C('H Bll B
As we have dz= 0 on the airfoil, this yields:
dy=0,dX—a,dZ, 4.1
0=, dX+p,dZ. (4.2)
II,3. — AIRFOIL MOVEMENTS
At dimensionless time s, point M, is in M,

whose coordinates in the OXZ coordinate system are
written:

SW=X+he (X0, n@=Z+Dhy(X,1),

where (b (X, 1), b, (X, 1)} are the components of vec-
tor My M,, also denoted H(X, 1), in OXZ. In the
local coordinate system A, xz, vector field b(., 7} is
parameterized in x and we denote its components as
(h.(x, 1), b.(x, ). Field (., ¢) contains the steady
incidence and the small linear movements around this
incidence,

IL3. L. — Steady Incidence

We denote the steady incidence of the airfoil with
positive sweep as o;. In the case of a straight cascade,
all the airfoils in the cascade have the same steady
incidence.

11,3.2 — Unsteady Movement for an Isolated Airfoil

We consider a harmonic movement of the isolated
airfoil with pulsation ® relative to coordinate system
0XZ around the steady incidence, which is a linear

Rech. Aérosp. — n® 18982-3
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combination of pitching, plunging and fore-aft. We
denote the fore-aft amplitude along OX as Aly,. the
plunging amplitude along OZ as A, and the pitching
rotation amplitude around the point whose coordina-
tes in OXZ are (X Z,) as Ao. This rotation is
measured positively for negative sweep (opposite con-
vention from steady incidence). The reduced fre-
quency of the harmonic movement is written:

(5)

Considering that Lime ¢ is dimensionless, the dimen-
sionless period of the movement is written:

T=2r. (6)

The two components of field § in OXZ are then
written:
b (X, ={X(cosat,— )+ Z(X)sino, }
+H{Ahy—Aa(Z(X)—Zy) sint, (7.1)
ba (X, 0)={ = Xsina; + Z(X)(coso,~ 1)}
+{Al)z+Ao¢(X-XR)}sin:. (7.2)

Considering equation (3), we have :

[).1- = Bn [)X - Q'." I)Z’ (8 . i)
b.=o,by+B,0, (8.2)

I1,3.3 — Unsteady Movements for a Straight Blade
Cascade

Here we consider only the case of an infinite
straight blade cascade which has only two possible
movement configuration types to simplify the discus-
sion. (We use the terminology introduced in [28] for
the configurations.)

Let M be a positive integer greater than or equal
to I. Period T=2n is divided into M intervals with
a constant step 2 /M and we introduce M phase shift
values { @g, ..., @y, | such that:

_2mm

m s

mel0,1,... . M—1} )]

The choice of M and therefore of T/M is not
related here to the time step Ar of the step-by-step
numerical integration scheme introduced below, but
only to the quality of the approximation sought to
describe the types of movement, in particular the
canonical configuration (see below).

Fundamental configurations. Each fundamental
configuration is a configuration of vibration for which
all the airfoils in the cascade vibrate according to the
equation defined in Section I1,3.2 and with the same
constant phase shift ¢, between two consecutive



channels. There are therefore M fundamental con-
figurations and all the airfoils vibrate in phase for
the configuration corresponding to m=0, i.c. ©q=0.

Canonical configuration. This configuration is such
that a single airfoil, the so-called central airfoil, vi-
brates according the equation defined in Sec-
tion II,3.2. By applying the superposing principle,
we can construct an approximation of the states of
this configuration by superposing the fundamental
configurations corresponding to M phase shifts
defined by (9), where M must a priori be much larger
than 1 (¢.g. M=16). This configuration is important
in the applications described because it corresponds
to the configuration of the wind tunnel tests used to
validate the developments.

Ill. — MODEL FOR THE UPPER SURFACE
BOUNDARY LAYER

IILI. — BASIC EQUATIONS OF THE MODEL

The equations of the model are the unsteady com-
pressible averaged Navier-Stokes equations for a tur-
bulent 2D thin boundary layer in the neighborhood
of a flat surface with a high Reynolds number in
which we preserve a term related to the turbulent
kinetic energy. This term is generally neglected for
boundary iayers attached on the leading edge but it
is important for the case of separation of the leading
edge, as was shown in [2]. The effect of this turbulent
term is to couple the Karman equation with the
transport equations. To the averaged Navier-Stokes
equations must be added three transport equations
whose closure is conventionally insured by modeling.

Considering hypothesis (H3), the upper surface
boundary layer is that of a flat surface, and the
curvature terms are neglected. We therefore establish
all the equations for a flat surface and use them
directly in the local curvilinear coordinate system for
the airfoil upper surface. Space R® is therefore refer-
enced to an Oxyz cartesian coordinate system. The
flat surface is in plane Qxy, the main flow direction
is Ox, the boundary layer is on the side z>0 and the
2D flow plane is plane Oxz. We denote the coordina-
tes of a point in space as x, y, z, and the partial
8ja:m 5,@:6.

derivatives as d,= 5 3
z 1

éx dy

L1 1. ~ Azeraged Equations

Let p, p, V={u v, w}, t and T be the density,
pressure, three velocity components in Oxyz, viscosity
and real fluid temperature (viscous fluid) respectively.
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Conventionally, the averaged equations are obtained
by using averages weighted by the mass [15, 18].
We denote the statistical average of a quantity A
as (4. We then introduce the following average
values:

p=(p>  p={p)
ge P = (pEy . (PIT)
{(py (py’ Py’
- -_<pT)
={1ns, T= _
p={p) o

The fluctuations in density p’, velocity components
u', o', w', pressure p', and temperature 7” are obtained
by subtracting the mean values from the instan-
taneous values

p=p-p,

W= =,

p=pp,

W=,

p_~ = ~
v =UUY,

w=pn—p, T=7T-T
In the framework of the unsteady, compressible,
2D, turbulent thin boundary layer approximation in
the neighborhood of a flat surface, we use the follow-
ing averaged Navier-Stokes equations [15] in which
we preserved the 6,(p{#'? ) term, as was done in
{1, 2]

K3,p+0, (pa)+8.(pw)=0, (10.1)
k0, (pu)+ &, (pit*) + . (paw)
==08p+d =8, (p{u?)) (10.2)
kd, {(pw)+a, (puw)+o.(pw*)=—4a.p, (10.3)
where T is the total friction:
fﬂwf,am-i-'cm, (10.4)
Tiam 15 the laminar viscous friction written:
Elam=ﬁa:£71 (IOS)
and 1, is the turbulent friction written:
Te= —p ' W (10.6)

These average equations for the boundary layer are
simplified by the usual approximations [15]:

(Ro.uy=(udaLuy,  {pab'y=(p){at’,

where ¢ and " denote ', v or w'. It can be noted
that applied to the steady incompressible case, these
equations {10) are those of [2L

H1,1.2 — Transport Equations

The approximations of the turbulent kinetic energy
k, and dissipation rate g, per unit mass are written

Rech. Agérosp. — n° 1992-3



[15, 18];
1
2{p>

k= e (U Y+ Py + (P )

|

a2+ e+ (D)

o 2
< C-Hj >
éxy,
where, in equation (12), we noted i =u"13=1",

wWy=w', X, =X, X, =y, x3 =z and used the conven-
tional notation:

b ]

3003
gV oy Y
j=1 k=1

(12)

—1

v=up (13)

We associate values #” and & with &, and &, such
that:

A =pk,,

E=pE,-

(14)
(15}

For the closure of the three 2D transport equations
in ", t,,, and &, we use the model proposed in [14,
15, 18, 22, 39] for compressible 2D turbulent thin
boundary layers whose constants are the same as for
the incompressible case. These equations are written:

K, T+ B () + 0 () = Coy A 0,0

—Cuf;r.uﬁ&:(w“#az(ﬂ_“—')), (16.1)
A o"’:lunr P
K&, H +0, (1 A+, (W)
=rm,aﬁ—£+az(ﬂa:(£)), (16.2)
Gy p
. . £ -
K@r(g@-i"gx(ué”)-i-a:(wé’):Czlwtturazzg
N4
1
wcez_é:w:(ﬁaz(fi)), (16.3)
4 o, p
where :
D i
=pC, =02, 16.4)
He=p ve Oy (
The constants are written :
C,=009, C, =144, C,=192, (16.5)
c=1.. =125 o =09, (16.6)
¢, =C,C,, C,=15. (16.7)

In the case of an unsteady incompressible flow,
equations (16) are those used in [}, 2] except for the
values of o, C,, and C,, which are modified [15].

Rech. Aérosp. ~- n® 1992-3
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However. the final compressible unsteady model that
we will construct gives exactly the model developed
and validated in [l. 2] for the steady case since, as
was done in [2]. we drop equation (16.3) which i3
the only one involving constants . € and C,.

[II,2 — DEFECTIVE UNSTEADY COMPRESSI-
BLE 2D INTEGRAL EQUATIONS

We use an integral equation method for the bound-
ary layer [15] and, in particular, as was done in [1, 2],
the defective formulation and approximated defective
integral method developed in [25, 27]. We place our-
selves in hypotheses (H1) to (H6) of Section 1L1.
we associate inviscid fluid variables p. p, w, w, T, etc.
defined in the same space domain and verifying the
unsteady compressible 2D Euler equations (EU). As
the surfaces are assumed without thermal effect and
the apparent Prandtl number is assumed close to
unity, the energy equation is replaced by the following
approximation for calculation of the instantaneous
total average viscous enthalpy /i

(amn

where /i is the instantancous total enthalpy of the
inviscid fluid. In addition, we impose asymptotic
conditions on the inviscid fluid variables at infinity
in normal direction z:

lim {(p(x,z0—o(xz0)=0, (18)

= tw

where @& {p, p, u.w}.

Subtracting the averaged Navier-Stokes equations
from (EU) then using the thin boundary layer approx-
imation yields the following first-order approximation
of the defective equations:

xd,(p—p)+a, (pu—puwy+a.(pw=pw)=0, (19.1)

k3, (pu—pit)+a.(pu>—pit?)+3d.(puww—puw)
+é.(p—py=—d,1+0,(p{u?)), (19.2)
ap—p=0. (19.3)

We denote the inviscid fluid velocity modulus as
g(x, z, 1) and as Q (x, 1) for z=0:

qlx.z. 0 =ux,z, 02 +wix,z, B2, (20.1)
O(x,)=qg{x.0,1). (20.2)
We introduce the conventional boundary layer (BL)

parameters : 8,, & boundary layer thickness, 8, dis-
placement thickness, 0 momemtum thickness, form



the associated
and H,, which

parameters o, B and H, as well as
incompressible parameters : §,,, &, o
are such that;

+oo

(p_i_))(x.:.lldzs (21 . 1)

p(x, 0,08, (x, t)=J.

0

px, 0, 0 (e, 08, (x,1)

=‘[+w(p”—5®("'s'”dzj (21.2)
¢}
Q(x,f)al,-(,\‘,I)=j+w(u"-tmlm)(x_:‘”dz, (21.3)
G
p(x. 0,00 (x, 0% (8, (x,N+0(x, 1)
=rm(sz-Ez‘:Z}(x‘:',,d:, (21.4)
0
Q(x,1)* (B, (x, 1) +8;(x, 1))
=J‘+w(“2_ﬂz)(x.:.ndza (21 -5)
0
Sl(xsf)
X = 2 .
o (x, 1) e (21.6)
. " =M '}1
o (x, 1) S0e D) (21.7)
8 (x, 1)
X, )= 21.
B(x,n) 50en) (21.8)
61(-\-:!)
X, )= ——rmt 21,
Hx, 1) 00D’ (21.9)
S ;(x. 1)
Hy(x, 1)= = 21.10
i(x,0) 0.0r ) ( )

The friction coefficient Cr(x, 1), entrainment coef-
ficient Cg{x, /) and global dissipation component
@ (x, 1} are defined by:

] T(x,0,0)
S Co ()= 2D gy
ZCF(\’I) p(x,0,00(x, 1) ( :
CE(-\:-) [)
(0. D5 (s, 8,0 , (21.12)

(40,0 g% 80 1. 1) B (4 e 5 . 0.

