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Vibration Damping in Low-Frequency Range Due to Structural Complexity.
A Model Based on the Theory of Fuzzy Structures and Model Parameters Estimation

Christian Soize

Structures Department, ONERA, BP 72, F-92322 Chatillon Cedex, France

1. INTRODUCTION

The present paper concerns the low-frequency range. In order to help the understanding,
we shortly recall the basic works previously developped in the area of the theory of fuzzy
structures for the medium-frequency range.
In the medium-frequency range, the modeling of the "secondary" mechanical subsystems
attached to the "primary" structure must generally be introduced to improve the structural-
acoustics predictions of structures having an internal structural complexity. Vibration experi-
ments yield smooth morphology for the MF frequency response functions of structures having
a structural complexity. The rates of dissipation that would correspond to such smoothing are
much too high to allow this phenomenon to be explained by mechanical damping alone. The
apparent dissipation occuring on the primary structure is due to the energy transfered into the
secondary mechanical subsystems attached to the primary structure and entering in vibration
in the MF range. It is therefore the internal dynamical DOF of the secondary subsystems
that are involved and a pure mass model of these susbsystems can in no case account for
these phenomena. These observations mean that in order to predict the MF vibrations in the
primary structure, we must model the dynamical effects that the secondary subsystems have
on the primary structure.

In this way, we have developed the theory of fuzzy structures in several previous papers.
We have developed this theory [1–3] with an adapted numerical analysis [4,5] which is
based on the MF method [6,7] and we have presented some applications for the validation
[4,5]. The MF method [6] that we have developed to solve forced vibration [6,7], radiation
problems [7–11] and scattering problems [12,13], has been used by R. Vasudevan [14,15] to
solve radiation and scattering problems. In 1991, this theory of fuzzy structures has been
revisited by V.W. Sparrow [16] who has initialized new researches in this area in the United
States of America [17–24]. Recently, the author has presented [25] a survey of its theory of
fuzzy structures including new results concerning probabilistic fuzzy constitutive law with
spatial memory (Type II law) [26,27] and developed within the context of sound radiation and
acoustic scattering problems.

In the theory of fuzzy structures, we have introduced [2] the term "master structure" to desig-
nate the "primary" structure and, in some cases, internal and/or external fluid regions, i.e. the
part of the mechanical systems that is accessible to conventional modeling. The complement
to the master structure with respect to the complete mechanical system is designated as the
"fuzzy substructure". (In [1,2,25], we said “structural fuzzy”). It is by definition the part of the
structure that is not accessible to conventional modeling because details are unknown or are
imprecisely known. The fuzzy substructure consists of the secondary mechanical subsystems
"attached" to the primary structure. Finally, a "fuzzy structure" is a master structure plus one
or more fuzzy substructures globally called fuzzy substructure. The set of all the substructures
will be called the fuzzy substructure.

Computers and Structures, 58(5), 901-915 (1996) 1 C. Soize - Preprint



It should be noted that in the MF range, the previous works [1–5,25] yield a complete model
of the dissipation due to the structural complexity and tools for solving the random equation
resulting from the probabilistic model of a fuzzy structure. In this frequency range, the
equations are written using all the physical DOF of the master structure and the MF method
allows the mean response and the root-mean-square response to be calculated.

For some large structures with internal structural complexity, the phenomena described above,
which usually appears in the MF range, can also appear in low-frequency (LF) range. This
means that in the LF range in which the master structure has a modal response, the values of
modal damping rates cannot be explained by mechanical damping alone, but is mainly due
to the mechanical energy transfered from the master structure into the fuzzy substructure,
exactly as for the MF range.

In this paper, we present a modeling of the structural dissipation due to internal structural
complexity, adapted to the low frequency range for which the frequency response function of
the master structure can be constructed by the modal synthesis. This vibration damping model
is deduced from the theory of fuzzy structures which was previously developed by the author.
Presently, this model uses only the mean part of the probabilistic fuzzy law of the fuzzy
substructure [2,25]. We give an explicit model of the generalized damping matrix induced by
the internal structural complexity. This generalized damping matrix depends on parameters
related to the fuzzy substructure. Finally, model updating considerations are studied and an
example is presented.

2. MODELING IN THE LF RANGE FOR VIBRATION DAMPING DUE TO
STRUCTURAL COMPLEXITY

This section deals with the modeling and the mathematical formulation in the low frequency
range for vibration predictions using the theory of fuzzy structures. The formulation developed
is especially adapted to complex geometry. In order to simplify the formulation, we assume
that there is no fluid coupled with the primary structure and consequently there is an identity
between the master structure and the primary structure. The physical space R3 is referred to
a cartesian reference system Ox1x2x3 and we will denote by x = (x1, x2, x3) the generic
point of R3. The geometry of the fuzzy structure and the notations are defined in Fig. 1. The
master structure is an elastic continuum which occupies the open bounded domain Dmast of
R3 with boundary ∂Dmast = Σmast ∪ Σfuz. The part Σfuz = ∪L

�=1Γ� is the common boundary
between the fuzzy substructure and the master structure.

