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Reduced Models in the Medium Frequency Range
for General Dissipative Structural-Dynamics Systems

C. Soize

Structures Department, ONERA, BP 72, F-92322 Chatillon Cedex, France

Abstract. This paper presents a theoretical approach for constructing a reduced model in the medium frequency
range in the area of structural dynamics for a general three-dimensional anisotropic and inhomogeneous viscoelastic
bounded medium. All the results presented can be used for beams, plates and shells. The boundary value problem in
the frequency domain and its variational formulation are presented. For a given medium frequency band, an energy
operator which is intrinsic to the dynamical system is introduced and mathematically studied. This energy operator
depends on the dissipative part of the dynamical system. It is proved that this operator is a positive-definite symmetric
trace operator in a Hilbert space and that its dominant eigensubspace allows a reduced model to be constructed using
the Ritz-Galerkin method. A finite dimension approximation of the continuous case is presented (for instance using
the finite element method). An effective construction of the dominant subspace using the subspace iteration method is
developed. Finally, an example is given to validate the concepts and the algorithms.

1. Introduction
This paper is the continuation of initial papers published by the author (Soize, 1982a and 1982b) in the area of modeling
and associated solving methods for linear dissipative structural-dynamics problems in the medium-frequency (MF)
range. In these papers, we introduced the notion of a narrow MF band B, and any broad MF band was written as
a finite union of narrow MF bands. For such a given band B, we proposed a solving method for constructing the
operator-valued frequency response function. This solving method, combined with the finite element method for
spatial discretization, has allowed a number of complex three-dimensional structural-acoustics and vibration problems
to be effectively solved in the MF range. In addition, we introduced a positive-definite symmetric operator E B related
to band B, called the energy operator, whose spectral theory allowed extremum vibratory states of the structure to be
characterized. Concerning the developments, extensions and applications of this initial work, we refer the reader to
Soize et al., 1986 and 1992; Chabas et al., 1986; Soize, 1986, 1993a, 1995 and 1997; and for a general overview of
these questions, to Ohayon and Soize, 1997. Nevertheless, these developments did not propose the construction of
a reduced model in the medium-frequency range. However, it is well known (see for instance Argyris and Mlejnek,
1991; Clough and Penzien, 1975; Leung, 1993; Meirovitch, 1980; Morand and Ohayon, 1995; Roseau, 1980) that, for
low-frequency dynamic analysis in structural dynamics, reduced models are a very efficient tool for constructing the
solution. These techniques correspond to a Ritz-Galerkin reduction of the structural-dynamics model using the normal
modes corresponding to the lowest eigenfrequenciesof the associated conservative structure. The efficiency of this kind
of reduced model is due to the small number of generalized dynamical degrees of freedom used in the representation
and in addition, is obtained by solving a well-stated generalized symmetric eigenvalue problem for which only the
first eigenvalues and the corresponding eigenfunctions have to be calculated. In addition, when such a reduced model
is obtained, responses to deterministic or random excitations (see for instance Soize, 1994, Chapters 3 to 6) can be
calculated for no significant additional numerical cost, and the reduced model can be used directly for solving various
structural-acoustics problems in the low-frequency range (see for instance Ohayon and Soize, 1997). Unfortunately,
this modal method which is very efficient in the low-frequency domain cannot be used in the medium-frequency
domain (Soize, 1982b) for general three-dimensional structures. The fundamental problem related to the construction
of a reduced model in the medium-frequency range for general dissipative structural-dynamics systems has not yet
received any solution. A modal hybridization method was proposed (Morand, 1992), but this method is based on the
use of the normal modes which cannot be calculated in the medium-frequency range for a general three-dimensional
structure. A modal sampling method was also proposed (Guyader, 1990) but this method is developped in a context
of an analytical theory, i.e. uses the normal modes in the medium- and high-frequency ranges; this method can only
be used for simple shape structures (rectangular thin plate in bending mode, circular cylindrical shell with a constant
thickness,etc.) Hereinafter, we propose an efficient solution for constructing a reduced model. These theoretical
developments are presented in the context of three-dimensional viscoelasticity for an arbitrary geometry of the domain
and for an anisotropic and inhomogeneous material. Extension of the results presented to beams, plates and shells is
straightforward. It should be noted that the reduced model is constructed for each narrow MF band B and allows the
damping and stiffness operators to depend on the frequency (viscoelastic material). Consequently, the reduced model
proposed is adapted to each narrow MF bandB and also to the structural damping model. In Section 2, we present the
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boundary value problem to be solved in the frequency domain and we establish its variational formulation. We show
that there is a unique solution and we introduce the operator-valued frequency response function of the dynamical
system. Section 3 is devoted to construction of the reduced model. For that, we introduce an energy operator E B and
we prove that EB is a positive-definite symmetric trace operator in a Hilbert space. The spectral theory of operator
EB gives a complete family in the set of admissible displacement fields constituted by the eigenfunctions of operator
EB . The reduced model is then introduced using the Ritz-Galerkin projection of the variational formulation on the
dominant eigensubspace of operator EB , spanned by the eigenfunctions which correspond to the highest eigenvalues
of operator EB . In Section 4, we present the finite dimension approximation of the countinuous case allowing the
calculation to be carried out for the general case. In Section 5, we give an efficient procedure for construction of
the dominant subspace using the subspace iteration method. Finally, an example is presented in order to validate the
concepts and the algorithms.