Ox, )=

p(x,0,0Q (x, 1)

+ w0
X J (TO. i oz, (21.13)
0

We denote as 7 (x, f) the integral quantity related
to the turbulent term preserved in (10.2). 1t is writ-
ten:

T (x, {)=J‘+w (P U™ e,z ndz. (21.14)
0

29

Finally, we introduce 7,(x, #) and 7 (x, 1) such that:
10 nde={pOvdy—ud, b.dx—x3b.dx) }, 0. (22.1)
T(x, 1), dx=1{p(wdx—1ud b.de—x8bd¥) § o4 (22.2)

We integrate equations (19) in z from D, {x, 1) to + .
We apply the hypotheses of Section I1,1, in particular
{H1), the asymptotic conditions (18), the conditien of
adhesion of the wiscous fluid to the surface
I,(x, 0, n=0, the fact that the external turbulence is
zero or negligible. We obtain three equations: the
defective first-order integral continuity equation
called strong coupling equation (SCEQ), the defective
integral longitudinal momentum equation, called Kar-
man equation (KEQ), and finally, the equation relat-
ing the pressures. By developing the local defective
longitudinal momentum equation (19.2) in which the
pressure relationship is taken into account on equa-
tion line z=58(x,r), we obtain the defective integral
entrainment equation, simply called entrainment equ-
ation (EEQ). We also construct an approximated
entrainment equation (AEEQ) obtained by integrat-
ing (10.1) in z from b.(x, ) to §(x,7) and using
(EEQ). All the computations are described in detail
in [3]. For xe[0, x;], this yields:

(SCEQ) 4,[p(x,0.1) 5y (x, )]
+8,0p (%, 0,0 Q(x, 08, (x, D=1, (x,0), (23.1)
(KEQ) x&,{p(x,0,0Q(x,N8 (x.1)]
+3.[p (6, 0,0 Q (x, {8, (x,N+8(x, ) ]]
(w00 =P (. 0,0 Q(x. 1)

x % Crlx, V40,7 (x,1), (23.2)

plx,z,0=p(x,z10, (23.3)
(EEQ) xp(x,5(x,0,0)2,5(x,1)
F(P i, 5w O B(X 1)
P50 ™ P D s e 0.0 Cel )y (23.4)

(AEEQ) w4 [p(x, 0.0 (8 (x. )= 8 (x, )]
+op(x, 0,0 Q(x. ) {8(x,N =38, (x.1) }]
=p(x,0,0Q(x. ) C(x.1).

As already mentioned, (KEQ) contains an integral
term & related to the turbulent kinetic energy.

(23.5)

II1.3. — ALGEBRAIC CLOSURE

The use of (KEQ) and (EEQ) requires the introduc-
tion of an algebraic closure since there are more
unknowns in the problem than there are equations.
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IM,3.1. — Calculation of the Reference Reynolds
Number and Reduced Frequency

The data are conventionally the total pressure p;
(in pascals), the total temperature T (in kelvins) and
the free stream Mach number A _. The Reynolds
number # defined by (1) is given by the following
equation established in [3]:

.l!;f LM:o
Ko

y [y 1+1( a2 — 12+ iy — 1)
r T, 2 f = ’

1

)

%

(24)

where y=1.4 and r=8.32/0.029.  For calculation of
the reduced frequency k defined by (5), it is necessary
to know V', which is written (see [3]):

J?I=Mm\/ LARI T—
TH12(— 1) M2,

(25)

I11,3.2. — Calculation of the Displacement Thickness
Reynolds Number on the Airfoil

All the details of the calculations given in this
section are contained in [3]. On the airfoil upper
surface xe[0, x;], the Reynolds number #; is given
by the equation:

mf% @, (26. 1)
R{D)/Mo
where 1 (T)/), is given by the Sutherland law:
WD_ [T, T 1+50273
Ko 273 T, 1+ SITANTITY
S=110.4, (26.2)

where T is the temperature of the viscous fluid on
the upper surface, given by the equation:
T — T+ 1/2(v— 1) M*?
T, H12(0— 1) ML

(26.3)

in which M is the local Mach number on the upper
surface given by the equation:

(pQ)

2

o .
v+ 1
p

M*=M

27

The boundary layer thickness Reynolds number 3
is writtemn:

1

By= s, (28)
o
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IL3.3. — Calculation of pip

At each time 1, we have the following equations:

S I

= Py g (29.1)
y—1p 2

p= 1 Pl (29.2)
'\{-—l p ol

Therefore, considering (23 . 3), equation {17} is writ-
ten y(y— 1" Ypip—pip)=—(¢>—GH)/2, ie.. since
M=g/a and a*=yp/p:

]
1200 1) M2 (1= (Gfg)?)

P 30
p

In the framework of the thin boundary layer
hypothesis, it is assumed that p, p, g. M, etc. for the
inviscid fluid have a negligible variation in z in the
thickness of the boundary layer at a given time .
Under these conditions, setting:

mx, 0= M(x0.10) \/¥;I

for xe[0, x,], equation (30) is written:

(3n

Pl = Na f
SR (0?2 (1= (g (x.2,0/0 (x. )Y <2

IIL,3.4. — Mean Velocity Profile and Friction Coeffi-
cient

We use the model proposed in [25] for the attached
or separated 2D boundary layers in compressible
unsteady state. A single family of mean velocity
profiles allows us to represent mean velocities with
the boundary layer in equilibrium or out of equili-
brium. The same family is moreover used for the
incompressible case. The model covers the complete
domain 1<H;<+ w0 and models the profiles with
reverse flow. Below, the quantities depend on x
and 1, which are however omitted to simplify the
expressions. We denote as n the dimensionless ordi-
nate defined by:

n=-. (33)

8

Denoting the “Sign of” function as Sg, the mean
velocity profile and friction coefficient Cp are written:

i _,

—C, Fm)+Cinn, (34)

Cr=2(0.41 C,)* Sg C,. (35)



where:

F(n)=F(?_n*) il n*<n=l, (36.1)
Fim=1 if 0=n=Zn*, (36.2)
F(n)=(1-n*"2 (36.3)

Function o;— n* (&) where o, is defined by (21.7)
is such that:

n*=0
n*=4.598 (0, ~ 0.44)>
n*=2.299 (¢; — 0.565)

if 0<oy=0.44, (37.1)
if 0.44<e;20.69, (37.2)
il 0.69<o;<l. (37.3)

For 0<a;=0.44, the boundary layer is attached in
x and at time 1 and is separated if o;>0.44. Constant
C, is obtained by solving the equation:
_ 1-Cya

In(0.41 & C |)+525%x041-C,’

(38)

¢

where #; is given by (28), which is also written,
considering (21 .6} and (21.7) :

1 1
Ry= =Ty = — Ry, (39)
v o3

Constant (5 is given by:
2.22
1.22 “0)

Cy= e

and constant C, is given by:

Cy=1-C,{5.25%0.41 +In(0.4] 5| C ) 541 1)
or by:

Co=Cy(;,— C,). 41.2)

We use these closure equations as follows. At time
¢t in a point x, we set the Reynolds number Ry, m?
and «. We then compute n* by (37), C; by (40), C,
by (38) and C, by (41.2). Actually, (38) involves o
via #; and is written:

a=o+m? N, (n* C, Cay 1%, (42)
where N, is a function that will be determined below.
Equations (38), (41} and (42) are therefore solved

simultaneously. Last, we calculate C by (35). Addi-
tional details on the construction are given in [3].

II1,3.5. — Expression of Form Parameter H,

According to (21.10), we have H,=8,,/0,, Using
definition (21.5) and the boundary layer approxima-

tion, in each x and at each time 7, we have :

+ o [ =2
Q3(5“+G,-)=j (uz~z.?2)dz::sz (l— q—;)dz.
4] 0 Q~

We therefore have the following approximation:

61i+eigajl(1—-(i@)z)dm
0 o

which gives, using (21.7) and (21. 10);

(L) e

Substituting the profile equation (34) in the right
side of (43) gives the equation for calculating H; when
all the other calculations are completed:

! :
a,-(;{w mi)=~Csm*+2A6(1-n*n~26§

20, G (Inn* =D+ 2(1=n*) 4 (M*)],
where:

1
A(n*)=J (1= In[(1—n*)z* + n¥ dz

0

1

=-5[AIB*+A3+A37L*+A4Ki
+ Ak, B Inn*+ 45057 Arctan (A 1)),
Ae=n*(I-n""h  B,=4-33
A=025,  A,=—02575, A,=0.45,
Aa= 1475, A=16, A =0.1578.

INL3.6. — Expressions for Form Parameters o, B
and H

These three parameters are given by (21.6}, (21.8)
and (21.9). For nel0, .1, 2}, we define the three
functions:

Nn(n*vclsczv}nz)
_[Mameri-qwier
o 1+m*[1=(g(m)/Q)]

Then, using the boundary layer approximation
yields, after completing all the calculations (see [3]
for the detail of the calculations):

(44)

a=o;+m* N, (* C,, C, %), (45)
B=m Ny(n*,Cy, C,, n1%), (46)
Ot(l + —1—>
H

1 2
mai(] + E)-i-mz N,(*, C, Cym®), (47

1
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The explicit expressions of the three functions ¥,
are obtained by substituting the profile equation (34)
in (44)., We analyzed two solutions. For the first,
we compute all the quadratures of (44) which can be
computed exactly (use of primitives). For the second,
the quadrature 1s compuied numerically. The compari-
son of the numerical costs of the two methods, all
other things being equal, led us to choose the second
solution which is faster. After a few algebraic compu-
tations [3], the three functions N, defined by (44) for
HE{O, 1, 2} can be written:

Case n*=0:

R T
* )
R S e O )
L ¢ [+m?[1—o(2)?] (48. 1)

v(l)ﬁiwCz[luexp(—“ %K):IZ—C, A (48.2)

Case n*>0:

dk,

Nu(ﬂ*,Cl,Cz,ml)=n*
xj+w€~:,vl(k)"[1—v,(?u)z]dk
0 L+ m [ — v, (W)
Con [T e 0P w A g
o W)L ¢ 1+I?12[1—v2(k)2]( . (49.1)

v, (M=1=C,+C Inn*—C A, (49.2)

3 2

vg(l):l—Cz[l—"exp(— Ek)]
+C, In[(1-n*)e ™ +n*. (49.3)

As mentioned above, integrals (48.1) and (49.1)
are calculated numerically using the Laguerre polyno-
mials:

J " e r0) dh PEICo)

1,3.7. — Model of the Entrainment Coefficient and
Global Dissipation for an  Equilibrium  Turbulent
Boundary Layer with a High Reynolds Number

For an equilibrium boundary layer, the coefficient
Ce(x, 1) defined by (21.12) is denoted Cj,, (v £} and
the dissipation @ {x,) defined by (21.13) is denoted
®,,{x,0). For high Reynolds numbers, we use the
model proposed in [25, 27} which is adapted to sepa-
ration. This model is constructed with the profile
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equation (34) and a mixing length model for T based
on scale & such that:

S(v.n=[1—n*(x, N8 (x.0)

8, (x.1)
=[1—n*(x, :
[1—n*(x I}]a(\',r)

(50)

For a flat surface boundary layer, compressible,
with no correction factor for external turbulence
effects, this model is written:

Cp =0.053C,0,—0.182%x041x _/2xC;, (51.1)

o 3 v
®,,=|u,| |Crl+0.018(1—u,).  (51.2)
u,=1-Cyo. (51.3)

The dissipation @,
stale.