2.1. Modeling of the master structure

In the LF range, we assume that the master structure can be modeled by an inhomogeneous,
anisotropic, linear viscoelastic solid continuum. Let x �→ U(x, ω) be the C3-valued displace-
ment field of the master structure defined on Dmast. Let Mmast, Cmast(ω) and Kmast be the
mass, damping and stiffness symmetric real linear operators constructed by the variational
formulation. Symmetric operator Mmast is positive definite and symmetric operators Cmast(ω)
and Kmast are positive. The non dependency on ω of Kmast is due to the fact that, in the LF
range, this operator can be approximated by an operator independent of ω. If it was not the
case, the modal representation of the response would have no meaning and in that case an
MF model should be used even if the frequency band is located in the LF range. Then, the
impedance operator Zmast(ω) of the master structure can be written as

iω Zmast(ω) = −ω2Mmast + iωCmast(ω) + Kmast . (1)
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We denote the element representing the mechanical forces applied on the master structure as
fmast(ω). Finite approximation of operators in eqn. (1) are usualy constructed using the finite
element method.

2.2. Modeling of the fuzzy substructure
The fuzzy substructure is attached to the master structure on the part Σfuz which can be written
as

Σfuz = ∪L
�=1Γ� , ∩L

�=1Γ� = ∅ , (2)

such that (1)- BoundaryΓ� is smooth. (2)- A fuzzy substructure having a continuous boundary
[2,25] is attached to each part Γ� of Σfuz. (There is no problem to extend the developments
below to a fuzzy substructure having a locally discrete boundary [2,25]). (3)- There is no
mechanical connection between two fuzzy substructures attached to different parts Γ� and Γ�′

with � �= �′, except the common boundary with the master structure. Consequently, there is no
spatial memory effect [25] between such fuzzy substructures. A contrario, a spatial memory
effect can exist inside any fuzzy substructure attached to Γ�. (4)- A homogeneous orthotropic
fuzzy substructure having possibly a spatial memory effect inside it [2,25] is attached to each
part Γ�. It should be noted that an isotropic fuzzy substructure can be modeled with the model
considered above. Therefore, we use the type II fuzzy constitutive law [25] which models a
fuzzy substructure with spatial memory effect. If there is no spatial memory effect, then the
type II law degenerates in the type I fuzzy constitutive law [2].

Let ds(x) be the two-dimensional area measure onΣfuz. We then have
∫
Γ�

ds(x) = |Γ�|, where
|Γ�| is the area of surface Γ�. Let W be the space of functions x �→ W(x) = (W1,W2,W3)
defined on Dmast with values in C3, having a trace x �→ w(x) = (w1, w2, w3) on Σfuz which
is an integrable square function for ds. One introduces the notation

�W ,W′	 =

∫
Dmast

<W(x) ,W′(x)> dx ,

in which <W(x) ,W′(x)>=
∑3

j=1 Wj(x)W ′
j(x) and an overline means the complex conju-

gate.
Let [Z�(x, x′, ω)] be the (3×3) complex matrices relative to the canonical basis and modeling
the mean boundary impedance of the fuzzy substructure attached to Γ�. Recall that we only
consider the mean part of the probabilistic model developped in ref. [2,25], the random
fluctuation being cancelled. We have [Z�(x, x′, ω)] = [Z�(x′, x, ω)]T where right exponent
T denotes the transposition of matrix. With these notations, the mean boundary impedance
operator Zfuz(ω) of the fuzzy substructure is defined for any W(ω) and W′(ω) in W by

�Zfuz(ω)W(ω) ,W′(ω)	=
L∑

�=1

∫
Γ�

∫
Γ�

< [Z�(x,x′, ω)]w(x′, ω) ,w′(x,ω)> ds(x) ds(x′) .

(3)
For any fixed ω in R, complex linear operator Zfuz(ω) is algebraically symmetric and can be
written as

iω Zfuz(ω) = −ω2 Rfuz(ω) + iω Ifuz(ω) , (4)

in which Rfuz(ω) and Ifuz(ω) are real linear operators, algebraically symmetric, such that
ω Rfuz(ω) = −
e {iZfuz(ω)} and Ifuz(ω) = �m {iZfuz(ω)}, operator Ifuz(ω) being a posi-
tive operator [2,25].
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2.3. Mean operatorial equation of the master structure coupled with its fuzzy substructure

The mean operatorial equation of the master structure coupled with its fuzzy substructure is
deduced from [2,25] :

iω [Zmast(ω) + Zfuz(ω)]U(ω) = fmast(ω) . (5)

From equations (1) and (4), we deduce that eqn. (5) can be written as[−ω2Mmast + iω
(
Cmast(ω) + Ifuz(ω)

)
+ Kmast − ω2 Rfuz(ω)

