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Reduced Modelsin the Medium Frequency Range
for General Dissipative Structural-Dynamics Systems

C. Soize
Sructures Department, ONERA, BP 72, F-92322 Chatillon Cedex, France

Abstract. This paper presents a theoretical approach for constructing a reduced model in the medium frequency
range in the area of structural dynamics for a general three-dimensional anisotropic and inhomogeneous viscoel astic
bounded medium. All the results presented can be used for beams, plates and shells. The boundary value problemin
the frequency domain and its variational formulation are presented. For a given medium frequency band, an energy
operator which is intrinsic to the dynamical system is introduced and mathematically studied. This energy operator
depends on the dissipative part of the dynamical system. It is proved that this operator is a positive-definite symmetric
trace operator in a Hilbert space and that its dominant eigensubspace allows a reduced model to be constructed using
the Ritz-Galerkin method. A finite dimension approximation of the continuous case is presented (for instance using
the finite element method). An effective construction of the dominant subspace using the subspace iteration method is
developed. Finally, an exampleis given to validate the concepts and the algorithms.

1. Introduction

This paper isthe continuation of initial papers published by the author (Soize, 1982aand 1982b) in the areaof modeling
and associated solving methods for linear dissipative structural-dynamics problems in the medium-frequency (MF)
range. In these papers, we introduced the notion of a narrow MF band B, and any broad MF band was written as
a finite union of narrow MF bands. For such a given band B, we proposed a solving method for constructing the
operator-valued frequency response function. This solving method, combined with the finite element method for
spatial discretization, has allowed a number of complex three-dimensional structural-acoustics and vibration problems
to be effectively solved in the MF range. In addition, we introduced a positive-definite symmetric operator E  related
to band B, called the energy operator, whose spectral theory allowed extremum vibratory states of the structure to be
characterized. Concerning the developments, extensions and applications of this initial work, we refer the reader to
Soize et al., 1986 and 1992; Chabas et al., 1986; Soize, 1986, 19933, 1995 and 1997; and for a general overview of
these questions, to Ohayon and Soize, 1997. Nevertheless, these developments did not propose the construction of
areduced model in the medium-frequency range. However, it is well known (see for instance Argyris and Mlgjnek,
1991; Clough and Penzien, 1975; Leung, 1993; Meirovitch, 1980; Morand and Ohayon, 1995; Roseau, 1980) that, for
low-frequency dynamic analysisin structural dynamics, reduced models are a very efficient tool for constructing the
solution. These techniques correspondto a Ritz-Galerkin reduction of the structural-dynamicsmodel using the normal
modes correspondingto the lowest eigenfrequenciesof the associated conservativestructure. Theefficiency of thiskind
of reduced model is due to the small number of generalized dynamical degrees of freedom used in the representation
and in addition, is obtained by solving a well-stated generalized symmetric eigenvalue problem for which only the
first eigenvalues and the corresponding eigenfunctions have to be calculated. In addition, when such a reduced model
is obtained, responses to deterministic or random excitations (see for instance Soize, 1994, Chapters 3 to 6) can be
calculated for no significant additional numerical cost, and the reduced model can be used directly for solving various
structural-acoustics problemsin the low-frequency range (see for instance Ohayon and Soize, 1997). Unfortunately,
this modal method which is very efficient in the low-frequency domain cannot be used in the medium-frequency
domain (Soize, 1982b) for general three-dimensional structures. The fundamental problem related to the construction
of areduced model in the medium-frequency range for general dissipative structural-dynamics systems has not yet
received any solution. A modal hybridization method was proposed (Morand, 1992), but this method is based on the
use of the normal modes which cannot be calculated in the medium-frequency range for a general three-dimensional
structure. A modal sampling method was also proposed (Guyader, 1990) but this method is developped in a context
of an analytical theory, i.e. uses the normal modes in the medium- and high-frequency ranges; this method can only
be used for simple shape structures (rectangular thin plate in bending mode, circular cylindrical shell with a constant
thickness,etc.) Hereinafter, we propose an efficient solution for constructing a reduced model. These theoretical
developmentsare presented in the context of three-dimensional viscoelasticity for an arbitrary geometry of the domain
and for an anisotropic and inhomogeneous material. Extension of the results presented to beams, plates and shellsis
straightforward. 1t should be noted that the reduced model is constructed for each narrow MF band B and allows the
damping and stiffness operators to depend on the frequency (viscoelastic material). Consequently, the reduced model
proposed is adapted to each narrow MF band B and also to the structural damping model. In Section 2, we present the
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boundary value problem to be solved in the frequency domain and we establish its variational formulation. We show
that there is a unique solution and we introduce the operator-valued frequency response function of the dynamical

system. Section 3 is devoted to construction of the reduced model. For that, we introduce an energy operator E g and
we prove that E g is a positive-definite symmetric trace operator in a Hilbert space. The spectral theory of operator
E s gives acomplete family in the set of admissible displacement fields constituted by the eigenfunctions of operator
Ep. The reduced mode is then introduced using the Ritz-Galerkin projection of the variational formulation on the
dominant eigensubspace of operator E g, spanned by the eigenfunctions which correspond to the highest eigenvalues
of operator Eg. In Section 4, we present the finite dimension approximation of the countinuous case allowing the
calculation to be carried out for the general case. In Section 5, we give an efficient procedure for construction of

the dominant subspace using the subspace iteration method. Finally, an exampleis presented in order to validate the
concepts and the algorithms.

2. Boundary Value Problem and Its Weak Solution
2.1. Definition of the boundary value problem

We consider linear vibrations (formulated in the frequency domain w) of athree-dimensional structure around a static
equilibrium configuration considered as a natural state. Let © be a bounded open domain of R 2, occupied by the
structure at static equilibrium and made of viscoelastic materia. Let 92 = I'q U T" be the boundary which is assumed
to be sufficiently smooth and such that T’y N T" = (). Let n be its outward unit normal. Let u = (uq, us,us3) bethe
displacement field at each point x = (x1, 22, 23) in cartesian coordinates. On part T'y of the boundary, the structureis
fixed (u = 0) whileon part T" it is free. We introduce a narrow MF band which is defined as the compact interval of
R,

B=|wp—Aw/2,wp+ Aw/2] (1)

inwhich wpg isthe central frequency of the band and Aw is the bandwidth such that

Aw/wp <1 |, wp—Aw/2>0 . (2)
With B we associate interval B such that

B=[-wp—Aw/2,—wp+ Aw/2] . (3)

There are external prescribed volumetric and surface force fields applied to © and I, written as 7(w)g vol (X, w) and
1(w)Gsurt (X, w) respectively, in which w — n(w) is a function from R into C, having a compact support B U B,
continuous on B, verifying |n(—w)| = |n(w)| and such that |n(w)| # 0 for al w in B. For al w in BU B, the
boundary value problem in u(x, w) is written as follows (the convention for the Fourier transform being u(x, w) =

Jr e “tu(x, t) dt),

—w2pui — 05 =Ngws N Q , =123 (4)
O3iNj = 1 Gsurf 4 on T’ s = 1,2,3 s (5)
u;=0 on I'y , +=1,2,3 , (6)

in which the summation convention over repeated latin indicesis used, p(x) > 0 isthe mass density which is assumed
to be a bounded functionon Q2 and o ;;,; = Zj:l do,j/0x;. For alinear viscoelastic material, stress tensor o;; is
written as

05 = Qjjkh (X,w) é‘kh(U) + [bijkh (X,w) &‘kh(’iw U) R (7)

inwhich ey (U) = (Qur/0xn + Oun/0xy)/2 isthe linearized strain tensor. The mechanical coefficients o (X, w)
and b; ;s (X, w) arereal, depend on x and w, verify the usual properties of symmetry and positiveness (see for instance
Mandel, 1966; Fung, 1968; Marsden and Hughes, 1983; Truesdell, 1984; Germain, 1986; Ciarlet, 1988) and are such
that

Qijkn (X, —w) = aijrn (X, w) ,  bijen (X, —w) = bijrn (X, w) . (8)

Since mechanical coefficients o;;xx (X, w) and b;;xn (X, w) depend on w, Eq. (7) corresponds to a general linear
viscoelastic medium (Truesdell, 1984). In particular, if the mechanical coefficients are independent of w, then Eq. (7)
corresponds to a Kelvin-Voight medium (Germain, 1986).
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2.2. Variational formulation

Thevariational formulation of theboundary value problemisconstructed in thissubsection (for thegeneral methodol ogy
of constructing a variational formulation of a boundary value problem, we refer the reader to Brezis, 1987; Dautray
and Lions, 1992; Duvaut and Lions, 1976; Oden and Reddy, 1983; Raviart and Thomas, 1983).