, is estimated in incompressible

[11,3.8. — Model for an Out of Equilibrivm Turbulent
Boundary Layer

To use (KEQ) and (A EEQ), it is necessary to intro-
duce a model of 7 (x, ) and C.(x, t) which are
different from the equilibrium values for boundary
layers out of equilibrium. We again place ourselves
in the hypotheses of Section IL,1,

A. Model Construction Hypotheses
In the turbulent part of the boundary layer, we
have T=1,, and can neglect the corrections that
should be made for the region located in the neighbor-
hood of the wall. Where f'is the function representing
T OF &
S el te (0,4 (0,800}, (52)

and f,,(x, z, ) is the corresponding quantity for an
equilibrium turbulence:

Jog(X:2,0)

€ Tiur, 0g (62, D H 0 (X, 2, 1), 6 g (3,2, 00 . (53)
We can define function g (x, z, ,) such that
fe,z,0=f,(x.z,0g(x,z,0. (54)

Then, as was done in [1, 2], we use the one-dimen-
sional approximation of g(x, z, f) proposed in [25],
which consists of writing for ze{0), 8 (x, )

flx, 20 ~ f(x, 0
SN oz g =2 (55
e glx,z, 0y =g(x,1) D) )

The one-dimensional model f,, (x, 1) of /,(x, z, 1) is
defined by:

& (X 1 b(x, 1)
Soq(X,2, ) dz=
0 {n* 8}{x. 1}

Sug (X, 2,0 dz=8(x, ) fop (x, 1), (56)



where & (x, 1) is defined by (50). Using (55) and (56)
yields:

5 (x, 1) §(x.0
J flx,z, t)a'ng.

0 m* 8} (x, 1)

X f(x,z, 0 dz=8(x, )] (x, 0, (57

where f(x, #) is the 1D approximation of f(x, z, ).
To simplify the notations, we set:

Tog (6, D= Tor o (40, (58.1)

T T (%0

; (x5 t) = ;lur (x: I)a

T{x, )=z - ) (58.2)
Tog (L0 Tpr, o (50

k=250 (58.3)

‘%eq (X, I)
e(r,n= 200 (58.4)

é»cq (x9 f)

We then obtain the following model:

Celx,N=1(x,1) C'Eeq {x,1), 59
D (x, =1 (x, D, (x, 1). (60)

To close the model, it is necessary to have a model-
ing of the equilibrium quantities T,,(x,?), #Z ,,(x, 1)
and &,,(x, 1} and to determine the local transport
equations (16) from the equations for t(x, ), k(x, 1)
and g(x, ). Finally, we have to construct a model of
quantity 7 (x, f) defined by (21.14),

B. 1D Approximation of the Mean Profile and its
Gradient

We proceed as was done in [1, 2] for the incompres-
sible steady case. We apply definition (57) of the 1D
approximation to # and 8.z and we obtain after
calculation:

- N 1,224+ 1~ C,
Xz 0 =0, N —— 2
(u(x,z ))(.,r) Ox )[ 222
C
-C,— L *Inn* |,
i 1_n*n n :I
- C,—C;lnn*
S u(x,z, D)y =022 .
(GAT ))(,r) Q(x, 1) S(x,l‘)

Using closure equations {(38) to (41) yields:
m (7 (62 05 = Q. Ni(x, 1), (61.1)

Hy — o

lim (azu(x,-,f))(x.z}_Q(x’I) S(x,t‘) 1

Ry —+ +a

(61.2)

where u,(x, ) is given by (51.3) and u(x, t) is defined
by:

(x, £y = (1224 u, (x, 1))/2.22. (62)

33

C. Model of the Equilibrivm Quantities for High
Reynolds Numbers

We deduce the following approximated equation
from definition (21 .14} of © (x, 1)

&(x, 1) _
J Teur, eq (6 2, 1) .0 {x, 2, 1) dz

0

~®,, (5. 1) p (x, 0, 1) % 00n 0% (63)

The expression for &,, is deduced from the above
model:

&0 (5, 08 (x, )=, (x, 1) p (x,0,0) % Q(x, 13 (64)

To obtain the model of 7, (x, 1) and T, (x, 1), we
take the model developed in [25], already used in [1,
2] for the incompressible steady state. It consists of
introducing two models of 1, ., (x,z,¢). The first is
a turbulent viscosity model

H oy (%, 2, 1) 5

eq (X, 2,1

Tur, eq (X- 2, )=10,09 LU,z 6. (65.1)

The second is a mixing length model built on scale

3(x, 1)

Ttur, eq (x7 Z, ’)

=(0,098 (x, DY plx,z, ) (8. u(x,z,0)*. (65.2)

We calculate the 1D approximation of the two
equations (65) using definition (57). For &; high, we
can find a new approximation using (61). It is then
sufficient to eliminate Teq (%, 1) from the two equations
to obtain #°,,(x, #). The equilibrium gquantities are

thus modeled for high Reynolds numbers by:

Ty (6, N =Ty (%, ) O (x, )% p(x,0,1),  (66.1)
T g6 )= (5 Q (57 p (3,0,0), (66.2)
By (s =8 (6,00 Q (x, 1) p(x,0,1), (66.3)
with:

Teq (xa t) = [0509 (] Uy (xs t‘))]zs (66 . 4)
H g (X, 0= (0,091 —u, (x, 1)) % D, (x, 1), (66.53)

_ D, (x,1)
€ oq (X, 1) Tk (66.6)

where § (x, #) is defined by (50), u, (x, 7) is defined by
(51.3) and @, (x, #) is defined by (51.2).

3.9, — Model of the Integral Turbulence Term 5

Term Z (x, ) defined by (21.14) could be ex-
pressed directly by adding a transport equation for
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{u'*). But in this case, it would be necessary to
model closure, Under these conditions, we use the
model developed in [1, 2], which allows us to write;

(P (U D,z =h vz, 1) A (.20, (67)

where / is a function defining the model chosen.
Substituting {67) in (21 . 14) and using the 1D approx-
imation defined by (55)-(37) yields:

T (x, )=H{x, N8 (x. ) F (x, 1),

which can also be written, considering (58 . 3), (66.2)
and (50):

T (x,1)

=p(x. 0,0 N8, (e, OH (v, Ok (x, 1), (68.1)
H (x, 1)

=R, (=1 (5, 0) oy (. Do (x, 07 (68.2)

For Ji(x. 1), we use the model developed in [1, 2]
from the experimental data base [3] :

Hx,D=C,n*x0, C

iur

=5 (68.3)

It should be noted that the additional term
Z (x, t) introduced in this model is only nonzero in
the separated upstream region.

1114, — TRANSPORT EQUATIONS FOR THE
SEPARATED-REATTACHED CASE

These equations are established for the compres-
sible unsteady case at high Reynolds numbers. The
equation for /" is obtained by integrating (16.2) in
z from D,(x, t) to 8(x,¢) vsing 1D approximations
(57) and (61), equation (22.2) and the EEQ (23.4).
The wall boundary condition Tp(x, £}=20 is developed
and external turbulence is neglected. For the equation
in 7, we integrate (16.1) in z from b, (x, 7 to 8 (x, 1).
We “transform the second member of (16.1) using
model {65.1) of 7, ., (x,1). We then proceed as for
the equation in . The equation in & is obtained
like the equation in " from (16.3). The calculations
are conducted as in 1] and described in detail in {3].
We thus obtain the three transport equatlons sought
in A, T and £. However, the equation in & does not
have an equilibrium solution. Therefore, as was done
in [1, 2], we preserve a model with two transport
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equations in . and T, written according to the above:

i 1
=450,

(69.1)

- - [.5§f}[?c—i,q J(é):] (69.2)
7 Z\F.

eq

where § and « are given by (50) and (62) respectively.
This model, defined by the two equations (69), is
not closed because of the presence of &. Transport
equation in & is replaced by a closure equation based
on the following equation:

F - 32
Slxd) ﬁ(i"ﬁ)(x, r)(@f Skl ) (70)
& o lx. 1) / H oy (N1

In [25. 27], the authors use equation (70) with

f.4/1=1. In the present case of a separated-reattached
boundary layer, we take the model we developed in
[1, 2} and which is written:

R 32
=\ (x, a)(}f—%%) S TIN
(71.2)

E(x, 0
& g (X, 0)
A, n=1—n*(x,1).

With this model, A{x, /)=1 only in the region
where the boundary layer is attached, whereas
A{x, <1 in the separated upstream region. Elimin-
ating & from equations (69) by means of (71) and
using notations (58) and equations (66) gives the
following model with two equations in & and 1

KO (PO* A k) +0.(p QP FuA k)

m%mqugm—ka), (72.1)
k3, {p 0?81, 1) T3, (p Qi)
1 T,
=-1,5><E(I)equ:‘—}m—"mk”z(kt—k”z), (72.2)

“t eg

where we condensed the expression as follows: p
denotes p(x,0,1) and Q, 8, u, A, T T K. T, @, and

2. denote the values of these functions in point (x, 7).

IiI,5. — MODEL OF THE REGION NEAR THE
LEADING EDGE

Let x be the curvilinear abscissa on the upper
surface whose origin is the leading edge. The model
we finally chose for the leading edge region in steady
or unsteady compressible state is as follows [41, 42].
The boundary layer equations are dropped in a region
xe[0, x,] near the leading edge. On the leading edge
x=0, the displacement thickness is zero (8, =0) and,

in x=x,, the incompressible form parameter



H(xy. 8) in x, is, for any ¢, fixed at a constant
asymptotic value corresponding to a strong sepa-
ration. We take x,~0.01 xp where, it is recalled, x,
is the curvilinear abscissa of the trailing edge. As
will be seen, the meshes used are such that the first
cell on the upper surface of the airfoil is located at
approximately 0.01 x,. The model chosen then
amounts to dropping the boundary layer equations
only in the node located on the leading edge, consi-
dered in direct mode for the inviscid fluid predictor.
In addition, for the present compressible case, because
of the formulation chosen for the inviscid fluid predic-
tor which operates in inverse mode in the upper
surface region, i.e. xelx,, x;[ where the boundary
layer equations are taken into account, we were led
to introduce an isenthalpic model for the inviscid
fluid predictor in a region close to the leading edge,
defined by xe[0, 0.05x;[. Therefore, the old isobar
model in this region close to the leading edge, introdu-
ced in [l, 2] for the incompressible case, is replaced
for the present compressible case, with the hypotheses
of Section IL1, by an isenthalpic model in the same
region, described in detail in [41].