2. Boundary Value Problem and Its Weak Solution

2.1. Definition of the boundary value problem

We consider linear vibrations (formulated in the frequency domain ω) of a three-dimensional structure around a static
equilibrium configuration considered as a natural state. Let Ω be a bounded open domain of R 3, occupied by the
structure at static equilibrium and made of viscoelastic material. Let ∂Ω = Γ0 ∪ Γ be the boundary which is assumed
to be sufficiently smooth and such that Γ0 ∩ Γ = ∅. Let n be its outward unit normal. Let u = (u1, u2, u3) be the
displacement field at each point x = (x1, x2, x3) in cartesian coordinates. On part Γ0 of the boundary, the structure is
fixed (u = 0) while on part Γ it is free. We introduce a narrow MF band which is defined as the compact interval of
R+,

B = [ωB −Δω/2 , ωB +Δω/2 ] , (1)

in which ωB is the central frequency of the band and Δω is the bandwidth such that

Δω/ωB � 1 , ωB −Δω/2 > 0 . (2)

With B we associate interval B̃ such that

B̃ = [−ωB −Δω/2 ,−ωB +Δω/2 ] . (3)

There are external prescribed volumetric and surface force fields applied to Ω and Γ, written as η(ω)g vol(x, ω) and
η(ω)gsurf(x, ω) respectively, in which ω �→ η(ω) is a function from R into C, having a compact support B ∪ B̃,
continuous on B, verifying |η(−ω)| = |η(ω)| and such that |η(ω)| �= 0 for all ω in B. For all ω in B ∪ B̃, the
boundary value problem in u(x, ω) is written as follows (the convention for the Fourier transform being u(x, ω) =∫
R e

−iωtu(x, t) dt),
−ω2ρ ui − σij,j = η gvol,i in Ω , i = 1, 2, 3 , (4)

σijnj = η gsurf,i on Γ , i = 1, 2, 3 , (5)

ui = 0 on Γ0 , i = 1, 2, 3 , (6)

in which the summation convention over repeated latin indices is used, ρ(x) > 0 is the mass density which is assumed
to be a bounded function on Ω and σ ij,j =

∑3
j=1 ∂σij/∂xj . For a linear viscoelastic material, stress tensor σij is

written as
σij = aijkh(x, ω) εkh(u) + bijkh(x, ω) εkh(iω u) , (7)

in which εkh(u) = (∂uk/∂xh + ∂uh/∂xk)/2 is the linearized strain tensor. The mechanical coefficients a ijkh(x, ω)
and bijkh(x, ω) are real, depend on x and ω, verify the usual properties of symmetry and positiveness (see for instance
Mandel, 1966; Fung, 1968; Marsden and Hughes, 1983; Truesdell, 1984; Germain, 1986; Ciarlet, 1988) and are such
that

aijkh(x,−ω) = aijkh(x, ω) , bijkh(x,−ω) = bijkh(x, ω) . (8)

Since mechanical coefficients aijkh(x, ω) and bijkh(x, ω) depend on ω, Eq. (7) corresponds to a general linear
viscoelastic medium (Truesdell, 1984). In particular, if the mechanical coefficients are independent of ω, then Eq. (7)
corresponds to a Kelvin-Voight medium (Germain, 1986).