A- Set of admissible displacement fields and related vector spaces

We introduce the Hilbert space
H:{U:(ul,’LLQ,ug),Uj ELQ(Q)} s (9)

equipped with the inner product
(), = [ ut)-Txax (10)
Q
and the associated norm ||ul|,, = (u, u);”, inwhichu-v = Z;’:l u;0; with 7 the conjuguate of v; and where L2(2)

denotesthe set of al the square integrable functionsfrom Q2 into C. Let V' be the Hilbert space representing the set of
admissible displacement fields with valuesin C3,

V:{U:(ul,UQ,’LLg),’LLjEHI(Q),UZOOHF()} s (11)

equipped with the inner product
ou ov
(U V U V + E <8$J @)H , (12)

and the associated norm |[u|,, = (u,u)/* where H'(92) is the set of all the functions w € LZ(£2) such that, for all
j = 1,2,3, each partial derivative dw/dx; belongsto L?(£2) . Let V' be the continuous antidual space of V' and
<f,u> , , betheantiduality bracket betweenf € V’ and u € V whichislinear with respect to f and antilinear with
respect to u. Hilbert space H being identified to |ts conti nuousantldual space H', we have the classical diagram

VC_>H H’C_>V’ : (13)

in which j. and tj. are continuous and compact injections, V' being densein H and H' densein V' (because Q2 isa
bounded domain of R3, see for instance Dautray and Lions, 1992; Treves, 1975).

B- Antilinear form representing the prescribed external forces

Foral i = 1,2,3 and for al w in R, we assume that gyl ;(w) = {X — gval,i(X,w)} € L*(Q) and gsurt,i(w) = {X —
gsurt,i(X,w)} € L*(T") where L*(T") is the set of all the ds-square integrable functions from I into C. For all w in
B UB, the antilinear form ¢(v ; w) on V' (representing the prescribed external forces) defined by

£(v; {/gsurf (X, w) /gvol (%, w) dx} , (14)

isthen continuous on V. Consequently, there exists a unique element f »(w) in V'’ such that
LV w) =nw) <flw),v>,, , WeV . (15)

It should be noted that if ggut = O, thenf,(w) € H C V’; in general, gaut 7 0and thenfy(w) isnotin H.
C- Sesquilinear form representing the dynamic-stiffness operator
For all w in B U B, the sesquilinear form a(u, v ;w) on V x V defined by

a(u,V;w) = —w?m(u,v) +iwd(u,v;w) + ku,v;w) (16)
representsthe dynamic-stiffnessoperator in which the right-hand side is defined hereinafter. Sesquilinear formm(u, v)
(mass term) is defined by

m(u,y) = [ px)ut) - VoI ax (17)
Q

and is Hermitian, positive definite, continuous on H x H and consequently, continuouson V' x V. Then, sesquilinear
formm(u, v) can define either an operator M € L(H) (set of all the bounded operatorsin H) such that, for al u and
vinH,

(Mu,v), =m(u,v) , (18 —1)
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or an operator M € L(V, V') (set of all the bounded operatorsfrom V into V') such that, for al uandvinV,
<Mu,v>  _=m(u,v) . (18 —2)

Theusual properties of mechanical coefficientsb; ;xx, (X, w) and o;;,4 (X, w) are such that sesquilinear formsd(u, v; w)
(damping term) and & (u, v ; w) (stiffness term) which are defined by

d(u7v;w):/Q[bijkh(x,w)skh(u)sij(v) ax (19)

F(U,V w) = /Q B (%,00) 24 (U) 53 (V) dX (20)

are Hermitian, positivedefinite, continuouson VxV and V-coercive(V-elliptic). Then, forall win B U B, sesquilinear
formsd(u,v;w) and k(u, v;w) define linear operators D(w) and K (w) belonging to £(V, V') such that, for al u and
vinV,

<Dw)u,v> ,  =d(u,v;w) , (21)
<Kw)u,v> , =k(uv;w) |, (22)

and Eq. (8) yields
D(—w)=D(w) , K(-w)=K(w) . (23)

For all w in B UB, we then deduce that sesquilinear form a(u, v; w) is continuouson V x V' and consequently, defines
alinear operator A(w) € L(V, V) suchthat, foraluandvinV,

<A(w)u,v>v,yvz a(u,v;w) . (24)
From Egs. (16), (18-2), (21), (22) and (24), we deduce the expression of the dynamic-stiffness operator
A(w) = —w?M +iwD(w) + K(w) (25)

inwhichM, D(w) and K (w) arethemass, damping and stiffnessoperators. We will assumethat mechanical coefficients
bsjkn (X, w) and a;;xs (X, w) are such that w — A(w) is acontinuous function from B into L(V, V'),

{we AWw)} €C(B, LV, V) . (26)
D- Variational formulation of the boundary value problem
It can easily be proved that the variational formulation of the boundary value problem defined by Egs. (4) to (6) can
be expressed as follows. For al win BUB, find u(w) = {x — u(X,w)} in V such that
a(u,viw)=~4(V;w) , WeV . (27)
The operator equation corresponding to Eq. (27) is
Aw)u(w) =n(w)fe(w) (28)

inwhich A(w) and f,(w) are defined by Egs. (25) and (15) respectively.
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2.3. Operator-valued frequency response function

A- Existence and uniqueness of the solution

For al win BUB, Eq. (27) has aunique solution u(w) in V. The proof is obtained using the Lax-Milgram theorem,;
for w € BUB, we introduce a(u,v;w) = —ica(u,v;w) and {(V;w) = —icf(V;w) withe = +1 if w > 0 and
e=—-1lifw < 0;thenRe{a(u,u;w)} = |w|d(u,u;w) > c(w) ||u|\f/ with ¢(w) > 0.

B- Operator-valued frequency response function T (w)
From Section 2.3.A, we deduce that, for al w in BU B, A(w) € L(V, V') isinvertible,

Tw)=AWw) e, v) . (29)

Function w — T(w) from BUB into £(V’, V) is called the operator-valued frequency response function. From Eq.
(28), we deduce that solution u(w) in V' can be written as

U(w) = n(w) T(w)fe(w) . (30)
Solution u(w) € V given by Eq. (30) will be called the vibration induced by excitation f ¢(w) € V.

3. Construction of a Reduced M odel
3.1. Operator-valued frequency response function T, (w)
For all w in B UB, A(w) isan unbounded operator in H whose domain Dom = {u € V ,A(w)u € H} issuch that

Dom = (H*(9))’nV . (31)

Let A, (w) be the restriction of operator A(w) € L(V,V’) to Dom. Then A, (w) belongs to £L(Dom, H) and is
invertible,
A, (w) € L(Dom,H) , A,(w)"'eL(H Dom) . (32)

Proposition 1. Theinjectionj 4 from Dom into H isa Hilbert-Schmidt operator and for all w in B U B, unbounded
operator A(w) in H with domain Dom has a bounded inverse T ,, (w) which is a Hilbert-Schmidt operator in H,

Ty (W) oA (w)" € Lo(H) (33)

=lus
whose range spaceis

R{T,(w)} =DomCV (34)
and where Lo (H ) denotes the set of all the Hilbert-Schmidt operatorsin H.