]
U(ω) = fmast(ω) . (6)

We will assume that the conservative part Rfuz of the fuzzy substructure depends weakly on
ω in the LF range and can directly be taken into account in the modeling of the mass and
stiffness operators of the fuzzy structure. It should be noted that if this kind of modeling is
usual for the LF range, it cannot be used in the MF domain for which operator Rfuz(ω) can be
kept and generated by using the type II fuzzy law [25]). Consequently, if MS and KS denote
the mass and stiffness linear operators of the fuzzy structure respectively (conservative part
of the master structure with its fuzzy substructure), then we have

−ω2MS + KS = −ω2Mmast + Kmast − ω2 Rfuz , (7)

in which MS is a positive-definite operator and KS is a positive linear operator. Equations
(6) and (7) yield[−ω2MS + iω

(
Cmast(ω) + Ifuz(ω)

)
+ KS

]
U(ω) = fmast(ω) . (8)

2.4. Model of vibration damping using type II fuzzy law

The vibration damping generated by the internal structural complexity is due to positive
operator Ifuz(ω). Considering equations (3) and (4), we deduce that Ifuz(ω) can be written as

�Ifuz(ω)W(ω) ,W′(ω)	=
L∑

�=1

∫
Γ�

∫
Γ�

< [I�(x,x′, ω)]w(x′, ω) ,w′(x,ω)> ds(x) ds(x′) .

(9)
In this subsection, we construct the model of real matrix [I �(x,x′, ω)] which is deduced from
the theory of fuzzy structures [2,25]. Since the fuzzy substructure is orthotropic, by definition
[2] there exists an orthogonal (3× 3) real matrix [Φ(x)]T for transition from canonical basis
to a local orthonormal basis {e1(x), e2(x), e3(x)} related to the boundary Γ� at point x ∈ Γ�

such that, for all ω in R, x and x′ in Γ�, we have

[I�(x, x′, ω)] = [Φ(x)] [I�0(x, x
′, ω)] [Φ(x′)]T , (10)

in which [I�0(x, x
′, ω)] is a (3× 3) real diagonal matrix. For all α and β in {1, 2, 3}, we can

write
[I�0(x, x

′, ω)]αβ = δαβ c�β(x, x
′, ω) , (11)

in which δαβ = 0 if α �= β and δαα = 1 and where c�β(x, x
′, ω) are real valued functions.

We have c�1(x, x
′, ω) = c�2(x, x

′, ω) = c�3(x, x
′, ω) = c�(x, x′, ω) for an isotropic fuzzy
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substructure. We directly deduce from the fuzzy structure theory [2,25] that, for all β in
{1, 2, 3}, one has

c�β(x, x
′, ω) = δΣfuz(x−x′) ν�β h�

β(ω) , (12)

in which δΣfuz is such that, if x′ ∈ Γ�, then
∫
Γ�

ϕ(x) δΣfuz(x−x′) ds(x) = ϕ(x′), for any

complex-valued continuous function ϕ defined on Γ� and where, for ωn�
β > 1/4, we have

(type II fuzzy law):

h�
β(ω) =

m�
β

|Γ�|
1

n�
β

J (
ξ�
β
, 2ωn�

β , α�
β

)
, (13)

in which, for τ ∈ [0.5 ,+∞[, positive-valued function J is such that

J (ξ, τ, α) = ξ τ (1− α) + α J0(ξ, τ) , (14)

J0(ξ, τ) =
τ2

8
√
1− ξ2

{arctanY+(ξ, τ)− arctanY−(ξ, τ)} , (15)

Y±(ξ, τ) =
1

ξ
√
1− ξ2

{
ξ2 +

1

2τ

(1
τ
± 2

)}
. (16)

For a fuzzy substructure attached to Γ� and for each direction β, the input mean fuzzy
parameters ν�β , n�

β , ξ�
β

, α�
β which appear in eqn. (12) et (13) are defined below. These

parameters depend on the frequency. We have suppressed this dependency to simplify the
writing. It should be noted that this frequency dependency is significant on a broad MF
frequency band for which the theory of fuzzy structures has been developped (see [2,25]).
Within the present context of the use of this theory to the LF range, one can be led to neglect
this frequency dependency for some input parameters, for instance for ξ�

β
and ν�β .