C. Soize, European Journal of Mechanics, A/Solids, 17(4),657-685,1998 2



2.2. Variational formulation

The variational formulation of the boundary value problem is constructed in this subsection (for the general methodology
of constructing a variational formulation of a boundary value problem, we refer the reader to Brezis, 1987; Dautray
and Lions, 1992; Duvaut and Lions, 1976; Oden and Reddy, 1983; Raviart and Thomas, 1983).

A- Set of admissible displacement fields and related vector spaces

We introduce the Hilbert space
H = { u = (u1, u2, u3) , uj ∈ L2(Ω) } , (9)

equipped with the inner product

(u , v)
H
=

∫
Ω

u(x) · v(x)dx , (10)

and the associated norm ‖u‖
H
= (u , u)

1/2

H
, in which u ·v =

∑3
j=1 ujvj with vj the conjuguate of vj and whereL2(Ω)

denotes the set of all the square integrable functions from Ω into C. Let V be the Hilbert space representing the set of
admissible displacement fields with values in C3,

V = { u = (u1, u2, u3) , uj ∈ H1(Ω) , u = 0 on Γ0} , (11)

equipped with the inner product

(u , v)V = (u , v)H +

3∑
j=1

(
∂u
∂xj

,
∂v
∂xj

)
H

, (12)

and the associated norm ‖u‖V = (u , u)
1/2

V
where H1(Ω) is the set of all the functions w ∈ L2(Ω) such that, for all

j = 1, 2, 3, each partial derivative ∂w/∂xj belongs to L2(Ω) . Let V ′ be the continuous antidual space of V and
< f , u>

V ′,V be the antiduality bracket between f ∈ V ′ and u ∈ V which is linear with respect to f and antilinear with
respect to u. Hilbert space H being identified to its continuous antidual space H ′, we have the classical diagram

jc tjc
V ⊂−→ H = H ′ ⊂−→ V ′ , (13)

in which jc and tjc are continuous and compact injections, V being dense in H and H ′ dense in V ′ (because Ω is a
bounded domain of R3, see for instance Dautray and Lions, 1992; Treves, 1975).

B- Antilinear form representing the prescribed external forces

For all i = 1, 2, 3 and for all ω in R, we assume that gvol,i(ω) = {x �→ gvol,i(x, ω)} ∈ L2(Ω) and gsurf,i(ω) = {x �→
gsurf,i(x, ω)} ∈ L2(Γ) where L2(Γ) is the set of all the ds-square integrable functions from Γ into C. For all ω in
B ∪B̃, the antilinear form �(v ;ω) on V (representing the prescribed external forces) defined by

�(v ;ω) = η(ω)

{∫
Γ

gsurf(x, ω) · v(x)ds(x) +
∫
Ω

gvol(x, ω) · v(x)dx
}

, (14)

is then continuous on V . Consequently, there exists a unique element f �(ω) in V ′ such that

�(v ;ω) = η(ω) < f�(ω) , v>V ′,V , ∀v ∈ V . (15)

It should be noted that if gsurf = 0, then f�(ω) ∈ H ⊂ V ′; in general, gsurf �= 0 and then f�(ω) is not in H .

C- Sesquilinear form representing the dynamic-stiffness operator

For all ω in B ∪B̃, the sesquilinear form a(u, v ;ω) on V ×V defined by

a(u, v ;ω) = −ω2m(u, v) + iω d(u, v ;ω) + k(u, v ;ω) , (16)

represents the dynamic-stiffness operator in which the right-hand side is defined hereinafter. Sesquilinear formm(u, v)
(mass term) is defined by

m(u, v) =
∫
Ω

ρ(x)u(x) · v(x) dx , (17)

and is Hermitian, positive definite, continuous on H×H and consequently, continuous on V ×V . Then, sesquilinear
form m(u, v) can define either an operator M ∈ L(H) (set of all the bounded operators in H) such that, for all u and
v in H ,

(M u, v)
H
= m(u, v) , (18− 1)
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or an operator M ∈ L(V, V ′) (set of all the bounded operators from V into V ′) such that, for all u and v in V ,