Proof. We use the following known result concerning Sobolev spaces H °. Let 2 be a bounded open set of R™ and
s € R.Ifk > n/2,thentheinjection H*T*(Q) — H*(Q) isaHilbert-Schmidt operator. Considering Egs. (9) and (31)
andtakingn = 3 and s = 0 (H°(Q2) = L*(Q2)), wededucethat j ., € L2(Dom, H). SinceA,, (w)~! € L(H, Dom)
andj,s € L2(Dom, H), we deduce Eq. (33) because £ o £ = L, (see for instance Kato, 1966; Reed and Simon,
1980; Dautray and Lions, 1992).

3.2. Energy operator asatrace operator in H

Let f bein H and be independent of w. Let u’ be the vibration due to excitation n(w) f. We then have
u'(w) = n@) Ty @)t (35)

inwhich T,, (w) € La2(H). We then define the energy e 5 (u') of vibration u" as twice the value of the total kinetic
energy, i.e. using Plancherel’s formula (see for instance Dautray and Lions, 1992; Soize, 1993b),

1

EB(Uf) = %

/ _w*(M uf(w), uf (W), dw (36)
BUB

inwhichM € L(H) isdefined by Eq. (18-1). Therefore, it is coherent to introduce the following definition of the
energy operator related to band B.
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Definition 1. (Energy operator). Let uf(w) = n(w) T, (w)f and u%(w) = n(w) T, (w) g be the vibrations due to
excitations n(w) f and n(w) g respectively, wheref and g arein H and are independent of w. The energy operator E g
related to band B is defined by

(Egf,Q), = W (MU' (w),u9(w)), dw . (37)
27 BUB
Remarks. From Egs. (36) and (37), we deduce that
ep(u) = (Epf,f), . (38)

It can be seen that operator E 5 is an intrinsic operator which depends on B and 7, but does not depend on the spatial
partsf and g of the excitations.

Proposition 2. (Characterization of the energy operator). Energy operator E 5 is a positive-definite symmetric trace
operator in H whose range spaceis Dom,

R{Eg}=Dom CV , Ege€Li(H) |, (39)

inwhich £, (H) denotesthe set of all the trace operatorsin H. This operator iswritten as

Es=o | _IWPT,()MT,(w)dw , (40)
27 JpuB

inwhich T, (w)* € L2(H) istheadjoint of T,, (w) € L2(H) andM € L(H) isdefined by Eg. (18-1). Operator E
can also be written as

Ep =+ [ W @) Re (T, () MT, @)} dw . (41)

inwhich e denotesthereal part.

Proof. 1)- Eq. (40) is directly deduced from Eq. (37) knowing that if T, (w) € Lo(H), then T, (w)* € Lo(H).
2)- Eq. (41) is deduced from Eq. (40) using Eq. (23) and the fact that |n(—w)| = |n(w)|. 3)- For dl w in B,
T, (w)* € £2( ), M € L(H) and T,, (w) € L2(H); then (see for instance Kato, 1966; Reed and Simon, 1980)
T,(W)*MT,(w) € L1(H). 4)- From Eq. (26), w — A, (w) is continuous from B into £L(Dom, H). Since
A, (w) = A, (w)~t is continuous from £(Dom, H) into L(H Dom), we deduce that w — A, (w)~! is continuous
fromBlntoﬁ( Dom) 5)-Let|| . ||2 betheHilbert-Schmidt norm. Forw andw’in B, wehave || T, (w)—T, (w')|2 =
s © (Ao @)™ = Ay ()2 < s ll2 1A (@) 7" = Ay ()| 221, Dom) - USing4), we deducethat w +— T, (w)
is continuous from Binto L2(H). 6)- Since w — n(w) is continuous on B (see Section 2.1) and from 3) and
5), we deduce (see for instance Reed and Simon, 1980) that w +— w ?|n(w)|?*Re {T,, (w)* M T,,(w)} is continuous
from B into £,(H) and consequently, Ep € L£y(H). 7)- From Section 2.2.C, we deduce that, for al w in B,
T, (w)* =T, (w). Therefore, using Eq. (34), the range space of T ,, (w)* is Dom and then, the range space of trace
operator w?|n(w)|*Re {T,, (w)*M T, (w)} is Dom. We then conclude that the range space of trace operator E 5 is
Dom. 8)- It can easily be verified that E}; = Ep and consequently, E g is a symmetric operator in H. 9)- Finally,
from Eqg. (37), we deducethat E 5 is positive definite because M is positive definite.

3.3. Spectral theory of energy operator E g

Since atrace operator is a compact operator, the spectral theory of operator E 5 € £1(H) is directly deduced from
the spectral theory of symmetric compact operatorsin Hilbert spaces. Consequently, E g has a countable number of
positive eigenvalues with finite multiplicity, possibly excepting zero,

M>A>...—0 s (42)

in which the \,’s are the repeated eigenvalues of Eg (each eigenvalue )\, counted repeatedly according to its
multiplicity). The corresponding eigenfunctions{e,, },>1, such that

Epe, =M\ e | (43)
arefunctionsx — e, (x) from Q into R3 and form a complete orthonormal family in H,
(el/ 7eV’)H = 51/V’ . (44)
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Since E 3 is a positive-definite symmetric trace operator, we have S5 |\, | = 3/ A, < +o0. Thetrace norm of
Ep is such that

—+o0
IEplli=trEp =) _ A, <+o0 , (45)
v=1

and E 5 can be written as

—+oo
Ez=> M (..8)e . (46)
v=1

Proposition 3. (Characterization of the eigenfunctions of operator E 5). The set {e,,» > 1} of eigenfunctions of
operator E isa completefamilyin V' C H, orthonormal for the inner product of H, and each eigenfunctione,, isa
continuous function from € into R3.

Proof. Since the range space of E g is Dom (see Proposition 2), we have Eg e, = A\, e, € Dom and therefore, for
adlv>1,e, € Dom C V. Wethen deducethat {e,,v > 1} isacompletefamily in Dom and therefore, in V. Since
Dom C (H?(Q))? (see Eq. (31)) and since, for any open domain 2 of R™ having a sufficiently smooth boundary, the
injection H™(2) c__, C°(%?) is continuous for m > n/2, we deduce that x — e, (x) is acontinuous function.

3.4. Reduced model adapted to frequency band B

The reduced model adapted to frequency band B is obtained using the Ritz-Galerkin projection of the variational
formulation on the subspace V'V of V' spanned by the eigenfunctions {ey, . . . , ey } which correspondto the N highest
eigenvalues {\1, ..., Ay} of energy operator E 5. From Proposition 3, we deduce that the sequence {V V' } i is dense
inV. Let u(w) € V bethe unique solution of Eq. (27), given by Eq. (30), and let u ¥ (w) = {x — u™¥(x,w)} bethe
projection of u(w) on V¥,

N

uV(x,w) =D O, (w)e,(x) (47)

v=1

inwhich 6, (w) € C. FromEgs. (15) and (27), we deducethat, for all w in BU B, ®(w) = (63 (w), . ..,0n(w)) € CN
isthe solution of the linear equation
AN (@)]O(w) = n(w) Flw) (48)

inwhich [Ay (w)] isthe symmetric (V x N') complex matrix defined by
[-AN (W)Ln/ = a(e,,/, € ; w) ) (49)
and where F(w) = (F;(w), ..., Fn(w)) € CV issuch that

Fo(w) =<f(w),e,> ) (50)

v VIYV

Definition 2. (Reduced model). The set of Egs. (47) to (50) constitutes the so-called reduced model adapted to
frequency band B of the dynamical system described by Eq. (27) or (28).