HI,6. — UPPER SURFACE BOUNDARY LAYER
EQUATION SOLVING METHOD

We now explain hypothesis (H3) of Section I1,1
and we therefore eliminate the time terms in 8, from
boundary equations (23) and (72). Using the same
scheme for the present compressible case as that
developed for the incompressible case [, 2], the upper
surface boundary layer equations are solved in inverse
mode. To simplify the equations, we introduce the
following notations:

N - = 6(-‘:9()
alx, ) 20D ——51(3»’,!‘)’ (73.1)
TPV O(x, 0
= gen by PP

6. 1. — Equations for the Computation of 8,

In inverse mode, we need to compute &, (x,1) for
p(x,0,8, Q(x, ) and I, (x, 1) fixed on the upper
surface. We introduce the following notation for
xe[0, xg):

D{x,0)=p(x, 0,0 0(x, 08, (x,1). (74)
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The strong coupling equation SCEQ (23 .1) is then
written as follows because the term in &, is eliminated:

G, D(x,0)=1,(x,1), x€]0, xg]. (75. 1)
The boundary condition 8, (0, f)=0 means:
DO, n=0, vr. (75.2)

Solving problem (75) allows D (x, r) to be calculated
for xe[0, x;] then &, (x, ) to be calculated by equa-
tion {74):

D{x. 0

8, (X, )=
p(x0,0Q(x, 1)

(76)

It should be noted that it is unnecessary to know
8, {x, 1) for xe[0, x,[ since the boundary layer equa-
tions are solved for xe[x,, xf]

II1,6.2. — New Form of the Boundary Layer Equa-
tions

Considering the model for the leading edge upper
surface region (see Section II1,5) the new form of
boundary layer equations (23} and (72) is established
for xelx,, x;]

Using equation (73.1) 8§=03, and model (59)
Ce=1Cy,,, the AEEQ (23.5) gives:

0[P Q8 @—NI=pQ1Cy,, (77.1)

This equation can also be written:

Lo g 1

1 ~
B 0= e - -2, -Dl% (77.2
5% Bl(aﬂi){rcﬁw 0,068, @ )1} (77.2)

As for the incompressible case [1, 2], to transform
the Karman equation (KEQ) we write that u/,~Q1,
for xel[xy xg], fe considering (75.1), that
ui,~Q3d, (p@38,). Substituting this approximation in
the KEQ (23 .2) using model (68) of 4 and definition
(73.2) of H yields:

2.0 Q*8, (A-HA]+p08,0,0=p 0> Cp. (78)

To simplify the writing of the transport equations
(72), we iniroduce the following notations:

G(x, =8 (x, Nu(x, 1) A o (x, )
=[1=1* (o, O (x, ) A o (3, D (x,0)8, (x,0), (79.1)

Flx,0=38(x,Dulx,1) Tog (X, 1)
= [l - n* (xn f)} E;(.\f, f)qu (x1 I)a;' (_\f, t) 61 ('xv {) (79 2)

Rech. Aérosp, — n° 1992-3



The transport equations (72) can then be written:

La (pGlx)——(Deq(t K3 Gk~ 8.0, (80.1)
P o
La (pFr)=—15x ;(Deq Zeq
p - L oeq
1
X(lrk”zmk)—,’:Ftéa_\.Q. {80.2)

11,6.3. — Equations and Boundary Conditions for the
Computation of o, k and ©

In inverse mode, for p, m, 8, anEi A, fixed, it is
necessary to calculate functions o, & and t for
xe[x,, xp] usmg three independent equations for Q
as was done in [1, 2] for the incompressible case.
These equations are obtained by substituting the
expression (77.2) for 071 3d,.Q in (78), (80.1) and
(80.2). For xelx,, x;]. after completing the calcula-
tions, this yields:

1

S 8 Mk
2 E—0R)] o a.[pd; (F—H k)]
L1
8, (@1
T G-1 0. [p3, (@—1)]
= Cr - NC”"“’, (81.1)
I+2(F-HE]  a—1
wa ApGh)=— (T_lkm)_fﬁc_‘_ﬁi_;
p 2 Peq 8, (a—1)
3G
e 5, (@1 81.2
{Mwu Lo, (58, G0} [l @12

]

-—a Fr=—15% -, Ze (g2 -k
(pF1) 1y O )

2 eq

3 3FCEW 2
5(&—1)
3F !
e -1 . (81.3
+[6 A ENC e @y

For the boundary conditions in & and t in point
x4, we proceed as for the incompressible case. This
yields {1, 2, 3] :

T(xzia ’t)= (a’(x.‘i’ t)—‘ i)axsi(xfi’ [)’ (82' 1)
CEW X!
1 2u(x 4, 1)
k(x . 0)= —53 Txel)— = oz
7\‘ (‘\’A, t) h (xzi’ t) (I)eq (xA’ f)
- C 3
x(Haxal— —F) ] 829
2 (x4.0)

Accordingly, the only independent boundary condi-
tion that must be supplied to the model is the incom-
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pressible form parameter H;(x . 1) in point x,. The
closure algebra allows us to compute a{x,. f) then
t{x 4 ¢} and p(x.0.7) using (82}

[11.6.4. — Equation jor Caleulation of p{x.,0.1)

When the three functions o, T and & are known,
the new p(x.0,r) which will be used as data in the
inviscid fluid predictor for strong coupling is calcu-
lated in inverse mode for xe[v,, x;]. We thus calcu-
late p(x, 0. by equation (77.1} for xe[x, xg]
Outside this upper surface region, the inviscid fluid
predictor, which operates in direct mode, calculates
p. As equation (77.7) is homogeneous, we construct
a solution (pQ)(x.0.1) for xelx, xz] with
(p Q) (x5 0,0)=T as normalization condition (which
is arbitrary). Under these conditions, p ) is a sol-
ution of the following problem:

2Hp )8, @~ D=(p Q)T Cy,, xelrpxd,
(EQ)(XF!Oq [)z 1

Then, for xe[x,,

(83.1)
(83.2)

v¢], the solution of (72) is written:

(0 Q) (x,0, 1)
",01?‘ =M......_.._—,
T,

plx,0.0=7,(Np(x.0,7),
constant y,(r} is delermined at time ¢ by a trailing

edge boundary condition in point x,. (see Section
IvV.2.3).

(84.1)

(84.2)

IV. — STRONG BOUNDARY LAYER/
FLUID COUPLING

IV, 1. — CONSTRUCTION OF THE INVISCID
FLUID PREDICTOR

IV,1.1. — Review of the Formulation

In accordance with the notations of Section II1,2,
we denote the density, the pressure, the two velocity
components in the GQXZ cartesian coordinate system
introduced in Section 11,2 and the temperature as p,
p, {U, W} and T respectively for the inviscid fluid
which, it is recalled, is an isentropic unsteady com-
pressible flow. The inviscid fluid predictor that we
will use for strong coupling is the one developed and
validated in [5, 6]. It is based on the small transonic
perlurbation isentropic Euler equations, written as
follows in 2D

K3, W+, X (WY+8,/%(W)=0, (85)
where x is the reduced frequency defined by (3)
X, Zt—=W((X,Z, 0

={W, (X, Z, 1), W, (X, Z,1), W, (X, Z,0)



which is the field from R x R? into R? of the perturba-
tion variables related to the physical variables by the
equations:

p=1+W,, (86.1)
pU=1+W,+W,— %ﬂwg, (86.2)
pW=W,, (86.3)

where ), is the transonic similarity parameter, writ-
ten:

hg=ML[3-MLQ2=9], v=7/5=14, (87)

and where W f¥(W) and Wr fZ(W) are two
mappings from R> into R* written:

A
W, +W,— -2W;

F=l g | 68D
WS
WS

Fwy=| o (88.2)
M7PW,

Equation (85) is a nonlinear conservative hyper-
bolic equation in the cone ¥ =R* defined by:

fg={w5u&3,wz<£~m}. (89)

st

It has rotational solutions and the irrotational sol-
utions verify the conventional unsteady 2D transonic
small perturbation potential equations. In formula-
tion (85) to (89), the isentropic pressure coefficient is
written:

_2w,
cp—ﬂgw, 90. 1)

and the expression C¥ for the critical C, is written:

Ci=-2a1(1-M2). (90.2)

The local Mach number M is given in any point
of the computation domain by equation (27) with
O=(U?+ WHY2, The numerical method developed
in [4, 5, 6] is based on a mixed formulation: physical
perturbation variables W, associated isentropic vari-
ables UJ. As was shown, (83)-(88) has only one
entropy within the linear terms and constants, which
is the function Wi— S(W) from R’ into R, strictly
convex on %, written:

1 1 2 5
S (W)= S Wi+ - M2 (W3+ W)~ %M; Wi ©n

LetX, Z, 1-U (X, Z. N=(U, (X, Z, 1), U, (X, Z, 1),
Us (X, Z, 1) be the field of entropic variables from
RxR? into R* defined by equation U=V, S(W),
giving:

U, =w,, 92.1)

2 A‘ 2
U,=M2Z (WZM ?‘Wg), (92.2)
Uy= M2 W,. (92.3)

These equations are inverted in:

2
(€*={MER3,U2<£°3 ) (93)

2%,

and for any Ue@*, we have We® with:

W, =U,, 94. 1)
W,=2U,[MZ(1+ /=20, M, 7U)"!, (94.2)
Wi=M72U,. (94.3)

Considering (86) and (94), it can be seen that the
physical variables are related to the entropic variables
by the following equations:

p=1+U,, (95.1)
pU=1+U,+M2U,, (95.2)
pW=MZ2U,. (95.3)

The space discretization of the mixed formulation
is carried out by the finite element method applied
to the weak form of the equations. Tt therefore allows
the use of unsiructured meshes. The open bounded
2D computation domain Q of R* is meshed with
three-node finite elements (triangles) and the bound-
ary 8¢ of the computation domain Q is meshed with
finite elements with two nodes (trace of the finite
elements with three nodes). Approximation space %~
for field W is the space of constant functions on each
finite element with three nodes. It is therefore a space
of functions that are discontinuous on . Approxi-
mation space % for field U} is the space of continuous
functions on Q that are linear on ecach three-node
finite element (finite element P,). The elements of %
therefore have a natural trace on the boundary 00,
contrary to the elements of #". All the boundary
terms {boundary operators and boundary conditions)
are therefore expressed with entropic variables U
using equations (94). The time scheme is implicit and
a single positive symmetric linear system relative to
the entropic variables U (property due to the mixed
formulation with entropic variables which is one of
its major advantages) is solved. For this purpose, we
use the conjugate gradient method to avoid having
to assemble the elementary finite element matrices.
We obtain the steady solutions by solving the un-
steady equations, and therefore by preserving the real
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time step. In 2D, for direct transonic problems with
shocks, we were able to obtain stable steady solutions
without oscillation for CFLs of 50 (see [6]). For ail
the details of this formulation, the reader is referred
to [5, 6}. In particular, for isolated airfoils, the
upstream and downstream boundary conditions are
specified in [5] as well as the treatment of the bound-
ary conditions on the airfoil in direct mode. For the
mixed mode of this inviscid fluid predictor, which is
required for strong coupling with the upper surface
boundary layer, i.e. with the inverse mode on part
of the airfoil (imposed p) and in direct mode on
the other parts, details of the boundary condition
treatment for the airfoil are given in [41].