<M u , v>
V ′,V = m(u, v) . (18− 2)

The usual properties of mechanical coefficients b ijkh(x, ω) and aijkh(x, ω) are such that sesquilinear forms d(u, v ;ω)
(damping term) and k(u, v ;ω) (stiffness term) which are defined by

d(u, v ;ω) =
∫
Ω

bijkh(x, ω) εkh(u) εij(v) dx , (19)

k(u, v ;ω) =
∫
Ω

aijkh(x, ω) εkh(u) εij(v) dx , (20)

are Hermitian, positive definite, continuous on V×V andV -coercive (V -elliptic). Then, for allω inB ∪ B̃, sesquilinear
forms d(u, v ;ω) and k(u, v ;ω) define linear operators D(ω) and K(ω) belonging to L(V, V ′) such that, for all u and
v in V ,

<D(ω)u, v>
V ′,V = d(u, v ;ω) , (21)

<K(ω)u, v>
V ′,V = k(u, v ;ω) , (22)

and Eq. (8) yields

D(−ω) = D(ω) , K(−ω) = K(ω) . (23)

For all ω inB ∪B̃, we then deduce that sesquilinear form a(u, v ;ω) is continuous on V×V and consequently, defines
a linear operator A(ω) ∈ L(V, V ′) such that, for all u and v in V ,

<A(ω)u, v>
V ′,V = a(u, v ;ω) . (24)

From Eqs. (16), (18-2), (21), (22) and (24), we deduce the expression of the dynamic-stiffness operator

A(ω) = −ω2M + iωD(ω) + K(ω) , (25)

in which M, D(ω) and K(ω) are the mass, damping and stiffness operators. We will assume that mechanical coefficients
bijkh(x, ω) and aijkh(x, ω) are such that ω �→ A(ω) is a continuous function from B into L(V, V ′),

{ω �→ A(ω)} ∈ C0(B,L(V, V ′)) . (26)

D- Variational formulation of the boundary value problem

It can easily be proved that the variational formulation of the boundary value problem defined by Eqs. (4) to (6) can
be expressed as follows. For all ω in B ∪B̃, find u(ω) = {x �→ u(x, ω)} in V such that

a(u, v ;ω) = �(v ;ω) , ∀v ∈ V . (27)

The operator equation corresponding to Eq. (27) is

A(ω)u(ω) = η(ω) f�(ω) , (28)

in which A(ω) and f�(ω) are defined by Eqs. (25) and (15) respectively.
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2.3. Operator-valued frequency response function

A- Existence and uniqueness of the solution

For all ω in B ∪B̃, Eq. (27) has a unique solution u(ω) in V . The proof is obtained using the Lax-Milgram theorem;
for ω ∈ B ∪B̃, we introduce ã(u, v ;ω) = −iε a(u, v ;ω) and �̃(v ;ω) = −iε �(v ;ω) with ε = +1 if ω > 0 and
ε = −1 if ω < 0; then 
e{ã(u, u ;ω)} = |ω| d(u, u ;ω) ≥ c(ω) ‖u‖2

V
with c(ω) > 0.

B- Operator-valued frequency response function T(ω)

From Section 2.3.A, we deduce that, for all ω in B ∪ B̃, A(ω) ∈ L(V, V ′) is invertible,

T(ω) = A(ω)−1 ∈ L(V ′, V ) . (29)

Function ω �→ T(ω) from B ∪B̃ into L(V ′, V ) is called the operator-valued frequency response function. From Eq.
(28), we deduce that solution u(ω) in V can be written as

u(ω) = η(ω)T(ω) f�(ω) . (30)

Solution u(ω) ∈ V given by Eq. (30) will be called the vibration induced by excitation f �(ω) ∈ V ′.