For al win B UB, matrix [Ay (w)] isinvertible,
[Tn(@)] = [Anv@)]™" 5 [Tv@)]" = [TvW)] (51)
and the solution of Eq. (48) iswritten as

O(w) = n(w) [Tn (W) Flw) . (52)

3.5. Upper bound of energy of the response when f, isindependent of w

In this section, we assume that f,(w) = f, isindependent of w. From Eq. (50), we then deducethat F, (w) = F, is
independent of w. Let E be the projection of energy operator E 5 € £1(H) on subspace VY C V C H. From Eq.
(46), we deduce that

Eg = Z )\y ( . 7ey)H e (53)
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and its trace norm is written as

N
[EFli=trEF => X . (54)
v=1

Sincee, € V, theright-hand side of Eg.. (53) can be extendedto V'’ by replacing ( . ,e,), by <.,e,> , . Wethen
deduce that energy € z(u”) of vibration u”v iswritten as

N
esW) =S MRS . (55)
v=1

Equation (55) yields the energy upper bound (Rayleigh quotient) of vibration u ¥ which is such that

EB(UN)
SO 56
Falk (%)
4. Finite Dimension Approximation
An explicit construction of eigenfunctions {eq,...,ex} of energy operator E 5 cannot be obtained in the general

case. A finite dimension approximation E g ,, of E g must be introduced and the eigenfunctions{e?' ..., €%} of Eg
(associated with the N highest eigenvalues) constitute the approximation of {e; ..., ex}. Thisfinite approximation
is obtained using the Ritz-Galerkin method (whose finite element method is a particul ar case; see for instance Argyris
and Mlginek, 1991; Bathe and Wilson, 1976; Dautray and Lions, 1992; Zienkiewicz and Taylor, 1989). We then
consider asubspace V,, C V of finite dimension n > 1 spanned by afamily {1, ...,,,} of independent R3-valued
functions {1, }» INV.

4.1. Projection of the variational formulation

Therestriction of antilinear form (v ; w) on'V to V,, isrepresented by n(w) F(w) inwhichF(w) = (Fi (w), ..., Fp(w))
€ C™ issuch that

Fulw) = / Ot (X, ) - by () ds(X) + / Guat(X, ) - P, (X)X (57)

The restriction of sesquilinear form a(u,v;w) onV xV to V,, x V,, is represented by the symmetric (n x n) complex
matrix [A,, (w)] such that

[An(@)]ap = albg, ¥y ;w) (58)

Using Eq. (16), matrix [A,,(w)] can bewritten as
[An(w)] = —w? [M] +iw [D(w)] + [K(w)] (59)

inwhich [ M ], [D(w)] and [K (w)] are positive-definite symmetric (n x n) real matrices such that

[DWlag = d($g,bq5w) (61)
[K(W)]ap = k(bg,dq ;0) - (62)

For all w in B UB, symmetric (n x n) complex matrix [A,, (w)] isinvertible and we have

[Tn(@)] = [An@)] ™" [Ta(w)]” = [T()] - (63)
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4.2. Projection of the energy operator

Proposition 4. Projection E g ,, of operator Eg on V,, C H iswritten as

n

Epn = Z [En]aﬁ (. 711’[3)H1ba ) (64)

a,f=1

inwhich [E,,] is a positive-definite symmetric (n x n) real matrix such that
B = [ fenteds (65 1)
en()] =~ fe)? Re {[Ta )] [M][Ta(@)]} (65-2)

Proof. Let f and g bein H and be independent of w. The projectionsu, (w) and ud (w) of uf(w) and u%(w) on Vv, are
written as

Z g (W) vy (x) . ud(x,w) Z Q% (w) b, , (66)

B'=1
inwhich ¢f;, (w) and ¢2, (w) are such that

qly (W) = n(w Z o)y ah (@) =nw) D [Tu(wara (@:%0)y (67)

Form Definition 1 and Egs. (18-1), (37), operator E g ,, is such that

1

_w?m(uf,(w), U (w)) dw . (68)
27T BUB

Substituting Eq. (66) with Eq. (67) in theright-hand side of Eq. (68) yields Eq. (64) in which matrix [E ,,] is such that

1

B =5 [ @) L@ (M T do (69)

Since [n(—w)| = n(w)], [D(—w)] = [D(w)] and [K(—w)] = [K (w)], from Eq. (69), we deduce Eq. (65). Finaly,
the properties of matrix [E,,] are directly deduced from Proposition 2.

4.3. Spectral theory of the projected energy operator
Let {A},..., A} and {€f, ... €} bethe eigenvalues and the corresponding eigenfunctions of E 5 .,

Epn,€ =X € . (70)
Proposition 4 shows that the eigenvalues are positive real numbers,
AT >N > > >0 (71)

and that the corresponding eigenfunctions form an orthonormal basisin V., for the inner product of H

(eLT/L 7eZ’ )H =0 - (72)
We have
N
IEpnlli=trEpn=>_ A | (73)
and operator E 5 ,, can be written as
Epn=>_ M (..€),€ . (74)
v=1
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Proposition 5. (Characterization of the eigenfunctions). Eigenvalues{\7, ..., A"} of operator E 5 ,, arethesolutions
of the generalized symmetric eigenvalue problem

[H]P" =X [G]P” (75)
inwhich [G] and [ H ] are positive-definite symmetric (n x n) real matrices such that

[H]=[G][E.][G] . (77)
The eigenvectors {P!,. .. P"} formabasis of R and verify the orthogonality properties

([G] Pyv Py/)Rn = 51/1/’ 3 (78)

([H] PV? PV/) = >\17/L Ot (79)

R™

Eigenfunctions {ef, . .. €} of operator Ep ,, can bewritten as
n
€=> P, , v=1,...,n , (80)
a=1

inwhichP” = (Py, ..., PY). We have

(ez ’ eLT/L')H = ([G] Pya PV/)IR” = 6“" : (81)

Proof. Sincee? € V,, and {1, }, isabasisof V,,, Eq. (80) holdswith P” € R because €” is an R*-valued function.
Eq. (70) isequivalent to

(Epn€l V), =\ (€1,Vv), , WeEV, . (82)
Takingv = > _ vaib, and substituting E 5 ,, given by Eq. (64) and e given by Eq. (80) into Eq. (82) yields
Eq. (75). Itisclear that [G] and [ H ] are positive-definite symmetric matrices and consequently, the generalized
symmetric eigenval ue problem defined by Eq. (75) leadsto Egs. (78) and (79). Finally, dueto Eq. (78), Eqg. (81) (i.e.
Eq. (72)) holds.

Remarks. 1)- In the particular case for which p(x) = p, isaconstant in domain Q, wehave [G'] = py ' [M]. 2)- If
the finite element method is used, then [ G | is a sparse matrix which is“similar” to mass matrix [ M |.