(1)- Parameter μ�
β
≥ 0 is the mean equivalent mass per unit measure of the surface Γ� of the

fuzzy substructure for direction β introduced in the type I or II fuzzy law (see [2,25]). We
can always rewritten it as

μ�
β
= ν�β

m�
β

|Γ�| , (17)

where m�
β ≥ 0 is the total mass of the fuzzy substructure attached to Γ� and acting in direction

β. Consequently, ν�
β ≥ 0 appears as the mean coefficien of participating fuzzy mass which

is a dimensionless parameter.
(2)- Parameter n�

β > 0 is the mean modal density of the fuzzy substructure attached to Γ� for
direction β. A great attention must be addressed for calculating this modal density as it is
explained in Subsection 2.6.
(3)- Parameter ξ�

β
> 0 is the mean rate of internal dissipation of the fuzzy substructure

attached to Γ� for direction β. Generally, we have ξ�
β
� 1 and typical values are of the order

of 0.001 to 0.01.
(4)- Finally,α�

β is themean equivalent coupling factor (related to the spatial memory effect) of
the fuzzy substructure attached to Γ� for direction β. This parameter is such that 0 ≤ α�

β ≤ 1.
If α�

β = 1 the model corresponds to the type I fuzzy law. In the other cases, it is the type II
fuzzy law [25].
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Figures 2. (a) and (b) show the graph of function J (ξ, τ, α) defined by eqn. (14) (in log10
scale) in versus of parameter τ (in log10 scale) for different values of ξ and for α equal to 1
(type I law) (Figure 2. (a)) and 0.1 (type II law), (Figure 2. (b)).

2.5. Asymptotic behavior of the vibration-damping model

It can easily be verified that for fixed ξ, if τ → +∞ then

J (ξ, τ, α) ∼ ξ τ (1− α) +
α τ

4ξ
. (18)

Practically, equation (18) can be used if τ−1/2 � ξ ≤ 0.1. Similarly, for fixed τ , if ξ → 0,
then

J (ξ, τ, α) ∼ ξ τ (1− α) +
π

8
τ2 α . (19)

Equation (19) can be used if 2τξ2 � |τ−1 ± 2|.

2.6. Example: Case of a fuzzy substructure simulated with simple linear oscillators

A fuzzy substructure can be made with any elastic continuum, but it is interesting to study
the case of a fuzzy substructure simulated with a great number of simple linear oscillators
because an explicit expression of fuzzy parameters can be obtained in that case [4]. LetΓ� be a
bounded smooth surface in physical space R3. A local orthonormal basis {e1(x), e2(x), e3(x)}
can be attached at each point x ∈ Γ� such that e3(x) is the unit normal to Γ� at point x. One
assumes that the fuzzy substructure is homogeneous and orthotropic acting only in direction
defined by e3, with no spatial memory effect (α�

3 = 1). One has proved [4] that, in a frequency
band of width Δω, such a fuzzy substructure can be simulated with a discrete system having
a great number N� of simple linear oscillators. These oscillators act in direction defined by
e3 and are randomly distributed over Δω × Γ� with an uniform probability distribution. Let
M �

j and ξ�j be the mass and damping rate of the oscillator number j with j ∈ {1, . . . , N�}.
We then have c�1 = c�2 = 0 and c�3 is given by equations (12)–(17) in which mean equivalent
coupling factor α�

3 is equal to 1, mean modal density n�
3 is given by

n�
3 =

√
N� /Δω , (20)

and the mean rate of internal dissipation is such that

ξ�
3
=

1

N�

N�∑
j=1

ξ�j . (21)

If we define the mean mass of one oscillator by the formula

m�
0 = m�

3 /N� , m�
3 =

N�∑
j=1

M �
j , (22− 23)

in which m�
3 is the total mass of the fuzzy substructure attached to Γ� and acting in direction

defined by e3, then the mean equivalent mass per unit measure of the surface Γ� is given by

μ�
3
=

m�
0

√
N�

|Γ�| =
1√
N�

m�
3

|Γ�| . (24)
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From eqn. (17), we deduce that the dimensionless mean coefficient ν�
3 of participating fuzzy

mass can be written as

ν�3 =
1√
N�

. (25)

The calculation of these parameters is illustrated in Figure 3. It should be noted that n�
3 is

not equal to N�/Δω but is given by eqn. (20). The reason can easily be understood looking
Figure 3 and reading its legend.

3. EIGENMODES AND GENERALIZED EQUATION OF VIBRATIONS

The eigenfrequencies Ω and the eigenmodes � belonging to the set YS of admissible dis-
placement fields of the fuzzy structure are solutions of the spectral problem

KS� = Ω2 MS� , (26)

where MS et KS are the linear operators defined by eqn. (7). The spectrum is countable and
one has 0 ≤ Ω1 ≤ Ω2 ≤ . . .. It should be noted that for the three-dimensional elasticity case,
the first eigenvalue can be equal to zero with a multiplicity between 1 and 6. The eigenmodes
{�j}j≥1 form a complete set in YS and one has

�MS�
j′ ,�j	= Mj δjj′ , (27)

�KS�
j′ ,�j	= Mj Ω

2
j δjj′ , (28)

where Mj are the generalized masses which depend on the normalization of eigenmodes.
In LF range, we are interested in the approximation of U(ω) in a subspace YNS

of YS

spanned by NS eigenmodes. In order to simplify the notations, we renumber from 1 to NS

the NS eigenmodes considered. Consequently, YNS
is spanned by {�1, . . . ,�NS} and the

approximation UNS
(ω) of U(ω) relatively to YNS

can be written as

UNS
(ω) =

NS∑
j=1

Qj(ω)�
j , (29)

where Q(ω) = (Q1(ω), . . . , QNS
(ω)) ∈ CNS is the vector of the generalized coordinates.