3. Construction of a Reduced Model

3.1. Operator-valued frequency response function TH (ω)

For all ω in B ∪B̃, A(ω) is an unbounded operator in H whose domainDom = {u ∈ V ,A(ω)u ∈ H} is such that

Dom =
(
H2(Ω)

)3 ∩ V . (31)

Let AH (ω) be the restriction of operator A(ω) ∈ L(V, V ′) to Dom. Then AH (ω) belongs to L(Dom,H) and is
invertible,

A
H
(ω) ∈ L(Dom,H) , A

H
(ω)−1 ∈ L(H,Dom) . (32)

Proposition 1. The injection jHS from Dom intoH is a Hilbert-Schmidt operator and for all ω in B ∪ B̃, unbounded
operator A(ω) in H with domainDom has a bounded inverse T

H
(ω) which is a Hilbert-Schmidt operator in H ,

TH (ω) = jHS ◦ AH (ω)
−1 ∈ L2(H) , (33)

whose range space is
R{TH (ω)} = Dom ⊂ V , (34)

and where L2(H) denotes the set of all the Hilbert-Schmidt operators in H .

Proof. We use the following known result concerning Sobolev spaces H s. Let Ω be a bounded open set of Rn and
s ∈ R. If k > n/2, then the injectionH s+k(Ω) → Hs(Ω) is a Hilbert-Schmidt operator. Considering Eqs. (9) and (31)
and taking n = 3 and s = 0 (H 0(Ω) = L2(Ω)), we deduce that jHS ∈ L2(Dom,H). Since A

H
(ω)−1 ∈ L(H,Dom)

and jHS ∈ L2(Dom,H), we deduce Eq. (33) because L2 ◦ L = L2 (see for instance Kato, 1966; Reed and Simon,
1980; Dautray and Lions, 1992).

3.2. Energy operator as a trace operator in H

Let f be in H and be independent of ω. Let uf be the vibration due to excitation η(ω) f. We then have

uf(ω) = η(ω)T
H
(ω) f , (35)

in which T
H
(ω) ∈ L2(H). We then define the energy εB(uf) of vibration uf as twice the value of the total kinetic

energy, i.e. using Plancherel’s formula (see for instance Dautray and Lions, 1992; Soize, 1993b),

εB(uf) =
1

2π

∫
B∪B̃

ω2 (M uf(ω), uf(ω))
H
dω , (36)

in which M ∈ L(H) is defined by Eq. (18-1). Therefore, it is coherent to introduce the following definition of the
energy operator related to band B.
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Definition 1. (Energy operator). Let uf(ω) = η(ω)T
H
(ω) f and ug(ω) = η(ω)T

H
(ω) g be the vibrations due to

excitations η(ω) f and η(ω) g respectively, where f and g are in H and are independent of ω. The energy operator E B

related to band B is defined by

(EB f, g)H =
1

2π

∫
B∪B̃

ω2 (M uf(ω), ug(ω))H dω . (37)

Remarks. From Eqs. (36) and (37), we deduce that

εB(uf) = (EB f, f)
H

. (38)

It can be seen that operator EB is an intrinsic operator which depends on B and η, but does not depend on the spatial
parts f and g of the excitations.

Proposition 2. (Characterization of the energy operator). Energy operator E B is a positive-definite symmetric trace
operator in H whose range space is Dom,

R{EB} = Dom ⊂ V , EB ∈ L1(H) , (39)

in which L1(H) denotes the set of all the trace operators in H . This operator is written as

EB =
1

2π

∫
B∪B̃

ω2 |η(ω)|2 TH (ω)∗ M TH (ω) dω , (40)

in which TH (ω)∗ ∈ L2(H) is the adjoint of TH (ω) ∈ L2(H) and M ∈ L(H) is defined by Eq. (18-1). Operator EB

can also be written as

EB =
1

π

∫
B

ω2 |η(ω)|2 
e {T
H
(ω)∗ M T

H
(ω)} dω , (41)

in which 
e denotes the real part.

Proof. 1)- Eq. (40) is directly deduced from Eq. (37) knowing that if T
H
(ω) ∈ L2(H), then T

H
(ω)∗ ∈ L2(H).