4.4. Reduced model adapted to frequency band B

A- Definition of thereduced model

We consider the construction introduced in Section 3.4 in which we replace the eigenfunctions of E g by the eigen-
functionsof Ep,,. Let N < n (generally N < n). Let u(w) € V be the unique solution of Eqg. (27), given by
Eq. (30). Then, the reduced model adapted to frequency band B is defined as the projection u ¥ (w) of u(w) on the
subspace V,V C V,, C V spanned by the eigenfunctions {e?, . . ., €%, } which correspond to the N highest eigenvalues
AT > Ay > ... > AR, of operator E r,,

VY = span{el,... &} . (83)

For all w in B UB, projection u® (w) is written as

N
uy (x,w) = Op(w)erx) (84)
inwhich ®" (w) = (0% (w), ..., 0% (w)) € CV isthe solution of the linear equation
[AR (w)] ©"(w) = n(w) F*(w) (85)
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in which [A% (w)] is the symmetric (N x V) complex matrix defined by
[AX ()] = a(€l, e} ;w) (86)

vy Cu

and where F"(w) = (FP(w), . .., Fr(w)) € CV issuchthat (see Egs. (14) and (15)),

Fl(w) :/ngwf(x,w)-eﬁ(x) ds(x)+/ggvo|(x,w)-e;‘(x) dx . (87)

The set of Egs. (84) to (87) constitutes the finite dimension approximation of the reduced model introduced in
Definition 2 and adapted to frequency band B. For al w in B U B, matrix [A%; (w)] isinvertible,

(TR ()] = AR @], [T =[TRW)] (88)
and the solution of Eq. (85) iswritten as
0" (w) =n(w) [Ty (W)] F*(w) . (89)

B- Expression of the matrices of the reduced model

Let [P%] bethe (nx N)real matrix whose columns consist of the N eigenvectors {P!, ..., PN} corresponding to the
N highest eigenvalues AT > ... > A%, of the generalized symmetric eigenvalue problem defined by Eq. (75),

[P¥lav=Py , a=1,...,n , v=1,...,N . (90)
Substituting Eq. (80) into Egs. (86) and (87) yields
[AR ()] = [PR]" [An(@)] [PR] (91)

F'(w) = [PR]TFw) (92)
in which matrix [A,,(w)] and vector F are defined by Eqgs. (59) and (57) respectively.

C- Energy of theresponse calculated with the reduced model and itsupper bound when f, isindependent of w

In Sections4.4.C and 4.4.D, we assumethat f,(w) = f, isindependent of w, i.€. surt (X, w) = Gsurf(X) and gyol (X, w) =
gvol(X) are independent of w. Therefore, from Egs. (57) and (87), we deduce that F(w) = F and F " (w) = F" are
independent of w. Similarly to Section 3.5, energy € 5 (ulY) of ul is given by

N
ep(u)) =>" NI F? (93)
v=1

and the upper bound of the normalized energy is such that

ep(uy)) < \n

=y S A 94
Fo =N o
Itisclear that Egs. (93) and (94) holdfor N = n.
Proposition 6. Energy ¢ z(ulY) of u¥, given by Eqg. (93), can also be expressed as
es(U)) = ([ER ] F, Flen (95)

in which F defined by Eq. (57) is independent of w and where [Eg)n] is a positive symmetric (n xn) real matrix such
that

By, = /B €N (@) dw (96— 1)

[en ()] = [P] [en )] [PR]T (96 - 2)

n

inwhich, for all win B, [} (w)] is a positive-definite symmetric (IV x N) real matrix such that
1
[en ()] = —w? n(w)* Re {[TR @)]" MR TR @]} (96 —3)
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where [M}] = [PR]" [ M][Pg].
Proof. Egs. (36) and (18-1) yield

) =50 [P mul @)l @) ds (o7)

where u? (w) isgiven by Eq. (84). Substituting Eq. (84) with Eq. (89) into Eq. (97) yields
ep(Uy) = (EB F" F)n (98)

inwhich [€F ] = [[e]) (w)] dw. Substituting Eq. (92) into the right-hand side of Eq. (98) yields Eq. (96).
Remarks. The dimension of the null vector spaceof [E ] isn — N and we have
ker [EF ] = span{P"*' ... P"} . (99)
For dl win B, we have
[en(w)] = [en(w)] (100)
where [e,, (w)] is defined by Eq. (65-2) and [ (w)] by Eq. (96-2) with N = n.
D- Dominant eigensubspace of the energy operator and criterion for calculating the order of the reduced model

Taking N = n into Eq. (93) yields

ep(Un) =Y ALIFDP (101)
v=1

where u,,(w) is the projection of u(w) on V,,. We then have eg(u,) < A7 || F"||? and since the upper bound is
effectively reached,

= u,) = AT || F"12 . 102
emac = max ep(Un) = Ay [| 7" (102)

From Egs. (93), (101) and (102), we deduce that

ep(Un) —ep(U))) < M1
Emax Y

(103)

Since {\, }, is a decreasing sequence of positive numbers as v approaches +oo, if n is sufficiently large, then there
exists N < n such that

)\'YL
ML <1 . (104)
)‘1

Definition 3. (Dominant eigensubspace). If N < n is such that Eq. (104) holds, then subspace V.,V is called the
dominant eigensubspace of operator E  ,, corresponding to the N highest eigenvalues A7 > ... > A} and N isthe
order of the reduced model.

5. Construction of the Dominant Eigensubspace Using the Subspace Iteration
Method

The reduced mode! defined by Eqgs. (84) to (87) requires construction of the dominant eigensubspace of E g, i.e.
caculation of the eigenvectors PL, ..., PY in R" corresponding to the highest eigenvalues AT > ... > A%, of the
generalized symmetric eigenvalue problem defined by Eq. (75). Sincen islargeand N < n, the subspace iteration
method or the Lanczos method (Bathe and Wilson, 1976; Parlett, 1980; Golub and Van Loan, 1989; Chatelin, 1993)
can a priori be used. The algebraic structure of matrix [E ;] defined by Eq. (65) shows that the use of the subspace
iteration method allows a very efficient solving method to be constructed. Below, we present this approach. Let m be
the dimension of the subspace used for theiterations such that N < m < n (in practice, m = min{2N , N + 8}, see
Bathe and Wilson, 1976). Then, the generalized symmetric eigenvalue problem defined by Egs. (75), (78) and (79) is
rewritten in matrix form as

[(H][P]=[G][P][A] , (105)

where [ P]isan (nxm) real matrix such that
[PITIGIIPI=[I] , [PI"[H][P]=[A] , (106)
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and where [A] is the (m x m) real diagonal matrix of the eigenvalues. We then have to calculate the N highest
eigenvalues A} = [A]11 > ... > A%, = [A]nn and the corresponding eigenvectors PL, ..., PV constituted by the
first N columnsof matrix [ P]. Since the usual formulation of the subspace iteration method is adapted to calculating
the lowest eigenvalues, Egs. (105) and (106) are transformed as follows

[GI[s]=[H][S][r] (107)
inwhich[S]isan (nxm) real matrix and [I' ] adiagonal (m xm) real matrix such that
[(SIT[H][S]=[1] , [S]"[G][S]=[T] . (108)
with
(A]=[T]7" (109)
[P]=1[S][T]""% . (110)

We then have to calculate the V lowest eigenval ues and associated eigenvectors of the symmetric eigenvalue problem
defined by Egs. (107) and (108).

5.1. Algorithm

Using Eq. (77) and since [ G ] isinvertible, the classical algorithm of the subspace iteration vector (Bathe and Wilson,
1976) applied to Egs. (107) to (110) can be adapted and rewritten as follows.
1- Initialization:

[Ao]=[0] , [Q]=1[1] , [Wo] , ro=+4o00 , (111)

inwhich [0] isthe (m xm) null matrix, [I] isthe (m xm) identity matrix and [Wy] isan (nx m) real matrix of a
selection of the starting iteration vectors (constructed, for instance, using the Lanczos method). The columns of matrix
[Ws] must be a set of m algebraically independent vectorsin R™.