Let [MS] and [ΩS] be the (NS×NS) diagonal real matrices such that

[MS]jj′ = Mj δjj′ , [ΩS ]jj′ = Ωj δjj′ . (30)

Let [Cmast(ω)] and [Cfuz(ω)] be the (NS×NS) real matrices such that

[Cmast(ω)]jj′ =�Cmast(ω)�
j′ ,�j	 , (31)

[Cfuz(ω)]jj′ =�Ifuz(ω)�
j′ ,�j	 . (32)

Symmetric matrices [Cmast(ω)] and [Cfuz(ω)] are positive and called the generalized damping
matrices of the master structure and due to the structural complexity respectively. From eqns.
(8), (27)–(32), we deduce that Q(ω) verifies the following linear system of equations on CNS

[−ω2[MS] + iω
(
[Cmast(ω)] + [Cfuz(ω)]

)
+ [MS] [ΩS]

2
]

Q(ω) = F(ω) , (33)
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in which F(ω) = (F1(ω), . . . , FNS
(ω)) ∈ CNS is the vector of external generalized forces

induced by fmast(ω). Herein, we assume that YNS
is spanned only by elastic eigenmodes (the

eigenmodes associated with null eigenfrequencies do not belong to YNS
). Consequently, the

(NS× NS) complex matrix of the left-hand side member of eqn. (33) is invertible for all ω
in R and the generalized frequency response function (GFRF) ω �→ [H(ω)] from R into the
(NS×NS) complex symmetric matrices can be written as

[H(ω)] =
[−ω2[MS] + iω

(
[Cmast(ω)] + [Cfuz(ω)]

)
+ [MS] [ΩS]

2
]−1

. (34)

4. MODEL OF THE GENERALIZED DAMPING MATRIX DUE TO STRUCTURAL
COMPLEXITY

From eqns. (9)–(12), we deduce that [Cfuz(ω)] defined by eqn. (32) can be written as

[Cfuz(ω)] =

L∑
�=1

3∑
β=1

ν�β [C�β
fuz(ω)] , (35)

in which positive symmetric (NS×NS) real matrices [C�β
fuz(ω)] are such that

[C�β
fuz(ω)]jj′ = h�

β(ω)

∫
Γ�

bjβ(x) b
j′
β (x) ds(x) , (36)

with h�
β(ω) given by eqn. (13) and where, for j ∈ {1, . . . , NS}, vectors bj(x) = (bj1(x),

bj2(x), b
j
3(x)) ∈ R3 are defined by the relation

bj(x) = [Φ(x)]T �j(x) , (37)

where �j is the trace of �j on the boundary Γ�. Using the local basis {e1(x), e2(x), e3(x)}
at point x ∈ Γ�, which has been introduced in Subsection 2.4, vector bj(x) defined by eqn.
(37) can be written as

bjβ(x) =<eβ(x) ,�j(x)> , β ∈ {1, 2, 3} . (38)

5. MODEL PARAMETERS ESTIMATION

Equations (13)–(16) and (35)–(38) completely define a model of the generalized damping
matrix due to structural complexity. The problem studied in this section concerns the updating
of parameters ν�β .
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5.1. Strategy used for model updating

The objective is to update the model defined by eqns. (35)–(38) in a low-frequency band
B = [ωinf , ωsup] with ωinf ≥ 0. We assume that all the parameters are known in this
model, except the dimensionless mean coefficients ν�

β of participating fuzzy mass. Generally,
parameters ν�β depend on frequency ω (see [2,4,25]). In some cases, these parameters can be
independent of ω. In the LF range, if there is such a dependence with the frequency, band B
can always be written as B = ∪kBk with ∩kBk = ∅ such that ν�

β(ω) can be approximated
by a constant ν�k

β over each subinterval Bk. For all ω ∈ B, one can then write

ν�
β(ω) =

∑
k

1Bk
(ω) ν�kβ , (39)

in which ν�k
β is a positive constant. Consequenly, the basic problem is to update parameters

ν�kβ for a fixed subinterval Bk. This is this problem studied in the present section.
Relatively to the fixed LF band B, we will assume that:
(1)- The number NS of eigenmodes is fixed.
(2)- The NS eigenmodes and eigenfrequencies of the conservative part of the fuzzy structure
(master structure with its fuzzy substructure) are assumed to be known. This means, for
instance, that a finite element model has been developed and updated using experiments.
Therefore, we will denote the updated eigenmodes and eigenfrequencies as {�̂1, . . . , �̂NS