Nodes that match

38

by spatiai periodicity

Boundary B, = upstream

N

IV.V.2. — Additions for Straight Blade Cascades

For straight blade cascades, il is necessary 1o spec-
ify the upstream and downstream boundary condi-
tions as well as the method for taking the periodicity
conditions into account in the cascade. We developed
two possibilities which are implemented in the code.
For the first, the computation domain consists of a
single channel (Fig. I). This allows steady computa-
tions and unsteady computations to be made for only
the fundamental configuration @,=0, i.¢. when all
the airfoils of the cascade vibrate in phase according

Boundary B, = space-time
/ periodicity line

Boundary B, =downstream

T,y = relative

pitch

N AL v
}V_
[
I‘J///ff@—a
f

S profile X

h=height
of a channel

r
v
\\"r,_

/

I =stagger angle /

Boundary B;=space-time

periodicity line

Fig. 1.
Boundary B, =space-time
periodicity line
Boundary B, = upstream
Boundary B,=downstream
- — T ? — L /
~F ]
/ 3 /7 l/
T, = felative / P Boundary B, =
pitch ,f ; '," space-time h= height
CHANNEL 2 / jf periodicity line of a channel

Central

T, = relative airfoil /

Tel

pitch CHANNEL ;
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to the same pattern (see Section I1,3,3,). This possi-
bility is therefore too restrictive for unsteady compu-
tations and is only really useful for steady computa-
tions. For the second possibility, the computation
domain consists of two consecutive channels (Fig. 2).
It allows steady compuiations as well as all types of
unsteady computations, in particular analysis of the
fundamental configurations with any phase shifts and
therefore analysis of the canonical configuration (see
Section 11,3 .3).

A. Cascade Characteristics

The straight blade cascade is spatially periodic. It
is defined by the data of the profile, the stagger angle
denoted I' and the relative pitch denoted =, The
height & of a channel is therefore written s=r1,,, cos
I' {Figs. 1 and 2)

B. Boundary Conditions on the Upsiream and Down-
stream Bownduries

On the upstream boundary (boundary B, in
Figures | and 2}, the boundary conditions are treated
in the same way as for isolated airfoils (see [5]). On
the downstream boundary (boundary B, in Figures
1 and 2) and in the supersonic case, no conditions
are mmposed. However, for the subsonic case, the
conditions imposed on B, differ from those for iso-
lated airfoils [5). For blade cascades, a back pressure
P, is imposed in the subsonic case on downstream
boundary B; which must be selected so as to effec-
tively have M, on upstream boundary B,. Knowing
D, the conventional equation:

- p
? v (96)
is used to compute p, on B, and therefore, using
(95.1), to compute the value of the Dirichlet condi-
tion U, , relative to component U, which must be
applied to the downstream boundary B,. This yields:

Ul,fl:(‘YMi])ﬂ)lfv_l‘ (97)

Considering (90.1) and (92. 1), the pressure coeffi-
cient C, , on the downstream boundary By is written:
e 2U 1.a
M
An initial estimate of the back pressure p, on the
downstream boundary can be obtained as follows.

The equations for an isentropic flow of inviscid gas
are already introduced [31] :

n(M)=§(M)=[1+

c

pa

98)

-1 =t L}
%Mﬂ .99

2 [y +iy(2r—1)
E = T —
oD [Y+ 1}

1 y—1 (r+ 12 (= 1)
xﬂl:l-l-m’sz} . (100)
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M and p_ =1/(y M2) are known on the upstream
boundary B, from (96). We can then calculate
% (M) by (100). The Mach number on downstream
boundary B, denoted M, is the solution of the
following algebraic equation obtained by writing the
flow conservation equation in a [ approximation
(32} :

cosk

e B (M)
cos (I + o) (M)

(M= (101)

Knowing M, we then calculate the pressure ratio:

(M)
tcomp = s
(M)

(102)

and determine the approximated value of back pres-
sure p, by the equation:

Pa

P

C. Space-Time Periodicity Property of the Flow in
the Cascade

=T (103)

comp’

By hypothesis, the geometry is spatially periodic in
a blade cascade. The space period is defined by
vector AeR?* whose components Ay and A, in the
(O XZ cartesian coordinate system are written:
Ay=1,,sinT, A,=1, ,cosl. (104)
Therefore if (X, Z) 1s any point in a channel and
(X', Z') is the matching point in the next channel
determined from point (&, Z) by spatial periodicity
with period A, we have:

X' =X+A,, Z'=7Z+A,. (105)

Let A(X,Z, 1 be any field of the problem
(p, U, W, etc.). We again place ourselves in the
hypotheses of Section 11,3.3, i.e. that all the airfoils
of the cascade vibrate according to the same harmonic
law with time period T defined by (6) and have the
same constant phase shift @,, between two consecutive
channels. The space-time periodicity property of the

flow in the cascade is then written [36] :

AX,Z,D=AX+Ay, Z+ AL t+¢,—vT), (106.1)
or, which amounts to the same thing:
AKX, Z =, tvD=A(X+A,, Z+ A, 1), (106.2)

where v is an integer greater than or equal to zero.

D. Case of the Computation Domain Consisting of
a Single Channel

This is the situation illustrated in Figure 1 for
which, considering the formulation of the inviscid
fluid predictor, we adopted the method proposed in
{37} which imposes periodicity conditions on the
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cascade when the computation domain includes only
one channel.

Let (X, Z) be a point on boundary B which is the
lower space-time periodicity line. Let (X', Z') given
by (105) be the matching point on boundary B,,
which is the upper space-time periodicity line. For
the discretized problem, the mesh is such that there
is one node in point (X, Z) and one in corresponding
point (X', Z). As the discretized field W is local to
each triangular finite element, there are no periodicity
conditions to be written on this field. However, to
construct the system of equations in entropic variable
U, we write that:

(1) the contribution in node (X, Z} at time f i3
equal to the sum of the contributions of all the finite
elements with this node (X, Z) as apex and the contri-
butions of all the finite elements with the matching
node (X*, Z') as apex at the same time ¢/,

(2) the resulting contribution in node (X, Z) at time
{ is equal to that in the matching node (X', Z') at the
same time #.

It is checked that this expression corresponds to
space-time periodicity (106) for m=0 (zero phase shift
@,) and v=0 which allows us to treat only the steady
cases and the fundamental unsteady configuration
with a zero phase shift. In effect, because the scheme
used is implicit, it is not possible to consider the case
of a phase shift ¢, different from zero. It is for this
reason that we alse developed the two-channel
method described below.

E. Case of a Computation Domain Including Two
Consecutive Channels

This situation is ilustrated in Figure 2. As above,
there is no periodicity condition to be written on the
discretized field W which is local to each triangular
finite element. Tt is sufficient to write the space-time
periodicity condition (106) for the field of entropic
variables U=(U,, U,, U,), defined on periodicity
line B, which matches line B, and on periodicity line
B, which matches line B;. We therefore impose the
following Dirichlet conditions on boundaries B, and
B at each time r

U(X’,Z',f)=[U(X,Z,f“""’(Pm"'VT),
(X',ZYe B,, (X, Z)e B,

where v is an integer 20 so that 0<r—o,,+v Ty,
and,

} (107.1)

VX, Z,)=UX".,Z t+o,—vT),

} (107.2)
(XsZ)EBS: (XJ,Z')EB%

where v is an integer 20 so that 0<r+ ¢, —~vTZL
In equations (107), point (X', Z) matches point
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(X, Z) and both verify (105). Equations (107} show
that the Dirichlet conditions on B, and B; at time ¢
are effectively causal conditions since they depend
only on the present and the past but not on the
future.

IVv.2. — BOUNDARY CONDITIONS FOR
STRONG COUPLING

In accordance with hypothesis {(H3) of Section 11,1
and the explanations given in section 1.1, the upper
surface boundary layer equations (75}, (81) and (83)
are used directly in the local curvilinear cordinate
system for the airfoil upper surface. The upper sur-
face velocity field components {u, w} in the local
curvilinear coordinate system are expressed as a func-
tion of components {U, W} in the OXZ cartesian
coordinate system of the inviscid fluid predictor using
equation {3), i.e.:

w=p,U—a, W,
w=q, U+ [, .

(108.1)
(108.2)

IV.2.1. — Calenlation of Quantity I, on the Airfoil

Calculating I,(x, f)dx (defined by (22.1}) on the
real upper surface geometry and using (108) and (8)
yields the opposite of the boundary condition on the
inviscid fluid profile in the formulation of Section
IV,1 [5] within the second-order terms. For consist-
ency, to achieve strong coupling of the upper surface
boundary layer of Section IIT with the inviscid fluid
predictor based on the formulation recalled in Section
IV,1, we add these second-order terms and we then
obtain on the airfoil upper surface:

[(x, 0 dx=TI (X,1)dX, }
Xelo,1],
I (X, 1ydX = —[(p U—px d,hy) (dZ+ 25D, dX)
—(p W—pK &,b) (dX+dy by dX)]".

1091
xe]0, xg}, ( )

(109.2)

Similarly, we can introduce the equivalent quantity
I, (X, 1) on the airfoil fower surface:

L (X, ndX=—[(p U~ pxd,by) (dZ+3dxh,dX)

—(p W—px d,5,) (dX + 8y by dX)]™. (109.3)

Obviously, considering the explanations given in
Section IV,1 on the approximation spaces, the right-
hand terms of (109.2) and (109.3} are developed
with entropic variables using equations (95).

1V,2.2. — Boundary Conditions on the Airfoil for the
Inviscid Fluid Predictor

By convention, the leading edge node is considered
as belonging to the upper surface whereas the trailing



edge node belongs to the lower surface.

On the airfoil upper surface, the inviscid fluid pre-
dictor operates in inverse mode for xe]0, xg[.
Accordingly, we impose a Dirichlet condition on U,
and the other quantities, U, and U, are calculated.
Considering (95 . 1), this Dirichlet condition is written:

U (G Z(0,0=p" (6, 0= 1, } (110.1)

Xe0, 1, x€]0, xg[,
where p™ denotes the upper surface value of p(x, 0,1
which is calculated by boundary layer equations (83)-
(84). Constant v,(#) is calculated by the scheme
indicated in Section IV,2. 3 below.

On the lower surface which includes the trailing
edge node, the inviscid fluid predictor operates in
direct mode. Therefore, as indicated in [3], we impose
a Dirichlet condition on U, and the other quantities,
U, and U,, are calculated. This Dirichlet condition
is obtained from the boundary condition on the airfoil
lower surface:

=1, (X, DdXx =0, (110.2)

and the right-hand side of (109.3) is expressed with
the entropic variables using equations (95). There-
fore, equation (95.1) is used to calculate the density
p on the lower surface, denoted p~, and in particular,
the value p~ {xg, ¢} in the trailing edge node.

IV.2.3. — Calculation of Constant v, (1)

For each time ¢, we write the trailing edge conti-
nuity of C,. Denoting the C, on the upper surface
and lower surface as €, and C, respectively, we
therefore have:

C (i, )=C} (xp 1), (H1.1)

Considering (90.1), (92.1) and (95.1), condition
(111.1) implies the following condition:

pY (xp, )= (xp, 1) (111.2)
We then deduce the expression of the constant from
equations (83.2) and (84):

1o (=P~ (5 ). (111.3)

1t is therefore effectively the inviscid Fuid predictor,

in direct mode on the lower surface including the

trailing edge, that supplies the boundary condition

for the boundary layer equation used to calculate p*
and therefore U, according to (110.1).

IV.3. — STRONG COUPLING SOLVING

METHOD

It is recalled that the inviscid fluid predictor is
based on solving the unsteady equations, even when
searching for a steady solution. In addition, the
steady solution is always computed (to simplify the

a1

description, it is assumed that there is always one)
before beginning to compute an unsteady solution
around the steady solution. Finally, it is recalled that
the equations of the coupled problem are globally
nonlinear.

Concerning the strong coupling solving method,
there is a slight difference in the order of the internal
iterations between a steady analysis and an unsteady
analysis. We therefore begin by describing the algo-
rithm developed to construct the steady solution, then
we discuss its adaption to the unsteady case. Every-
thing discussed below applies both to isolated airfoils
and to blade cascades, since the two cases differ only
by taking the boundary conditions into account in
the inviscid fluid predictor outside the airfoil.

