T. K. Caughey, Equivalent linearization techniques, Journal of the Acoustical Society America, issue.11, pp.351706-1711, 1963.
DOI : 10.1121/1.1918794

URL : http://authors.library.caltech.edu/4085/1/CAUjasa63b.pdf

Y. K. Lin, Probabilistic Theory of Structural Dynamics, 1967.

S. H. Crandall, Heuristic and equivalent linearization techniques for random vibration of nonlinear oscillators, 6th Int. Conf. Nonlinear Oscillations (ICNO), 1978.

P. D. Spanos, Stochastic Linearization in Structural Dynamics, Applied Mechanics Reviews, vol.34, issue.1, pp.1-8, 1981.
DOI : 10.1007/978-3-642-83535-3_29

J. B. Roberts and P. D. Spanos, Random Vibration and Statistical Linearization, 1990.

I. Elishakoff and G. Q. Cai, Approximate solution for nonlinear random vibration problems by partial stochastic linearization, Probabilistic Engineering Mechanics, vol.8, issue.3-4, pp.233-237, 1993.
DOI : 10.1016/0266-8920(93)90017-P

G. I. Schuëller, M. D. Pandey, and H. J. Pradlwarter, Equivalent linearization (EQL) in engineering practice for aseismic design, Probabilistic Engineering Mechanics, pp.95-102, 1994.
DOI : 10.1016/0266-8920(94)90033-7

R. N. Miles, An approximate solution for the spectral response of Duffing's oscillator with random input, Journal of Sound and Vibration, vol.132, issue.1, pp.43-49, 1989.
DOI : 10.1016/0022-460X(89)90869-9

C. Soize, Sur le calcul des densités spectrales des réponses stationnaires pour des systèmes dynamiques stochastiques non-linéaires, Contrôle Actif Vibroacoustique et Dynamique Stochastique, Publications du LMA-CNRS, pp.297-344, 1991.

C. Soize, Stochastic linearization method with random parameters and power spectral density calculation, pp 217?222 in Structural Safety and Reliability, 1994.

V. Roy, R. Spanos, and P. D. , Power Spectral Density of Nonlinear System Response: The Recursion Method, Journal of Applied Mechanics, vol.60, issue.2, pp.358-365, 1993.
DOI : 10.1115/1.2900801

R. Bouc, The power spectral density of response for a strongly non-linear random oscillation, Journal of Sound and Vibration, issue.3, pp.175-317, 1994.

R. L. Stratonovich, Topics in the Theory of Random Noise, 1963.

W. D. Iwan and P. D. Spanos, Response Envelope Statistics for Nonlinear Oscillators With Random Excitation, Journal of Applied Mechanics, vol.45, issue.1, p.45, 1978.
DOI : 10.1115/1.3424222

J. B. Roberts, The energy envolope of a randomly excited non-linear oscillator, Journal of Sound and Vibration, vol.60, issue.2, pp.177-185, 1978.
DOI : 10.1016/S0022-460X(78)80027-3

J. B. Roberts and P. D. Spanos, Stochastic averaging: An approximate method of solving random vibration problems, International Journal of Non-Linear Mechanics, vol.21, issue.2, pp.111-134, 1986.
DOI : 10.1016/0020-7462(86)90025-9

Y. K. Lin, Some observations on the stochastic averaging method, Probabilistic Engineering Mechanics, vol.1, issue.1, pp.23-27, 1986.
DOI : 10.1016/0266-8920(86)90006-8

W. Q. Zhu, Y. S. Yu, and Y. K. Lin, On improved stochastic averaging procedure, Probabilistic Engineering Mechanics, vol.9, issue.3, pp.203-211, 1994.
DOI : 10.1016/0266-8920(94)90006-X

V. Roy and R. , Stochastic averaging of oscillators excited by colored Gaussian processes, International Journal of Non-Linear Mechanics, vol.29, issue.4, pp.463-475, 1994.
DOI : 10.1016/0020-7462(94)90015-9

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, World Scientific, vol.17, 1994.
DOI : 10.1142/2347

URL : https://hal.archives-ouvertes.fr/hal-00770411

J. S. Bendat, Nonlinear System Analysis and Identification From Random Data, 1990.

M. Shinozuka, Simulation of Multivariate and Multidimensional Random Processes, The Journal of the Acoustical Society of America, vol.49, issue.1B, pp.357-367, 1971.
DOI : 10.1121/1.1912338

S. H. Crandall, Les vibrations forçforç´forçées dans les systèmes non linéaires, Colloques internationaux du CNRS, p.148, 1963.

F. Kozin, Structural Parameter Identification Techniques, in Analysis and Estimation of Stochastic Mechanical Systems, pp.137-200, 1988.

O. Fillatre, Identification des systèmes dynamiques faiblement non-linéaireslinéaires`linéairesà partir d'excitations aléatoires, Thèse de doctorat de Mécanique de l'Ecole Centrale, 1991.

O. Fillatre, Identification of weakly nonlinear dynamic systems by means of random excitations, La Recherche Aérospatiale, vol.3, pp.11-22, 1992.

O. Lefur, Identification des systèmes dynamiques multidimensionnels faiblement nonlinéaires par une méthode de linéarisation stochastiquè a paramètres aléatoires, Thèse de doctorat de Mathématiques de l'Université Pierre et Marie Curie, 1995.