2-Fork=1,2,... iteratefromk — 1to k:

[Sk] = [Wi—1] [Qr—1] (112)

inwhich [Si] and [W),—1] are (nxm) real matrices and [Qx—1] isan (m xm) real matrix. Calculate the (m x m) real
matrices [Hj] and [G] such that

[(Xi] = [G][Sk] (113)
W] = [En] [Xk] (114)
[Hi) = [Xx)" [Wi] (115)
[Gr] = [Se]” [Xk] (116)

inwhich [X] and [W}] are (n x m) real matrices. Solve for the projected symmetric generalized eigenval ue problem
of dimension (m xm),

[Gi] [Qr] = [Hi] [Qr] [Tk] (117)
with B B
[T [Hi) @kl = (1] , [Qu)T Gkl [Qx] =[x . (118)
and such that [T'x]11 < [Tx22 < ... < [Ck]mm. Caculate [A] = [['x] 1. Measure the convergence by

7slup N r , (119 -1)
or by the criteria
W] = W4,
— 1] <e = , 119 —2
S e [ A] o=

where [W}N] isthe (nx V) real matrix such that [WN];, = [Wy];, forj =1,...,nandv = 1,..., N and where
VIl = te{ (W WN ).
3- When convergenceisreached, P!, ..., PV arethefirst N columnsof the (nxm) real matrix [ P ] whichis calculated
by ~

[P] =[Skl [Qu] [AR]? (120)

and A7, ..., A% arethefirst N diagonal elements of the (m x m) diagona matrix [A ).
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5.2. Solving method using a direct or indirect procedurein the frequency domain

A- Direct procedurein the frequency domain

If we look at the algorithm in Section 5.1, it would seem that the calculation of matrix [E,,] is necessary. In fact, Eq.
(114) shows that we only need to calculate the (n x m) real matrix [ W] such that

(W]=[E][X] (121)

inwhich [ X ] isagiven (n xm) rea matrix (we omit index & to simplify the notation). Let Neq be the number of
frequency points required for calculation of the integral in Eq. (65-1), Vit be the number of iterations necessary to
reach convergence (see Eq. (119)) and n;, be the “mean” half-bandwidth of symmetric matrices [ M ], [D(w)] and
[K (w)]. As suggested above, one possibility would be to calculate [E,,] using Eq. (65) and then calculate [ W | each
iteration. Below, we define an operation as a multiplication or an addition of two real or complex numbers. If the
calculation of symmetric complex matrix [T'(w)] is carried out using the Gauss elimination method and if it is assumed
that m Niier < n, then such adirect procedurein the frequency domain would lead to the following estimation n g, of
the number of operations

ngir =~ 21° Nireq (1 + 4np/n) . (122)

B- Indirect procedurein the frequency domain
Thefollowing procedureis more efficient. Since [ X ] isareal matrix, it can easily be verified that

[W]:/Béﬁe{[é(w)}} dw (123)

where [2 (w)] isthe (n x m) complex matrix which is the unique solution of the equations

[An(W)] [Y (w)]
[An ()] [Z(w)]

inwhichw — 6(w) isthefunctionfrom R into R* such that, for all w in R,

W [X] (124)
[M][Y ()] (125)

Iw) = ~ P @) 15() - (126)

Assuming that the Ny factorizations of matrices [A,, (w)] are carried out using the Gauss elimination method outside
the iteration subspace loop, this procedure leads to the following estimation 7 jng Of the number of operations

Nind = 1.1} Nireq (1 + 12 Nitgem /1) (127)

Consequently, the gain with respect to the direct procedure is ngir/ning = 2(n/n4)%(1 + 4np/n) /(1 + 12Niegm /np).
For instance, in the context of the use of the finite element method, if n = 10000, n, = 500, m = 30 and Njtr = 20,
then the gain is approximatively 60.

5.3. Procedurebased on the use of the MF solution method in the time domain

If, for al w in B, the approximation [D(w)] ~ [D(wp)] and [K (w)] ~ [K(wp)] can be used, then a more efficient
method than the method presented in Section 5.2.B can be used (if not, then the method of Section 5.2.B is required).
This method is based on the use of the MF solving method (Soize, 1982b) and requires factorization of only one
symmetric (nxn) complex matrix whose “mean” half-bandwidthisrn ;. Consequently, the core memory necessary for
this procedureis much smaller than for the indirect procedure in the frequency domain (Section 5.2.B) for which IV freq
factorizations are simultaneously present in the memory.

A- Definition of theinput signal

~

Let w — 6(w) bethefunction defined by Eq. (126). Since w — n(w) is continuouson B (see Section 2.1),
6ecL?’R) , suppl=B |, (128)

in which supp 9 denotesthe support of function 0. Consequently, its inverse Fourier transform

o 1 P
0(t) e O(w) dw = —/ e“'O(w)dw , teR (129)
2 B

:% o
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belongsto L2(R) and can be written as
O(t) = st y(t) , VLER . (130)

Functiont — 6 (¢) belongsto L?(R) and has a Fourier transform
o (w) = / e @ty(t)dt , weR (131)
R

which is such that R R
0o € L*(R) , suppbp =By , (132)
where B, denotesthe compact interval of R,
By =[-Aw/2,Aw/2] . (133)

Function ¢ — 6y(¢) isthe LF signal associated with the MF narrow-band signal ¢ — 6(t) (see Soize, 1982b). If for all
win B, [n(w)]? = 1, then §, iswritten as §,(0) = (8 — a3)/(672) and for t # 0,

1 [(BPr—a*) (By—0o7) (v—7)

Oo(t) = — -2 2 134
olt) = 53 { it @2 Gy ’ 15y

inwhicha =wp — Aw/2, f = wp + Aw/2 and vy = exp{itAw/2}.

B- Introduction of the approximation related to band B

Let usassumethat for al w in B, we canwrite [A,, (w)] ~ [Ap(w)] where [Ap (w)] istheinvertible symmetric (nxn)
complex matrix
[Ap(W)] = —w*[M] +iw [Dp] + [K5] (135)

inwhich [D ] and [K 5] are the symmetric (n x n) real matrices independent of the frequency,
[Dp] = [D(ws)] . [Kb]=[K(ws)] . (136)
Consequently, for all w in B, we have [T), ()] ~ [T (w)] with
[Tp(w)] = [Apw)] ™", (137)

and Egs. (63), (65-1) and (65-2) yield

B, ~ /B Re {6() To@)] [ M] To ()]} do (138)

~

It should be noted that the introduction of this assumption isjustified because of the continuity of functionsw — 6(w)
andw — [T, (w)] on B (there exists Aw sufficiently small such that this approximation can be used).

C- Expression of [ W ] using the equationsin the frequency domain

In the context of the approximation defined in Section 5.2.B, [ W ] isgiven by Eq. (123) but Egs. (124) and (125) must
be replaced by

o~

[Ap(W)][Y (w)] = 0(w)[X] (139)
s(w)| 12

[Ap@)] [Z(w)] = [M][Y (w)] . (140)

From Eq. (128) and sincew — [Tz (w)] is continuouson B, we deducethat w — [V (w)] and w +— [Z(w)] are square

integrable functionsfrom R into Mat ¢ (n, m) (set of al the (nxm) complex matrices) and that their supportsare such
that

supp[Y ] =supp[Z] =B . (141)

D- MF equation in the time domain

Lett — [Y(¢)] andt — [Z(t)] be the square integrable functions from R into Mat ¢ (n, m) such that (inverse Fourier

transforms)
1

T o

1

T o

Y @®) /[R Y W)dw  [Z(0)] /[R ¢t Z(w) dw (142)
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From Egs. (129), (135), (139) and (140), we deducethat [Y (¢)] and [Z (¢)] verify the MF equationsin the time domain

[M][Y(6)] + [Dp] [V (0] + [K5] [Y ()] = 0(1) [ X] (143)
(M[Z@®)] + DBl [Z2(0)] + [Kp] [Z2(1)] = [M][Y(=1)] . (144)

E- Associated LF equation in thetime domain
Let [Yo] and [Z,] be the LF signals associated with the MF signals [ Y] and [ Z | respectively, such that

V(O] =5 Vo), (2] = €5 [Zo(t)] , WLER . (145)

Therefore, t — [Yo(¢)] and t — [Zo(¢)] are square integrable functions from R into Mat ¢(n, m) and their Fourier
transforms

Tow) = [ e Wl . (Zaw) = [ e zi)d (146)
R R
are square integrable functions from R into Mat ¢ (n, m) such that

supp (Yo ] = supp[ Zo] = Bo (147)

inwhich By is defined by Eq. (133). Substituting Eq. (145) into Egs. (143) and (144) and using Eq. (130) yieldsthe
LF equationsin the time domain associated with the MF equations (143) and (144),