2)- Eq. (41) is deduced from Eq. (40) using Eq. (23) and the fact that |η(−ω)| = |η(ω)|. 3)- For all ω in B,
T

H
(ω)∗ ∈ L2(H), M ∈ L(H) and T

H
(ω) ∈ L2(H); then (see for instance Kato, 1966; Reed and Simon, 1980)

T
H
(ω)∗ M T

H
(ω) ∈ L1(H). 4)- From Eq. (26), ω �→ A

H
(ω) is continuous from B into L(Dom,H). Since

A
H
(ω) �→ A

H
(ω)−1 is continuous from L(Dom,H) into L(H,Dom), we deduce that ω �→ A

H
(ω)−1 is continuous

fromB intoL(H,Dom). 5)- Let ‖ . ‖2 be the Hilbert-Schmidt norm. Forω andω ′ inB, we have ‖T
H
(ω)−T

H
(ω′)‖2 =

‖jHS ◦ (AH (ω)
−1−AH (ω

′)−1)‖2 ≤ ‖jHS ‖2 ‖AH (ω)
−1−AH (ω

′)−1‖L(H,Dom). Using 4), we deduce that ω �→ TH (ω)
is continuous from B into L2(H). 6)- Since ω �→ η(ω) is continuous on B (see Section 2.1) and from 3) and
5), we deduce (see for instance Reed and Simon, 1980) that ω �→ ω 2|η(ω)|2
e {T

H
(ω)∗ M T

H
(ω)} is continuous

from B into L1(H) and consequently, EB ∈ L1(H). 7)- From Section 2.2.C, we deduce that, for all ω in B,
T

H
(ω)∗ = T

H
(ω). Therefore, using Eq. (34), the range space of T

H
(ω)∗ is Dom and then, the range space of trace

operator ω2|η(ω)|2
e {T
H
(ω)∗ M T

H
(ω)} is Dom. We then conclude that the range space of trace operator EB is

Dom. 8)- It can easily be verified that E∗
B = EB and consequently, EB is a symmetric operator in H . 9)- Finally,

from Eq. (37), we deduce that EB is positive definite because M is positive definite.

3.3. Spectral theory of energy operator EB

Since a trace operator is a compact operator, the spectral theory of operator E B ∈ L1(H) is directly deduced from
the spectral theory of symmetric compact operators in Hilbert spaces. Consequently, E B has a countable number of
positive eigenvalues with finite multiplicity, possibly excepting zero,

λ1 ≥ λ2 ≥ . . .→ 0 , (42)

in which the λν ’s are the repeated eigenvalues of EB (each eigenvalue λν counted repeatedly according to its
multiplicity). The corresponding eigenfunctions {e ν}ν≥1, such that

EB eν = λν eν , (43)

are functions x �→ eν(x) from Ω into R3 and form a complete orthonormal family in H ,

(eν , eν′)
H
= δνν′ . (44)
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Since EB is a positive-definite symmetric trace operator, we have
∑+∞

ν=1 |λν | =
∑+∞

ν=1 λν < +∞. The trace norm of
EB is such that

‖EB‖1 = tr EB =

+∞∑
ν=1

λν < +∞ , (45)

and EB can be written as

EB =

+∞∑
ν=1

λν ( . , eν)H eν . (46)

Proposition 3. (Characterization of the eigenfunctions of operator EB). The set {eν , ν ≥ 1} of eigenfunctions of
operator EB is a complete family in V ⊂ H , orthonormal for the inner product of H , and each eigenfunction e ν is a
continuous function from Ω into R3.

Proof. Since the range space of EB is Dom (see Proposition 2), we have EB eν = λν eν ∈ Dom and therefore, for
all ν ≥ 1, eν ∈ Dom ⊂ V . We then deduce that {eν , ν ≥ 1} is a complete family in Dom and therefore, in V . Since
Dom ⊂ (H2(Ω))3 (see Eq. (31)) and since, for any open domain Ω of Rn having a sufficiently smooth boundary, the
injectionHm(Ω) ⊂−→ C0(Ω) is continuous form > n/2, we deduce that x �→ eν(x) is a continuous function.

3.4. Reduced model adapted to frequency band B

The reduced model adapted to frequency band B is obtained using the Ritz-Galerkin projection of the variational
formulation on the subspace V N of V spanned by the eigenfunctions {e1, . . . , eN} which correspond to theN highest
eigenvalues {λ1, . . . , λN} of energy operator EB . From Proposition 3, we deduce that the sequence {V N}N is dense
in V . Let u(ω) ∈ V be the unique solution of Eq. (27), given by Eq. (30), and let u N (ω) = {x �→ uN (x, ω)} be the
projection of u(ω) on V N ,

uN (x, ω) =
N∑

ν=1

θν(ω) eν(x) , (47)

in which θν(ω) ∈ C. From Eqs. (15) and (27), we deduce that, for all ω inB ∪ B̃,�(ω) = (θ1(ω), . . . , θN(ω)) ∈ CN

is the solution of the linear equation
[AN (ω)]�(ω) = η(ω)F(ω) , (48)

in which [AN (ω)] is the symmetric (N×N) complex matrix defined by

[AN (ω)]νν′ = a(eν′ , eν ;ω) , (49)

and where F(ω) = (F1(ω), . . . ,FN (ω)) ∈ CN is such that

Fν(ω) =< f�(ω) , eν>V ′,V . (50)