}
and {Ω̂1, . . . , Ω̂NS

} respectively.
(3)- Denoting the total generalized damping matrix as

[Ctot(ω)] = [Cmast(ω)] + [Cfuz(ω)] , (40)

we will assume that for all ω in B, an estimation [Ĉtot(ω)] of [Ctot(ω)] has been constructed.
This kind of estimation can result from an usual identification based on the knowledge of
estimated eigenmodes and additional appropriate experiments. In addition, we suppose that
a mechanical model allows matrix [Cmast(ω)] to be constructed for all ω in B and updated
for providing an estimation [Ĉmast(ω)]. It should be noted that if some experiments can be
realized on the master structure without its fuzzy substructure, then the model of [Cmast(ω)]
can fully be updated. If not, then this model is only partially updated due to the use of the
updated eigenmodes.
(4)- Finally, from the above point, we deduce an estimation [Ĉfuz(ω)] of [Cfuz(ω)] for all ω in
B, given by

[Ĉfuz(ω)] = [Ĉtot(ω)]− [Ĉmast(ω)] . (41)

Consequently, the problem related to the model parameters estimation consists in estimating
constant parameters ν�k

β over frequency subband Bk, with the objective to minimize, over

Bk, the distance between the known function ω �→ [Ĉfuz(ω)] and the model function ω �→
[Cfuz(ω)] =

∑L
�=1

∑3
β=1 ν

�k
β [C�β

fuz(ω)] defined by eqn. (35) in which matrices [C�β
fuz(ω)] are

defined by eqn. (36).
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5.2. Definitio of an objective function

Let ‖A‖E be the Hilbert-Schmidt norm of any real (n×m) matrix [A ] such that

‖A‖E =
(

tr{[A ]T [A ]}
)1/2

=
( n∑
j=1

m∑
k=1

[A ]2jk

)1/2

. (42)

Let �k be the vector in Rn of all the non identically null parameters ν �k
β . One has n ≤ 3L

and assume that n ≥ 1. One introduces the objective function �k �→ jc(�
k) from Rn into R+

such that

jc(�
k) =

∫
ω∈Bk

∥∥∥ [Ĉfuz(ω)]−
L∑

�=1

3∑
β=1

ν�kβ [C�β
fuz(ω)]

∥∥∥2
E

P (dω) , (43)

in which matrices [C�β
fuz(ω)] are defined by eqn. (36) and where P (dω) is a weighting bounded

positive measure with support Bk. Weighting measure P (dω) can be defined in different
ways. For instance, the following representations can be used.
(1)- GFRF updating on discrete frequencies. In this case one has

P (dω) =
∑
j

pj δ0(ω − ωj) , (44)

where ωj’s are some values of frequency lying in band Bk, pj’s are positive weights and δ0
is the Dirac measure at origine of R.
(2)- GFRF updating on subintervals of frequency. The weighting measure is then written as

P (dω) =
∑
j

pj
|Δωj | 1Δωj

(ω) dω , (45)

in which pj’s are positive weights, Δωj are subintervals included in Bk and |Δωj | is the
width of Δωj .
(3)- GFRF updating with any weighting function. It is the generalization of eqn. (45). The
measure is then written as

P (dω) = p(ω) dω , (46)

where ω �→ p(ω) is any real-valued function integrable over Bk such that p(ω) ≥ 0 for all ω
in Bk.

5.3. Constrained optimization problem

From Subsection 2.4, we deduce that the variables ν�k
β must be restricted to positive values.

Therefore, we introduce the set P of admissible parameters such that

P =
{
�k ∈ Rn ; ν�kβ ≥ 0 , ∀� , ∀β} . (47)

Estimation �̂k of �k is the solution of the following constrained optimization problem

min
�
k∈P

jc(�
k) . (48)
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Since objective function jc is a differentiable convex function and P is a convex set, the
quadratic programming problem defined by eqn. (48) has a unique solution �̂k. This solution
is the local minimum which is also the global minimum [28]. To solve the problem defined
by eqn. (48), the expression of the gradient of the objective function can be useful. It can
easily be verified that we have

∂

∂ν�kβ
jc(�

k) = −2
{
gk�β −

L∑
�′=1

3∑
β′=1

Ak
�β,�′β′ ν�

′k
β′

}
, (49)

in which

gk�β =

∫
ω∈Bk

tr
{
[C�β

fuz(ω)] [Ĉfuz(ω)]
}
P (dω) , (50)

Ak
�β,�′β′ =

∫
ω∈Bk

tr
{
[C�β

fuz(ω)] [C�′β′
fuz (ω)]

}
P (dω) . (51)

6. VALIDATION WITH A SIMPLE EXAMPLE

One considers a fuzzy structure whose the geometry is defined in Figure 4.

6.1. Master structure

It is a simply supported beam with a constant cross-sectional area, length 20 m, total mass
20000 Kg, Young’s modulus 2.1 × 1011 N/m2, bending inertia 0.001 m4 and a constant
structural damping rate 0.01. The frequency band of analysis is B = [0 , 100] Hz. The beam
is excited in bending mode in (x1, x3) plane by a force applied at x1 = 9, with a unit flat
spectrum over all the band B of bandwidth Δω = 2π × 100 rad/s.