[M][Yo(t)] + [?B} [Yo(t)] + [f:fB] Yo(t)] =00(t)[X] (148)
[M][Zo(t)] + [DB] [Zo(t)] + [KB] [Zo(t)] = [M][Yo(—t)] , (149)

in which the symmetric (n xn) complex matrices [ D] and [K 5] are written as

[Dp] = [Dp] + 2iwp [M] (150)
[Kp] = —w} [M]+iwg [Dp] + [K5] | (151)

F- Expression of [ W ] using the solution of the associated LF equation in thetime domain

Lett — [Yp(t)] and t — [Zy(t)] be the functions verifying Egs. (148) and (149). From Egs. (123) and (142), we
deducethat [W ] = 27 Re {[Z(0)]}. Using Eq. (145) for ¢t = 0 yields

(W] =2rRe{[Z(0)]} - (152)

G- Solving procedure

Theassociated L F equations (148) and (149) are sol ved using an unconditionally stableimplicit step-by-stepintegration

method such as the Newmark method or the Wilson 6 method (see for instance, Bathe and Wilson, 1976). Since Egs.

(148) and (149) have the same differential operator [ M ] d?/dt* + [Dg]d/dt + [K ], only one symmetric (n x n)
complex matrix has to be factorized. The basic sampling time step denoted 7 is given by Shannon’s theorem (see for

instance Soize, 1993b). From Egs. (133) and (147), we deduce that 7 = 27 /Aw. The integration time step of the
step-by-step integration method is then written as At = 7/u where p > 1 isaninteger. Since 6 and [Yp] are square
integrable functions, for any ¢ > 0, there exists an initial timet; = —Iy x 7 where Iy > 1 isan integer and afinal
timetr = Jy x 7 where Jy > 1 isancther integer, such that

tr +00 tr
/_\90(t)|2dt§6\|90||i2 ; /t H[Yo(t)]||2dtS€/t IYo()]|*dt . (153)

(oo}

We have the following procedure.

Step 1. Construction of the sequence [Yo (j x At)] forj = —1,..., JwithI = Ipxpand J = Jy x u by solving Eq.
(148) for t €]t , tx] with theinitial conditions [Yy(¢7)] = [Yo(t1)] = [0].

Step 2. Construction of the sequence [Zo(k x At)] for k = —J,...,0 by solving Eq. (149) fort €] — ¢t , 0] with the
initial conditions [Zo(—tr)] = [Zo(—tr)] = [0].

For details on the MF solving method, such as the usual values of p, I, J, we refer the reader to Soize, 1982b and
Soize et al. 1986 and 1992.

H- Number of operations
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We use the notations introduced in Section 5.2. Based on the use of the Newmark method, this procedureleads to the
following estimation of the number of operations,

nMpﬁnn§+4nnmener(SI+7J) . (154)

Consequently, the gain with respect to the indirect procedure in the frequency domain is 7 ind/nmr = Nireg(l +
12Niterm /) /(1 + 4(31 + 7J) Nitern /1) ). For instance, in the context of the use of the finite element method, if
n = 10000, n, = 500, m = 30 and N = 20, then the gain is approximatively Nireq/ (I + 2.2J).

6. Example

The exampl e concerns an inhomogeneouscontinuous dynamical system which has anondiagonal generalized damping
matrix with respect to the normal eilgenmodes of the associated conservative dynamical system.

6.1. Description of the dynamical system

We consider the MF response of the dynamical system consisting of arectangular thin plate in bending mode coupled
with springs and dashpots as shown in Fig. 1, on the narrow MF band B = 27 x[550,600] rad/s defined by Eq.
(1), i.e. on the [550,600] Hz frequency interval. We then have (see Eq. (2)) Aw/w p = 0.087 and, for al w in B,
function n is such that |n(w)| = 1. The plate is homogeneous and isotropic, simply supported, rectangular, with a
constant thickness, width L; = 0.5 m, length L, = 1.0 m, surface-mass density p, = 40 kg/m?, constant damping
rate £ = 0.001. We assume that the usual thin plate theory can be used. The lowest eigenfrequency of the associated
conservative uncoupled plate is 5 Hz. The plate is coupled with 3 springs having the same stiffness coefficient
k = erpwy withe, = 0.1, u = psL1 Ly = 20 kg (total mass of the plate) and with 5 dashpots having the same
damping coefficient d = 2e4 uéwp With ey = 0.1. The family 4, ..., of functions introduced in Section 4 is
chosen asthefirst n eigenmodes of the associated conservative uncoupled plate whose corresponding el genfrequencies
are f1 < fo < ... < fn. Thevaueretained for n is 407 and has been deduced from the convergence study of the
dynamical system response over the [0,700] Hz frequency band. Thevaluesof f4,..., f, aesuch that f; = 5 Hz,
fa01 = 549 Hz, foge = 557 Hz, fa19 = 596 Hz, faso = 601 Hz and f407 = 1097 Hz. Consequently, there are
201 plate eigenmodes whose eigenfrequencies are below 550 Hz, 18 plate eigenmodes whose eigenfrequencies lie
inside the narrow MF band [550,600] Hz, and 188 plate eigenmodes whose ei genfrequencies are between 600 Hz and
1100 Hz. The normalization of the plate eigenmodes is such that, for all «, OLl OL2 [Va (11, 22)|? ps d1 dTo = p.
Concerning the finite dimension approximation of the dynamical system operators, matrices [ M ] and [ G | defined by
Egs. (60) and (76) are diagonal, and matrices [ D] and [ K | defined by Egs. (61) and (62) are dense and independent
of the frequency. Let fPS < fDPS < ... be the eigenfrequencies of the associated conservative dynamical system
(estimated using the finite dimension approximation introduced in Section 4). These eigenfrequencies are such that

DS = 10.25 Hz, f55 = 548.99 Hz, fP5 = 552.99 Hz, fPS = 598.45 Hz and 23 = 604.59 Hz. It can then
be seen that the spectrum of the associated conservative dynamical system is such that there are 198 eigenmodes
whose eigenfrequencies are below 550 Hz and 19 eigenmodes whose eigenfrequencieslie inside the narrow MF band
[550,600] Hz.

6.2. Constructing the reference solution on a broad frequency band

The reference solution is obtained by constructing the mapping w +— tr[e,(w)] using Eq. (65-2), with a sampling
frequency step dw = 27 x0.46. In Eq. (65-2), [T, (w)] is calculated using Eq. (63) in which matrix [A4,,(w)] is
calculated by Eq. (59) with matrices [M ], [D] and [ K] given by Egs. (60), (61) and (62). Fig. 2 shows the
mapping w — 10 x log; (trle, (w)]) from the broad frequency band 27x[0,700] rad/sinto R * (it should be noted that
this mapping does not depend on the spatial excitation).