Definition 2. (Reduced model). The set of Eqs. (47) to (50) constitutes the so-called reduced model adapted to
frequency band B of the dynamical system described by Eq. (27) or (28).

For all ω in B ∪B̃, matrix [AN (ω)] is invertible,

[TN (ω)] = [AN (ω)]−1 ; [TN (ω)]T = [TN (ω)] , (51)

and the solution of Eq. (48) is written as

�(ω) = η(ω) [TN (ω)]F(ω) . (52)

3.5. Upper bound of energy of the response when f� is independent of ω

In this section, we assume that f�(ω) = f� is independent of ω. From Eq. (50), we then deduce that F ν(ω) = Fν is
independent of ω. Let EN

B be the projection of energy operator EB ∈ L1(H) on subspace V N ⊂ V ⊂ H . From Eq.
(46), we deduce that

EN
B =

N∑
ν=1

λν ( . , eν)H eν , (53)
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and its trace norm is written as

‖EN
B ‖1 = tr EN

B =
N∑

ν=1

λν . (54)

Since eν ∈ V , the right-hand side of Eq. (53) can be extended to V ′ by replacing ( . , eν)H by< . , eν>V ′,V . We then
deduce that energy εB(uN ) of vibration uN is written as

εB(uN ) =

N∑
ν=1

λν |Fν |2 . (55)

Equation (55) yields the energy upper bound (Rayleigh quotient) of vibration u N which is such that

εB(uN )

‖F‖2 ≤ λ1 . (56)

4. Finite Dimension Approximation

An explicit construction of eigenfunctions {e1, . . . , eN} of energy operator EB cannot be obtained in the general
case. A finite dimension approximation EB,n of EB must be introduced and the eigenfunctions {en

1 . . . , e
n
N} of EB,n

(associated with the N highest eigenvalues) constitute the approximation of {e 1 . . . , eN}. This finite approximation
is obtained using the Ritz-Galerkin method (whose finite element method is a particular case; see for instance Argyris
and Mlejnek, 1991; Bathe and Wilson, 1976; Dautray and Lions, 1992; Zienkiewicz and Taylor, 1989). We then
consider a subspace Vn ⊂ V of finite dimension n ≥ 1 spanned by a family {�1, . . . ,�n} of independent R3-valued
functions {�α}α in V .

4.1. Projection of the variational formulation

The restriction of antilinear form �(v ;ω) onV to Vn is represented by η(ω)F(ω) in which F(ω) = (F1(ω), . . . , Fn(ω))
∈ Cn is such that

Fα(ω) =

∫
Γ

gsurf(x, ω) · �α(x) ds(x) +
∫
Ω

gvol(x, ω) · �α(x) dx . (57)

The restriction of sesquilinear form a(u, v ;ω) on V ×V to Vn×Vn is represented by the symmetric (n×n) complex
matrix [An(ω)] such that

[An(ω)]αβ = a(�β ,�α ;ω) . (58)

Using Eq. (16), matrix [An(ω)] can be written as

[An(ω)] = −ω2 [M ] + iω [D(ω)] + [K(ω)] , (59)

in which [M ], [D(ω)] and [K(ω)] are positive-definite symmetric (n×n) real matrices such that

[M ]αβ = m(�β ,�α) , (60)

[D(ω)]αβ = d(�β ,�α ;ω) , (61)

[K(ω)]αβ = k(�β ,�α ;ω) . (62)

For all ω in B ∪B̃, symmetric (n×n) complex matrix [An(ω)] is invertible and we have

[Tn(ω)] = [An(ω)]
−1 , [Tn(ω)]

∗ = [Tn(ω)] . (63)
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4.2. Projection of the energy operator