6.2. Fuzzy substructure

There are two fuzzy substructures attached to the beam on Γ1 = {x1 ; 4 ≤ x1 ≤ 8} and
Γ2 = {x1 ; 12 ≤ x1 ≤ 18}. Each fuzzy substructure is made with a great number of simple
linear oscillators acting in direction x3. All the oscillators have the same mass m0 = 1.8 Kg
and the same damping date ξ = 0.002. There are N1 = 484 oscillators on Γ1 and N2 = 729
on Γ2. The eigenfrequency and the location of the attachment point on the beam of each
oscillator are uniformly distributed and generated using the method explained in Figure 3.
Figure 5 shows the result of this generation for the present example. Each point represents an
oscillator inside the fuzzy substructures.

6.3. Equations for the master structure with no fuzzy substructure

The transversal displacement of the beam is denoted as x1 �→ U3(ω, x1). The equations
allowing field U3 of the master structure (with no fuzzy substructure) to be calculated are
usually written in the frequency domain using the eigenmodes {x1 �→ ϕj(x1)} and the
eigenfrequencies Ωmast ,j of the beam, which are explicitly known in this case. The first
values of Ωmast ,j are given in Table 1. We have Ωmast ,1 = 1.8 Hz and Ωmast ,10 = 180 Hz.
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6.4. Equations for the fuzzy structure

The equations of movements of the fuzzy structure (beam with linear oscillators described
in Subsections 6.1 and 6.2) are written in the frequency domain using the projection of
x1 �→ U3(ω, x1) on the independent functions {x1 �→ ϕj(x1) , j = 1, . . . , 10}. In the present
case, all the degrees of freedom (N1+N2 = 1213 DOF) associated with the linear oscillators
can explicitly be eliminated from the equations of the fuzzy structure.

6.5. Updated eigenfrequencies and eigenmodes of the fuzzy structure

The eigenfrequencies Ωj and the eigenmodes Ψj
3 of the fuzzy structure, introduced in Section

3, are numerically calculated using the equations evoked in Subsection 6.4. In this case,
we have Ω̂j = Ωj and Ψ̂j

3 = Ψj
3 where Ω̂j and Ψ̂j

3 are the updated values introduced in
Subsection 5.2. Table 1 yields the values of eigenfrequencies Ωmast ,j of the master structure
(with no fuzzy substructure) and eigenfrequencies Ωj of the fuzzy structure (master structure
with its two substructures).

Master structure Fuzzy structure

Ωmast ,j (Hz) Ωj (Hz)

1.8 1.7

7.2 6.6

16.2 15.5

28.8 27.3

45.0 43.1

64.8 62.6

88.2 92.7

115.2 117.9

Table 1 : Eigenfrequencies in Hertz of the master structure and the fuzzy structure

The total mass of the fuzzy substructure is 2183 Kg which must be compared to the 20000
Kg of the master structure. Table 1 shows that each Ωj is closed to the corresponding Ωmast ,j .

6.6. Calculation of the response of the fuzzy structure

The equations of the fuzzy structure introduced in Subsection 6.4 are projected on the eigen-
modes {Ψj

3(x1) , j = 1, . . . , 10} calculated in Subsection 6.5. The response (ω, x1) �→
U3(ω, x1) is then computed on the band B, frequency per frequency, with a frequency reso-
lution of 0.05 Hz.
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6.7. Use of the fuzzy structures theory
Each fuzzy substructure described in subsection 6.2 can be simulated with a homogeneous
and orthotropic fuzzy substructure acting only in x3 direction. There is no spatial memory
effect and therefore one has α1

3 = α2
3 = 1. From eqns. (20)–(23), we deduce that n1

3 = 0.035
(rad/s)−1, n2

3 = 0.043 (rad/s)−1, ξ1
3
= ξ2

3
= 0.002, m1

0 = m2
0 = m0 = 1.8, m1

3 = 871,
m2

3 = 1312. Fiqure 6 shows the graph of functions ω �→ h1
3(ω) and ω �→ h2

3(ω) defined by
eqn. (13). Finally, we will assume that, for each fuzzy substructure, the mean coefficient of
participating fuzzy mass ν�

3 is a constant independent of the frequency over band B. From
eqn. (39) and for � = 1, 2, we then deduce that ν�

3 is a constant for all ω in B. Therefore, there
are only two scalar parameters: ν13 related to Γ1 and ν2

3 to Γ2, which must be updated. For
that, eqn. (46) is used with p(ω) = 1 for all ω in B. The numerical solving of the constrained
optimization problem defined by eqn. (48) yields the following estimation:

ν̂1
3 = 0.0466 , ν̂23 = 0.0386 . (52)

For this case, the theoretical values are known and given by eqn. (25), i.e. by

ν1
3 = 0.0455 , ν23 = 0.0370 . (53)

It should be noted that the values given by the constrained optimization problem (eqn. (52))
are closed to the theoretical values given by eqn. (53). This result validates the theory
proposed within the context of the present example.