Let Af be the time step. We denote the quantities
of the problem at time 7,=n Af as p™, U™, B, etc.
and at time #,,,=(n+ 1) Ar as p®* 1, o+ Tl
eic.

IV.3.1 — Algorithm for the Steady Computation

For the present steady case, the time step is the
parameter of the global fixed point. As was done in
[2] for the incompressible case, we had to introduce
a relaxation operator to insure the stability of the
strong coupling [41]. In addition, we had to add an
internal iteration on the inviscid fluid predictor each
time step to balance the inviscid field in the mixed
inverse/direct mode.

Initialization, ty=0.

The steady problem is initialized as follows at the
initial time 1,=0. We set a C, on the airfoil upper
surface, i. e. p* considering (86.1) and (90.1). All
the other fields are taken equal to O for the inviscid
fluid in the entire computation domain. We then
compute an equilibrium solution with the inviscid
fluid predictor, in inverse mode on the upper surface
(p* given, i. e. U, given) and in direct mode on the
lower surface (1J; given).

Tteration n, t,=n At

? n
At time step ¢, i.e. at iteration #, we know all the
quantities p™, U™, W™, ete.

Calculation of iteration n+1, ¢, ,={n+1} Ar.

Step 1 Solution of the upper surface boundary layer
in inverse mode.

The value of form parameter H;{(x,, £) in point x
is fixed. For this step, for x€[x,, xz], we know the
following fields on the upper surface:

p+(n}, Q+{”)1 i71+(“), 8(1"), *@(8"1)5 k("), T("J.

The three boundary layer equations (81) with
boundary conditions (82) are used to calculate the
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following on the airfoil upper surface;

&(""' 1)’ k(n+ 1)‘ r{n+ 1).

As we know p~ (xg.t,) (see Section 1V.2.2), we
calculate guantity p™* ! on the upper surface using
the boundary layer equation (83) and equations (84)
and (111.3). We therefore construct transformation
CL™ such that:

{ p‘f”(rr?’ Q +{n)’ m-i-(ll), 8(;1)1 3?%"1)’ k(n)’ i }

cL* ~
{p+<"+1),O‘.("+1],k€"+”,’E("+”}. (1]2)

We introduce the relaxation operator on p+:

Pt D= —qp* U D (T4 ) p*® (113.1)
where >0 is the relaxation parameter, taken with
the form:

n=%§As,

and where £>0 is a constant on the order of unity
which was optimized by a large number of numerical
tests for isolated airfoils and for blade cascades.
Finally, we make the substitution:

(113.2)

+in+1)

prclax _)p (IE33)

It should be noted that the relaxation operator
introduced is not the most common one, but it is the
one that yields convergence for positive values of n.
it is algebraically correct, since for n— -+ oo, when

+{n+1)

i+ 1 +
convergence occurs, we have p*t¥FH_p*
P pk iens and therefore (113.1) shows that
+{n+1)

Prelax = Psolution-

Step 2. Inviscid fluid solution in mixed inversejdirect
mode.

As mentioned above, we introduce an internal itera-
tion in the inviscid fluid predictor.

Where m is the index of the internal iterations on
the inviscid fluid, we denote the inviscid fluid quanti-
ties at the mth iteration as p®+t-m potlLm e The
convention for writing the equations gives:

N § - +1, 1) =
U(n+i 1) br{n)! H’/(n ) = I’V("),

p—[n+1.1)2p—(u], p+(u+1.1)=p+(n+1),.”
for initialization and:

. = 1
(Jr(rMLl x))m[](u'l" J,

pﬁtrr+ 1, &) p—(u+ 1J,

+1, — +1
H/(n W) — I’V(" )’

p+(”+l'm)=9+(“+”s---

for m— + co:

The inviscid fluid predictor therefore allows the
following transformation to be calculated in mixed
mode (upper surface in direct mode, lower surface in
direct mode):

FP
+{nt+1) _I—(n+].m)..“_,.,0}_m>_{ ~{n+ 1, m+1)
{p * P p H

U(r:-?—l.m+]) W"+l'm+”}. (1 14)
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We iterate on s until reaching a given inviscid fluid
convergence threshold. This threshold is not kept
constant but depends on the level of convergence of
the global iterations {parameter n) of the fixed point.
The threshold variation law was numerically defined
by a large number of numerical tests. After conver-
gence of the internal iterations, we obtain the state
n+1:

p+(n+ l)‘ p*(ud- 1)! U(u+ i)~ ”/(n-t- l),

Q+(rr+l] 1+(u+1) ”I-v‘-[rz‘i-]] M+(rr+1]
ip “ . .

Step 3: Calculation of the upper surface houndary
laver quantities,

Knowing p™@ 1 g* @b pret b boundary layer
equations (75) and (76) allow us to caleculate, on the
airfoil upper surface:

3TN, xe[0,x,]  where 3UTH0YI=0. (113)

Knowing the local Mach number A7+ @D by (27)
and pt¥* 1 we calculate the temperature T+ "9 on
the upper surface with equation (26.3) then
pret D= (T*®*1 by the Sutherland law (26.2)
which allows us to calculate #¢*" by equation
(26.1). We thus construct the transformation:

{PH"JFI),QH'H 1)!M+(ll+l)’ I;-(n-f-l)}

Ep* { S+ 1) gplnt 1)
—— [ BT DY (116)

Results: At the end of these three steps, we there-
fore know:

p+l,’n+ 1)’ Q+(r1+ 1), I?T+("+ 1)’ 6(1n+ 1]., "%g"|+ i}’ k[rnL 1]1 T(n+ l)‘

and we loop on the global iteration {incrementation
by n+1 at step 1).

IV.3.2. — Algorithm for the Unsteady Calculation

The algorithm is the same as that for the steady
calculation except for two modifications. The first
concerns initialization, which is based on the associ-
ated steady state as mentioned above. As for the
steady state, we had to use the relaxation operator
{113) to msure stability of the algorithm and, to insure
equilibrium of the strong coupling which must be
achieved each time step, we included step 1 and step 3
of the upper surface boundary layer solution in the
internal iteration. The so-called internal iteration,
which thus becomes external for the three steps, is
conducted up to a given convergence threshold which
remains constant throughout the unsteady computa-
tion.



V. — NUMERICAL ANALYSIS

V.l. — MESH OF THE AIRFOIL

The mesh of the computation domain for the
inviscid fluid predictor is an unstructured finite-ele-
ment mesh [5, 6]. The mesh of the airfoil and the
mesh of the all the other boundaries result from this
mesh. The airfoil upper surface is therefore meshed
with N two-node finite elements and N+ 1 nodes
P, jef{l,...,N+1} with coordinates (X, Z)
ordered along increasing abscissas X;. The first node,
P, is the leading edge node and the last node, P, ,,
is the trailing edge node. Mesh [inite element
J-j€{l, ..., N} has node P; as origin node and
Py 1 88 end node. Its curvilinear length is
AxF =X — X+ (Z;0,—Z)1Y2. (Therefore,
the first mesh finite element for j=1 has curvilinear
length Ax;.) We denote as j, the index of node P
whose curvilinear abscissa has value x introduced in
Section III,5. As already mentioned, we took the
value j, =2 for the meshes we used in the applications.

V,2. — NUMERICAL APPROXIMATION OF

rP,,

The numerical approximation of mapping FP,,
defined by (114) is obtained by the method described
and validated in [5, 6] for which we gave a few
elements in Section IV,1.

Vi -
CcL*

NUMERICAL APPROXIMATION OF

All the quantities involved are represented by their
values in node P; of the upper surface mesh with
curvilinear abscissa x; for je{l, N—H}. The
solution of the boundary layer equations in inverse
mode leads to progressing from upstream to down-
stream. The derivatives with respect to x are therefore
off-centered to the right.

V.,3.1. — Space Discretization of the Eguation for
Calculation of o.

Using the notations of equation (81.1), we set for
Jeljat L. N+1}

D, —1/2{Cr},
{1+2(ﬁ~lHlk)}J
'c {CE } —D;-
a—l

FUNC (0, k15, 1) =

k3

DJ’:[AX;_ Pj+]_1 [{ pt o, (A—Hk) }j
_{p+ 8, (ﬁwHk)}j—I}a
[{P+ 81(&“ 1)}j

_{P+ 81(&—' I)}j—l]-

Di=[Ax;) p/]*
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The numerical expression of equation (81 .1) is then
written:

FUNCj(cz ki1, )=0. (117

Numerically, equation (117) is solved as follows.

Quantities ki_p. 1o, lﬁ Yoo E’J R T - P

1 Ky T { #s, 1 0, being given, we calculate

the solutlon in Ot of (117) by a dichotomy method
using closure algebra.

V.,3.2. — Space Discretization of the Equations for
Caleulation of k and 1

Using the notations of Section II1,6.3 again, we

set:
_ | o
axt (o, }.;,5{ 2 }
P q )i Lol

1 -
Aj: ;ij* {q)err }j’ Aj:

IGCC - 3FC,.
szAx}“{_:__fq_}, Bj=A\ {mw_:fl_}
O (a—1)); &5, (w—1)
I ~ ~
Lj:E:[{P+81(a_1)}j”{p+51@1_1)};—1]»
i
3 = F
=L, 28 &=L, MMLW :
5 (o— 1)J; 8, (ot 1));
—1=pj 1 Gy k; 1 E P; F j=1%- s
‘”(k‘ct) Gik— E+
B;
_AJ-(T_yujk:”z)‘i'Bjk'f'—c‘ik,
g0k, )=Ft~ E[;':‘
J

+A; 0tk =k + Binr~ G

Space discretization of equations (81 .2) and (81.3)
is then written for je {j,+1, ..., N+1}

g k1, 0)=0, gk, 0=0. {118)
J J'

Numerically, we use the two equatlons (118) as
follows Quantities 4;, B, C;, E;_,, A B C
Ei_s hy ki and being known, we calcuiate
solut10n (k 1;) of nonlmear system (118) by a Newton
method.

V,3.3. — Space Discretization of the Equation for
Calculation of p~

Space discretization of equation (83.1) gives, for
j€{jg - N+I ]

pQ;il{3 @@= 1};=Ax] {Cp, 1]
=p Q-1 {8, @—)};_. (119.1)
EQI\'+§:1- (119.2)
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Having solved recurrence (119), we then obtain p;
for using (84) and (111 .3).

V.,3.4. — Method for Solving the Approximation for
CL*

The results of the three above sections allow us to
construct the numerical approximation of transforma-
tion CL* defined by (112). Equation (117) in o is
coupled with the two equations (118) in k and t. The
three nonlinear equations (117)-(118) are solved from
upstream to downstream. They allow us to construct
the following mappings by recurrence

CTIN TN PR T P % )

for je {ja1, ..., N+1} with initial condition
(o - k; -7;,). To compute the state in node j knowing
the state in node j— I, we solve (117)-(118) by a local
fixed point method. Knowing &, k and 7 in all nodes
$ja .., N+1}, we compute p/, je{j, ..., N} as
indicated in Section V,3.3.

V.4, -
ED™

NUMERICAL APPROXIMATION OF

Construction of the approximation of transforma-
tion £D* defined by (116) is based on space discreti-
zation of equations (75) and (76) used to compute 3,.
Using (119.1), we directly obtain the scheme from
upstream to downstream, expressed by the following
recurrence of D, for je{2, ..., N+1}

D;=Dy_ +(X;— X, D { I} (X0}, (120.1)
D=0, (120.2)

where D;=p;" @ {8, };, which allows us to calculate
{8,}; and in which 1, is given by (109.2).