6.3. Constructing the reference solution on the narrow MF band

Fig. 3 (whichisaclose-up of Fig. 2) shows the mapping w + 10 x log,(tr[e, (w)]) on narrow MF band B. This
function is constructed with a frequency resolution dw = Aw/Nreq in Which Nieq = 300. This graph is used below
as reference solution to evaluate the accuracy of the response constructed using the reduced model. For this reference
solution related to frequency band B, matrix [E,,] defined by Eq. (65-1) is calculated using the approximation

[En] ~ dw Z;V:"fq [en(w;)] in which w;’s are the sampling frequencies of band B. For the reference solution, the
eigenvalues A} > A5 > ... > A7 > 0 and the corresponding eigenfuctions {e?, . .. €} of energy operator E 5 ,, (See
Eq. (70)) are calculated using Proposition 5 (Egs. (75) to (81)). Fig. 4-ashowsthe graph of the functionv — A |} for
v €{1,2,...,40} and Fig. 4-b shows the graph of the function v — 10 xlog,(A?) forv € {1,2,...,400}. There
isastrong decrease of the eigenvaluesin theinterval [18, 23] which means there exists a possibility of constructing an
efficient reduced model independent of the spatial excitation of the dynamical system.
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6.4. Reduced model adapted to the narrow MF band

I nthissection, we present acomparison of thereference sol ution constructedin Section 6.C (seeFig. 3) withthesolution
obtained by the reduced model constructed using the results of Section 4.4 in which eigenfunctions{e7,..., €Y} are
those calculated in Section 6.C. For the three values 17, 20 and 30 of the reduced model of order IV, Fig. 5 shows
the comparison of function w — 10 x log,(tr[e, (w)]) (reference solution) with function w — 10 x log, (tr[eX (w)])
(reduced model) calculated for each value of order N using Proposition 6.

6.5. Construction of the dominant eigensubspace using the subspace iteration method

For construction of the reference solution (Section 6.C), all the eigenvalues and the corresponding eigenfunctions of
matrix [E,,] were calculated (in practice, calculation of all the eigenvaluesis never done and cannot be carried out for
large finite element models). In this section, we consider the construction of the dominant eigensubspace using the
subspace iteration method (thisis the method proposed for large models).

A- Solution method using the direct procedurein the frequency domain

For the reduced model of order N = 20, the subspace iteration algorithm defined by Egs. (111) to (120) is used with
m = 28 and is initialized with an (n x m) real matrix of +1s and —1s whose columns are orthogonal (Hadamard
matrix). Each iteration, matrix [W}] defined by Eq. (114) is calculated using the direct procedure in the frequency
domain described in Section 5.2.A. It should be noted that, for large models, this direct procedure is tricky and
must be replaced by the indirect procedure described in Section 5.2.B as was explained (for the present validation
of the subspace iteration algorithm, this point is not crucial, and in addition, validation of the indirect procedure
is straightforward). Convergence of the subspace iteration method is measured using Eq. (119-1) with e = 10 ~*.
Convergenceis obtained for Vi = 4 iterations. Fig. 6 shows the comparison of function w +— 10 xlog,(tre, (w)])
(reference solution) with function w +— 10 x log,(tr[eXY (w)]) (reduced model) for N = 20 using Proposition 6. This
result validates the procedure.

B- Procedureusing the MF solution method in the time domain

For the reduced model of order N = 20, the subspace iteration algorithm defined by Egs. (111) to (120) is used with
m = 28 andisinitialized asin Section 6.5.A. Each iteration, matrix [W},] defined by Eq. (114) is calculated by using
the the MF solution method inthe time domain described in Section 5.3. The Newmark step-by-stepintegration method
is used (Bathe and Wilson, 1976, with scheme parameters« = 1/4 and § = 1/2). Function 6(¢) is generated using
Eq. (134). The parametersintroducedin Section 5.3.G for the time-solution procedureare n = 6, I ¢ = 4 and Jp = 26,
i.e. I =24 andJ = 156. Convergence of the subspace iteration method is measured using Eq. (119-2) withe = 0.5.
Convergenceisobtained for Nj = 4 iterations. Fig. 7 showsthegraph of function j — tr{[Yo(jxAt)]* [Yo (5 x At)]}
forj = —1I,...,J and Fig. 8 shows the graph of function k — tr{[Zo(k x A¢t)]* [Zo(kx At)]} for k = —J,...,0,
corresponding to the last iteration of the subspace iteration algorithm (see Step 1 and Step 2 described in Section
5.3.G). Thesetwo figures show that the values of parameters Iy and J are correctly chosen (asimilar result is obtained
for each iteration, and not only for the last one). Fig. 9 shows the comparison of function w — 10 xlog 1, (tr[en (w)])
(reference solution) with function w +— 10 x log,(tr[eXY (w)]) (reduced model) for N = 20 using Proposition 6. This
result validates the procedure.

7. Conclusion

A theoretical approach is presented for the construction of areduced model in the medium frequency rangein the area
of structural dynamics for a general three-dimensional anisotropic and inhomogeneous viscoel astic bounded medium
with an arbitrary geometry. The boundary value problem in the frequency domain and its variational formulation are
presented. For a given medium frequency band, the energy operator which isintrinsic to the dynamical systemis a
positive-definite symmetric trace operator in a Hilbert space which depends on the conservative and dissipative parts
of the dynamical system. The eigenfunctions corresponding to the highest eigenval ues (dominant eigensubspace) of
the energy operator allow a reduced model to be constructed using the Ritz-Galerkin method. A finite dimension
approximation of the continuous caseis introduced in ageneral context (for instance using the finite element method).
An effective construction of the dominant subspace of the energy operator is proposed using the subspace iteration
method with the introduction of two procedures, one based on the use of an indirect procedurein the frequency domain
and the other on the use of the MF solution method in the time domain. We then obtain an efficient method for
constructing a reduced model in the MF range. In addition, it can easily be seen that al the results presented can be
extended straightforwardly to beams, plates and shells. We present a simple example to validate the concepts and the
algorithms.
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Fig. 1. Geometrical configuration of the dynamical system constituted by a homogeneousisotropic
rectangular smply supported thin plate coupled with springs and dashpots.
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Fig. 2. Reference solution: graph of function w — 10 xlog,(tr[e, (w)]) over band B = [0, 700]
expressed in Hz.
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Fig. 3. Reference solution: graph of functionw — 10 xlog,,(tr[e,(w)]) over band B = [550, 600]
expressed in Hz.
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Fig. 4-a Reference solution: graph of functionv — A7 forv = 1,. .., 40, showing the distribution
of eigenvalues A} of energy operator E g ,, (see Eq. (70)).

C. Soize, European Journal of Mechanics, A/Solids, 17(4),657-685,1998

21



-30

-40

-50

_90 = |

-100¢ I I I I I I I I ]
0 50 100 150 200 250 300 350 400 450

Fig. 4-b. Reference solution: graph of function v — 10 xlog,, (A7) forv =1, ..., 400, showing
the distribution of eigenvalues A} of energy operator E g ,, (see Eq. (70)).
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Fig. 5. Reduced model: comparison between function w — 10 xlog ,(tr[e, (w)]) (reference solution
(solid line)) and functionsw +— 10 x logy, (tr[eX (w)]) (reduced model for N = 17 (dashdot line),
for N = 20 (dashed line) and for V = 30 (dotted line)), over band B = [550, 600]
expressed in Hz.
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Fig. 6. Reduced model constructed using the subspace iteration method and the direct procedure in the
frequency domain: comparison between function w — 10 xlog , (tr[e,, (w)]) (reference solution
(solid line)) and function w ~ 10 xlog;(tr[eXY (w)]) (reduced model for N = 20 (dashdot line)),
over band B = [550, 600] expressed in Hz.

O L L L L L L L
-40 -20 0 20 40 60 80 100 120 140 160

Fig. 7. Construction of [W}] in the subspace iteration method using the MF solution method in the time
domain: graph of function j — tr{[Yo(j x A¢)]* [Yo(j x At)]} forj = —1I,...,J (seeStep 1
of Section 5.3.G).
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Fig. 8. Construction of [W}] in the subspace iteration method using the MF solution method in the time
domain: graph of function k +— tr{[Zo(k x At)]* [Zo(kx At)]} fork = —J,...,0 (see Step 2
of Section 5.3.G).
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Fig. 9. Reduced model constructed using the subspace iteration method and the MF solution method in
the time domain: comparison between function w — 10 x log,(trle, (w)]) (reference solution
(solid line)) and function w ~ 10 x log,(tr[eXY (w)]) (reduced model for N = 20 (dashdot line),
over band B = [550, 600] expressed in Hz.
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