6.8. Results

The results shown on Figures 7 and 8 concern the transversal acceleration of the beam at point
x1 = 9 (Figures 7 (a)–(c)) and at x1 = 14 (Figures 8 (a)–(c)). On these figures, (a), (b) and
(c) represent the modulus (in dB), the real part and the imaginary part (in linear scale) of the
acceleration, respectively. On each Figure 7 or 8, three results are presented.
(1)- The first one concerns the response of the master structure with no fuzzy substructure
(dashed line) calculated with the equations of subsection 6.3.
(2)- The second result represents the response of the fuzzy structure, i.e. the beam with its
oscillators (irregular solid line) calculated with the method of Subsection 6.6.
(3)- The third and last result is the response of the fuzzy structure calculated using the fuzzy
structures theory (smoothed solid line), i.e. with eqns. (29), (33), (35)–(38), where ν 1

3 and ν23
in eqn. (35) are the updated values ν̂1

3 and ν̂2
3 defined by eqn. (52).

Figures 7 and 8 show that:

(1)- When the frequency increases, the vibration damping due to structural complexity in-
creases. This result is also illustrated on Figure 9 which shows seven lines. Each line is
associated with the index j of the eigenmode �j of the fuzzy structure and represents the
function

ω �→ ξ
fuz ,jj

(ω) =
{
[MS]

1/2[ΩS] [Cfuz(ω)] [ΩS] [MS]
1/2

}
jj

, (54)

which is, for eigenmode j, an equivalent diagonal damping rate due to the presence of the
fuzzy substructures, i.e. the structural complexity.

(2)- There is an excellent agreement in terms of modulus and phase between the results given
by the fuzzy structures theory (smoothed solid line) and the results of the numerical simulation
of the fuzzy structure (irregular solid line).
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7. CONCLUSION

We have presented an explicit model of the generalized damping matrix due to structural
complexity for the low frequency range. This model is deduced from the fuzzy structures
theory previously developped by the author for the medium frequency range and can easily
be implemented in the finite element codes. The model proposed yields a full generalized
damping matrix whose its entries are explicitly known as a function of the geometry of
the fuzzy substructures boundaries, the trace of the eigenmodes on these boundaries and
the mean parameters of the fuzzy substructures. For applications these mean parameters
are generally known except the mean coefficients of participating fuzzy mass which are
dimensionless parameters. Therefore, these parameters must be updated and we has shown
that this updating can be obtained solving a constrained optimization problem which is an usual
quadratic programming problem. Finally, we have presented an example which contributes
to the validation of the theory proposed and which cleary shows the physical role plays by the
structural complexity in the vibration damping of the master structure.
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Recherche Aérospatiale (English edition) 5, 49-67 (1986).

5 F. Chabas and C. Soize, "Modeling mechanical subsystems by boundary impedance in the
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Geometry of the master structure with its fuzzy substructure.

FIG. 2. Function J (ξ, τ, α) (eqn. (14)) versus τ for ξ : 0.0001 (thin line), 0.001 (thick line),
0.01 ( thin brokenline), 0.1 (thick brokenline), and for α = 1 fig. 2. (a) and α = 0.1 fig. 2.
(b).

FIG. 3. Explicative diagram yielding the attachment location and the eigenfrequency of each
oscillator for a homogeneous fuzzy substructure simulated with simple linear oscillators.
Each circle represents a linear oscillator whose its eigenfrequecy and its attachment location
are uniformly distributed in each small rectangle.

FIG. 4. Geometry of the master structure (simply supported beam having 20 meters length)
with two fuzzy substructures in zones defined by 4 ≤ x1 ≤ 8 and 12 ≤ x1 ≤ 18. Excitation
in bending mode in (x1, x3) plane is done by a unit point force applied at x1 = 9.

FIG. 5. Eigenfrequency and spatial distribution of the linear oscillators for fuzzy substructures
Γ1 and Γ2.

FIG. 6. Functions ω �→ h1
3(ω) and ω �→ h2

3(ω) defined by eqn. (13).

FIG. 7. Modulus (a), real part (b) and imaginary part (c) of the transversal accceleration of the
beam at x1 = 9 for, the beam with no oscillator (dashed line), the beam with the oscillators
(irregular solid line) and the beam with oscillators modelized with the fuzzy structures theory
(smoothed solid line).

FIG. 8. Modulus (a), real part (b) and imaginary part (c) of the transversal accceleration of the
beam at x1 = 14 for, the beam with no oscillator (dashed line), the beam with the oscillators
(irregular solid line) and the beam with oscillators modelized with the fuzzy structures theory
(smoothed solid line).

FIG. 9. Equivalent diagonal damping rate due to the fuzzy substructures and defined by eqn.
(54).

Computers and Structures, 58(5), 901-915 (1996) 16 C. Soize - Preprint