VI. — APPLICATION
TO AN ISOLATED AIRFOIL

VI,I. — CONFIGURATION ANALYZED

The configuration analyzed is that of the tests con-
ducted in January 1984 in the 2D current test section
of the ONERA S3MA wind tunnel on a turboma-
chine blade with a chord L =300 mm, a relative thick-
ness of 2.7% and a PSMS53 profile (PFSU: Pflenming-
er-Sulzer blade profile). The test section height is
780mm. The Mach number is M,=0.5 and the
reference Reynolds number is & ~3, 400, 000.

The experimental results are taken from [34, 39].
We limited our presentation to those results for which
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we had wind tunnel measurements [34, 39]. Other
numerical results can be found in [41, 42}, in particu-
lar for the unsteady case. The steady incidences are
o, =3 4% and 5%

The only unsteady case for which we have exper-
imental results is a pitching movement at haif-chord
around a steady incidence o,=35" with amplitude
Ao=0.5 and frequency f=w/2n=21.49Hz, i.e. a
reduced frequency x=0.24820.25. For this configu-
ration, only the first harmonic of C, for the upper
surface alone was available experimentally.

VI,2. - MESH

The inviscid fluid predictor uses an unstructured
finite element mesh. All the computations given
below for the isclated airfoil described in Section V1,1
were conducted on the same mesh. Figure 3 shows
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the mesh of the entire computation domain, Figure 4
shows an enlargement of this mesh in the neighbor-
hood of the airfoil. 1t includes 2010 nodes and 3712
three-node finite elements. There are 101 equally
spaced nodes on the airfoil upper surface and on the
lower surface, 1. e. 200 nodes for the entire airfoil.
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VI.3. — STEADY ANALYSIS

VL3.1. — Parameter Values for the Steady Computa-
tion

Time step. — For the steady computations with
and without upper surface boundary layer, we used
Ar=27x/1024 and k=1,

Form parameter. — Considering the mesh, the first
mesh finite element on the upper surface leading edge
has a length of around 1/100. In accordance with
the model described in Section II,5, we used the
value x,=1/100 for all the calculations with the upper
surface boundary layer, i.e. the boundary layer equa-
tions were taken into account starting on the first
node of the upper surface after the leading edge node.
In this node, we used the value H,=65, corresponding
to a strong separation, in all the steady calculations.

Relaxation parameter. — This parameter is defined
by equation {i13.2} and is used only for computa-
tions with a upper surface boundary layer. For all
steady computations on an isolated airfoil, the numer-
ical tests shows that the value £=0.8 is a good trade-
off. Considering the time step used, it gives 1) =0.003,

Vi,3.2. Comparisons. Steady Computations
without Boundary Layer. Steady Computations with
Boundary Layer. Steady Wind Tunnel Measurements

To quantify the contribution of the model with
upper surface boundary layer, we perform the calcula-
tions in an inviscid fluid alone and with strong cou-
pling with the upper surface boundary layer. The
results are compared with the measurements. For
each incidence, 3°, 4° and 5°, Figures 5 to 7 show the
upper surface and lower surface steady —C, values
compared with the values obtained experimentally.
Figures ¢ correspond to the calculations without
boundary layer and figures b to the calculations with

1.5 7 157
-Cp -{p
13
0,75 0.751
0 0
1 []
Steady Cp ;
-0.75 q — upper surface - 0.75 |
B lower surface
A exp. up.
-1.5- exp. low. -1.5-

Figs. 5 a2 and § b.

45

[ e-'.
Steady Cp !
-0.75 _;_ —__ upper sur’race_o‘:’,5 i
----- lower surface
A exp. up.
-15 ¢ exp. low. -1.5 4
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1.5 1 1.5 7
-Cp 'cp P
0.75 0.75 3
0 0
L ' [
. Steady Cp W
-0.75 —— upper surface -0.75 .
----- lower surface
A exp. up. _
-15Jd exp. low. -1.5

Figs. 7aand 7 b.

upper surface boundary layer. The agreement is
reascnable between the calculations with boundary
layer and the measurements (Figs. 5 5 to 7 4). The
large differences appearing in the comparisons
between the calculations without boundary layer and
the measurements (Figs. 5 a to 7 a) clearly show the
contribution of the model with boundary layer.

Finally, the computations (with boundary layer)
show that the reattachment point is located at 16%,
29% and 47% of the reduced abscissa for incidences
of 3°, 4° and 5° respectively.

VL4 — UNSTEADY ANALYSIS

Vid.l. — Parameter Values for the Unsteady Compu-
tation

We used the same time step as for the steady
calculation, i.e. Ar=2w/1024, the same value of
x,=1/100 and the same value of the form parameter
in x,: H,(x,, H=65. However, for the unsteady cal-
culations on an isolated airfoil, the numerical tests
show that a good tradeoff is obtained for £=0.2
which, considering the time step chosen, gives
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n=0.001. The unsteady computation was conducted
over six periods starting from the associated steady
solution. The periodic solution was obtained by the
third period and the results we give correspond to
the harmonic analysis conducted on the sixth period.

V1.4.2. = Comparisons. — Unsteady Computations
without Boundary Layer. Unsteady Compuitations with
Boundary Layer. Unsteady Wind Tunnel Measure-
ments

The unsteady configuration is described in Section
VI,1. Here again, we performed the unsteady calcula-
tion for the inviscid fluid alone and with strong cou-
pling with the upper surface boundary layer. The
results are compared with the measurements. Figures
8§ and 9 show the real part and imaginary part of the
first harmonic of the upper surface and lower surface
unsteady — C, values respectively, with comparisons
with experimental values for the upper surface,
Figures 8 ¢ and 9 ¢ correspond to the calculations
without boundary layer and Figures 86 and 94 to the
calculations with upper surface boundary layer, .1t

307
_Cp

30+
..Cp

‘ Unsteady Cp
«15 1

— Up. real part -15
Low. real part
A Exp. up. real part
-30- -390
Figs. 8 2 and 8 b.
301 30
-Cp -Cp
154 15 4

X/c 1

Unsteady Cp

~15 4 =15 1

—- Up. imag. part — Up. imag. part

""" Low. imag. part """ Low. imag. part
.30 4 & Exp. up. imag. Part g & Exp. up. imag. part

Figs. 9 aand 9 4.
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can be seen that the correlation between the unsteady
computations with boundary layer and the measure-
ments is relatively good (Figs. 8 & and 9 ). The
large differences appearing in the comparisons of the
computations without boundary layer and the meas-
urements (Figs. 8 « and 9 «) show the advantage of
taking the upper surface boundary layer into account
in this case. Finally, the unsteady computation with
boundary layer shows that during a period of periodic
flow, the reattachment point is located between 38%
and 54% of the reduced abscissa.

VII. — APPLICATION TO A BLADE
CASCADE

VILi. — CONFIGURATION ANALYZED

The configuration analyzed is the one correspond-
ing to the tests conducted in the ONERA R4 wind
tunnel between £977 and 1980 on a 2D blade cascade
including seven blades with a PFSU profile, chord
L=90mm, relative thickness of 2,7%. The height of
a channel is 1=0.485, the relative pitch is 1,,=0.95
and the stagger angle is [’ =59.3°. The Mach number
considered is M =0.5 and the reference Reynolds
number #~1,000,000. The experimental results are
taken from [7, 46] and, as above, we limited the
presentation below to only those results for which
wind tunnel measurements were available, The steady
cases considered are defined by incidences o, =3.9°,
5.9° and 7.9°. The unsteady cases for which we
had experimental results correspond to a canonical
pitching configuration, i.e. only the center blade of
the cascade vibrates in pitching mode around a given
steady incidence (Section I1,3.3.). The movement of
the central airfoil is half-chord pitching around one
of the three steady incidences considered: «;=3.9°,
5.9° and 7.9°, with amplitude Ax=0.3" and for the
following reduced frequencies: for o;=3.9°, x=0.28,
0.74, 1.08; for o,=5.9°, x=0.28, 0.74, 1.12; finally,
for o, =7.9°, k==0.74. For the last incidence, we have
measurements only for a reduced frequency of 0.74.
For reasons cost and volume of the results, we treated
only the case o,=5.9", «x=0.74 with unsteady strong
coupling (Section VIL,2.3). However, we give all the
results (Section VIII) to give a significant validation
of the simplified quasi-steady method used to predict
the unsteady aerodynamic forces on blade cascades
with boundary layer.

VILL2. — ANALYSIS WITH A COMPUTATION
DOMAIN CONSISTING OF TWO CONSECU-
TIVE CHANNELS

As explained above in Section TV,1.2, modeling
two consecutive channels allowed us not only to per-



form the steady computations but also the computa-
tions of all the types of unsteady configurations. The
diagram of such a computation domain is ‘given in
Figure 2.

VIIL2.1. — Mesh

All the steady and unsteady computations described
herein for the cascade described in Section VII,1 were
conducted on the same mesh. Figure 10 shows the
unstructured finite-element mesh of the entire com-

o

Fig. 10.

putation domain consisting of two consecutive chan-
nels. Figure 11 shows an enlargement of this mesh
in the neighborhood of the central airfoil. It includes
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4166 nodes and 7706 three-node finite-elements.
There are 200 equally spaced nodes on the central
airfoil. The nodes on periodicity lines B, to B, (see
Fig. 2) match as indicated in Section IV,1.2.E.

VI1,2.2. — Steady Analysis

A. Parameter Values for the Steady Computation.

Back pressure p, on the downstream boundary. —
This pressure is estimated by equations (99) to (103)
then indirectly adjusted on the measurements. The
values used for all the steady computations with and
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without upper surface boundary layer are: p,=2.91
for «,=3.9° and p,=2.94 for o;,=5.9" and 7.9°.

Time step. — We used Ar=2x/1024, x=0.74 for
the three steady calculations without boundary layer
Ar=2x{2048, x=0.74 for the steady calculations with
the upper surface boundary layer.

Form parameter. — The situation is the same as
that of the isolated airfoil. The mesh allows us to
take x,=1/100, corresponding to the second node on
the upper surface and the value H;=65 in this node,
corresponding to strong separation.

Relaxation parameter. — This parameter, used only
for strong coupling calculations, is defined by equa-
tion (113.2). For all the steady computations on the
blade cascade, the numerical tests showed that £=10.3
was a good tradeoff, giving 1 =0.001.

— Steady Computations without
Steady Computations with Boundary
Steady Wind Tunnel Measurements.

As for the isolated airfoil configuration, we per-
formed the cascade computations with inviscid fluid
alone and with strong coupling with the upper surface
boundary layer. The results are compared with the
measurements. For each incidence, 3.9°, 5.9° and
7.9°, Figures 12 to 14 give the upper surface and
lower surface steady — C, values for the central airfoil
with comparison with the experimental values.
Figures a correspond to the calculations without
boundary layer and figures b to the calculations with
upper surface boundary [ayer. It can be seen that

'

-Cp s

B. Comparisons.
Bondary Layer.
Layer.

1 1
-Cp

0.5+ 0.5

0 n,v;ﬁ*gl’““l 0
p bt we

Steady Cp

— Up. surf.

-0.5 7 -0.5 1

. Low. surf.
& Exp. low.
9 Exp. up.

.
Figs. 12 a and 12 b.

the correlation between the measurements and the
calculations with upper surface boundary layer
(Figs. 12 b to 14 b) is very good. The large differences
appearing in the comparisons between the measure-
ments and the calculations without boundary layer
(Figs. 12 « to 14 @) show that it is absolutely necessary
to take the upper surface boundary layer into account
in these flow configurations for this type of cascade.

Finally, the calculations with boundary layer show
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that the reattachment point on the central airfoil is
located at 13%, 19% and 39% of the reduced abscissa
for incidences of 3.9°, 5.9° and 7.9° respectively.

VIIL,2.3. — Unsteady Analysis

A. Parameter Values for the Unsteady Computation.

This corresponds to the canonical configuration for
which the cascade is at a steady incidence o;=15.9°
and only the central airfoil vibrates by half-chord
pitching around the steady incidence with an ampli-
tude Ax=0.3" and a reduced frequency k=10.74,

We used the steady value p,=2.94 for the back
pressure, the same time step as for the steady calcula-
tion, ie. Ar=2w/1024 for calculations without
boundary layer and Ar=2=/2048 for calculations
with strong coupling, as well as the value x,=1/100
and H;(x, #)==65. As for the unsteady calculations
on an isolated airfoil, the numerical tests with
unsteady strong coupling for blade cascades led to
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the equation:
L\ M
! (1) — 3
! xfc 1 C,u “MMM Z C:v.}m'

using the same value of &, ie &=0.2, giving
112¢0.0005 considering the time step used.

The period T=2mn was partitioned into M=16
intervals with a constant step 2 /M and the unsteady
computations were conducted for the 16 phase shifts
defined by equation (9).

For each phase shift, the unsteady computation was
performed without boundary layer and with strong
coupling starting from the associated steady solution.
We numerically observed that for each of the
2x 16=32 unsteady computations, the periodic
solution was obtained by the third period. We there-
fore systematically conducted the harmonnic analysis
of the C, values on the third period. Let %), be
the first harmonic of the unsteady C,, on the central
airfoil of the cascade for the fixed phase shift
p=2mm/{M, me{0, ..., M~—1} and for one of the
two types of unsteady calculations (with or without
boundary layer). Then, the superposing principle
{Sectton 11,3.3) is applied to estimate the first har-
monic of the unsteady C, on the central airfoil of the
cascade for the canonical pitching configuration using

(121
m=0

B. Comparisons. - Unsteady Computations without
Boundary Layer. Unsteady Computations with Bound-
ary Layer. Unsteady Wind Tunnel Measurements.

Figures 15 and 16 show the real part and imaginary
part respectively of the —CU values calculated by
(121) for the upper surface and lower surface of the
central airfoil of the cascade, with comparisons with
experimental values. Figures 15« and 16« correspond
to the calculations without boundary layer and
Figures 154 and 164 to calculations with upper sur-
face boundary layer. The agreement between the
unsteady calculations with boundary layer and the
measurements (Figs 155 and 16 &) is satisfactory. The
large differences appearing in the comparisons
between the calculations without boundary layer and
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the measurements (Figs. 15¢ and 164) show the
essential role played by the upper surface boundary
layer.

VII3. — ANALYSIS WITH A COMPUTATION
DOMAIN CONSISTING OF A SINGLE CHAN-
NEL

When the computation domain consists of a single
channel, only steady configurations and the funda-
mental unsteady configuration with zero phase shift
can be treated (Section IV,1.2.D). We give the
steady results with strong coupling at M =0.5 for
incidences of 5.9° and 7.9°, to be compared with the
results of Sectin VII,2.2 . B obtained with a computa-
tion domain consisting of two consecutive channels.

VIL3. 1, — Mesh

Figures 17 and 18 show the unstructuted finite-
element mesh of the computation domain consisting
of a single channel. It includes 4721 nodes and & 900
three-node finite-elements. There are 200 equally
spaced nodes on the central airfoil. The nodes on
periodicity lines B, and B (Fig. 1) coincide (Section
v,1.2.D).

Fig. 18.
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VIL3.2. — Sready Analysis

A. Parameter Values for the Steady Computation

For the two steady incidences treated, «;=5.9° and
7.9°, we use the same back pressure value as for the
model with two consecutive channels, i.e. p,=2.94
(Section VIL,2.2.A). For the time step, we used
Ar=2m{1024, x=0.74. As above, the mesh allows
us to take x,=1/100 (second node of the upper sur-
face) and H,=63 in this node. For the relaxation
parameter, we preserved the value £=10.3 which again
gives n=0.001.

B. Comparisons. — Steady Computations with
Boundary Laver. Steady Wind Tunnel Measurements.

The upper surface and lower surface steady -C,

values obtained for calculation of strong coupling
with the upper surface boundary layer are shown in

_Cp
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Figs. 19 2 and 19 5.

Figures 19 and 20 for incidences of 5.9° and 7.9°
respectively. These results should be compared with
those given in Section VIL,2.2. B, i.e. Figures 135
and 1454, Taking into account the fact that the
numerical method is different and the two meshes do
not have the same fineness, it can be considered that
the results obtained are consistent.

VL — SIMPLIFIED
QUASI-STEADY METHOD
FOR UNSTEADY BLADE CASCADE
COMPUTATIONS

VIIL1. — SIMPLIFIED METHOD PROPOSED

For unsteady aeroelasticity analyses, it is known
that quasi-steady methods can be used in certain cases
to construct an initial approximation of the unsteady
aerodynamic forces. In the present situation of blade
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cascades, such approximations are a great advantage
because of the numerical costs generated for each
point of the computation domain. For instance, for
the case discussed in Section VII2.3, 16 unsteady
computations with strong coupling with the boundary
layer are a priori necessary for each point (associated
with the 16 phase shifts chosen) and each computa-
tion must be carried out on at least three periods,
which is equivalent to an unsteady computation with
strong coupling on 48 periods with 2048 time steps
per period for the frequency considered. Obviously,
the only way of obtaining a satisfactory quasi-steady
approximation is to start from very good steady

solutions with strong coupling. This is what we will
do.

There is no particular theoretical justification for

the simplified method described below. Tt applies

the conventional general principle of a quasi-steady
appreach and its only validation is achieved by com-
paring its predictions with wind tunnel measurements
(Section VIIL,2).

We therefore consider the canonical configuration
of the blade cascade defined by a steady cascade
incidence o, and only the harmonic vibration of half-
chord pitching of the central airfoil around the steady
incidence, with amplitude A« and reduced frequency
k. Let C0V be the first harmonic of the unsteady C,
on the central airfoil of the cascade, to be estimated
by a quasi-steady simplified method.

We propose the following simplified method:

Cfnl] ~ ngmsi‘ vise +jS K CZ""SE‘ m’sc’ (122 . l)
where j=_ /=1, s=—1 on the upper surface, s= + |
on lower surface and:

C:]J!JRSI. LISC
staf, vise __ oslat, visc —
mCP {0, + Aa) Cp (o, Acx)1 (122.2)

2 Ao

where Cf,'“""‘“(a) is the steady C, calculated with
strong coupling with the upper surface boundary layer
when the cascade is at steady incidence o. These
steady calculations can be performed with a computa-
tion domain consisting of two consecutive channels
(Section VIL,2) or a single channel (Section VII,3).
Numerically, it is important for the steady computa-
tions for the two incidences o;+ Aa and o;— A to
be conducted under the same conditions (same
parameters and same convergence level). To mini-
mize the numerical costs, each of the two steady
compuiations with strong coupling is initialized from
the same steady solution corresponding to the mean
steady incidence o, To use ecquations (122), it is
therefore necessary to perform an initial steady com-
putation then two further steady computations.
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VIIL2. — COMPARISONS OF THE UNSTEADY
COMPUTATIONS WITH WIND TUNNEL
MEASUREMENTS

We applied the above simplified method (equations
(122}) to the configurations defined in Section VII.1
and compared the results obtained with unsteady
wind tunnel measurements [7. 46]. The computations
were made on the mesh defined by Figures 10 and
1. The results and the comparisons are given in
Figures 21 to 27. Figures a represent the real part
of — % on the upper surface and figures b represent
the imaginary part. All the cases of calculation cor-
respond to M =0.5 and Ax=0.3". Figures 21, 22

. L

and 23 are relative to a steady incidence o, =3.9° and

357 355
-Cp -Cp
17.5 17.5

4
0 : S [ J

ewl.n’#‘“’" A I v +H
4 xic 1 xe 1

Unsteady Cp
175 . Up. imag. part

... Low. reat part
A Exp. up. real part

¢ Exp. low. real part

--- Low. imag. part
A Exp. up. imag. part
0 Exp. tow. imag. part

-35- -35-
Figs. 212 and 21 &,
35 ] 357
-Cp -Cp
17.5 17.5-1
0 —
Unsteady Cp
-17.54— Up. real part -1754 Y — Up. imag. part
- Low. real part | . Low. imag. part
A Exp. up. real part A Exp. up. imag. part
.35 ¢ Exp. low. real part _35 W] Exp. low. imag. part

Figs. 22a and 22 5.

to reduced frequencies x=0.28, 0.74, 1.08. Figures
24, 25 and 26 are relative to a steady incidence
o, =59 and reduced frequencies k=0.28, 0.74, 1.12
respectively. Finally, Figure 27 is relative to a steady
incidence o,;=7.9° and a reduced frequency x=0.74.
It can be seen that the correlation is generally very
good between the unsteady predictions made by the
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quasi-steady method proposed and the wind tunnel
measurements.

IX. — CPU TIME

The times below are CPU times on a
CRAY XMP416. The code uses only one processor

0 —
Unsteady Cp
-154 . Up. real part -159 ||— Up. imag. part
- Low. real part | V.o Low. imag. part
A Exp. up. real part & Exp. up. imag. part
-30~ Exp. low. real part  -30- Exp. low. imag. part
Figs. 264 and 26 b.
207 207
-Cp -Cp
10 , 10
& a A
L ws A PRI S
! xfe 1
Unsteady Cp
101 __Up. real part -10 7~— Up. imag. part
- Low. real part - Low. imag. part
A Exp. up. real part & Exp. up. imag. part
20— 9 Exp. low. real part-zoi ¢ Exp. low. imag. part

Figs. 272 and 27 4.

and a small memory space (less than 2 megawords
for the coarsest meshes). The average CPU times for
a large number of calculations with different meshes
and the two transformations are given. They
represent the entire computation cost for the strong
coupling method described in Section TV,3.

The cost of the CL* transformation defined by
(112) which represents calculation of the boundary
layer in inverse mode is 5% 107* seconds per upper
surface node and per iteration.

The cost of the FP,, transformation defined by
(114}, which represents the calculation of the inviscid
fluid predictor, is 1077 seconds per three-node finite
clement and per iteration, for both the steady and
the unsteady case on an isolated airfoil or a blade
cascade with one or two channels.

X. — CONCLUSIONS

The model developed gives globally satisfactory
steady and unsteady results for isolated airfoils and
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straight blade cascades. The comparisons made
between wind tunnel measurements and calculations
with and without upper surface boundary layer show
the interest of the model proposed for this situation,
where the upper surface boundary layer separates on
the leading edge and reattaches on the airfoil. This
model could be improved by extending the boundary
layer into the wake and by introducing the lower
surface boundary layer.  This would probably
improve the quality of the prediction in the trailing
edge region when the incidence increases. Such an
improvement would obviously be to the detriment of
the numerical costs. Finally, the simplified quasi-
steady method described hercin, based on steady com-
putations with strong coupling with the upper surface
boundary layer, gives relatively satisfactory predic-
tions of the unsteady aerodynamic forces in straight
blade cascades for the cases studied, at a lower cost.
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