Proposition 4. Projection EB,n of operator EB on Vn ⊂ H is written as

EB,n =
n∑

α,β=1

[En]αβ ( . ,�β)H�α , (64)

in which [En] is a positive-definite symmetric (n×n) real matrix such that

[En] =

∫
B

[en(ω)] dω , (65− 1)

[en(ω)] =
1

π
ω2 |η(ω)|2 
e {[Tn(ω)]∗ [M ] [Tn(ω)]} . (65− 2)

Proof. Let f and g be in H and be independent of ω. The projections u f
n(ω) and ug

n(ω) of uf(ω) and ug(ω) on Vn are
written as

uf
n(x, ω) =

n∑
β′=1

qf
β′(ω) �β′(x) , ug

n(x, ω) =
n∑

α′=1

qg
α′(ω) �α′(x) , (66)

in which qf
β′(ω) and qg

α′(ω) are such that

qf
β′(ω) = η(ω)

n∑
β=1

[Tn(ω)]β′β (f ,�β)H , qg
α′(ω) = η(ω)

n∑
α=1

[Tn(ω)]α′α (g ,�α)H . (67)

Form Definition 1 and Eqs. (18-1), (37), operator EB,n is such that

(EB,nf , g)
H
=

1

2π

∫
B∪B̃

ω2m(uf
n(ω), u

g
n(ω)) dω . (68)

Substituting Eq. (66) with Eq. (67) in the right-hand side of Eq. (68) yields Eq. (64) in which matrix [E n] is such that

[En] =
1

2π

∫
B∪B̃

ω2 |η(ω)|2 [Tn(ω)]∗ [M ] [Tn(ω)] dω . (69)

Since |η(−ω)| = |η(ω)|, [D(−ω)] = [D(ω)] and [K(−ω)] = [K(ω)], from Eq. (69), we deduce Eq. (65). Finally,
the properties of matrix [En] are directly deduced from Proposition 2.

4.3. Spectral theory of the projected energy operator

Let {λn1 , . . . , λnn} and {en1 , . . . e
n
n} be the eigenvalues and the corresponding eigenfunctions of EB,n,

EB,n enν = λnν enν . (70)

Proposition 4 shows that the eigenvalues are positive real numbers,

λn1 ≥ λn2 ≥ . . . ≥ λnn > 0 , (71)

and that the corresponding eigenfunctions form an orthonormal basis in V n for the inner product of H

(enν , e
n
ν′)H = δνν′ . (72)

We have

‖EB,n‖1 = tr EB,n =
N∑

ν=1

λnν , (73)

and operator EB,n can be written as

EB,n =
n∑

ν=1

λnν ( . , enν )H enν . (74)
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Proposition 5. (Characterization of the eigenfunctions). Eigenvalues {λn
1 , . . . , λ

n
n} of operator EB,n are the solutions

of the generalized symmetric eigenvalue problem

[H ]Pν = λnν [G ]Pν , (75)

in which [G ] and [H ] are positive-definite symmetric (n×n) real matrices such that

[G ]βα = (�α ,�β)H , (76)

[H ] = [G ] [En] [G ] . (77)

The eigenvectors {P1, . . . ,Pn} form a basis of Rn and verify the orthogonality properties

([G ]Pν ,Pν′
)Rn = δνν′ , (78)

([H ]Pν ,Pν′
)Rn = λnν δνν′ . (79)

Eigenfunctions {en1 , . . . e
n
n} of operator EB,n can be written as

enν =

n∑
α=1

P ν
α �α , ν = 1, . . . , n , (80)

in which Pν = (P ν
1 , . . . , P

ν
n ). We have

(enν , e
n
ν′)H = ([G ]Pν ,Pν′

)Rn = δνν′ . (81)

Proof. Since enν ∈ Vn and {�α}α is a basis of Vn, Eq. (80) holds with P ν
α ∈ R because enν is an R3-valued function.

Eq. (70) is equivalent to
(EB,nenν , v)H = λnν (enν , v)H , ∀v ∈ Vn . (82)

Taking v =
∑n

α=1 vα�α and substituting EB,n given by Eq. (64) and en
ν given by Eq. (80) into Eq. (82) yields

Eq. (75). It is clear that [G ] and [H ] are positive-definite symmetric matrices and consequently, the generalized
symmetric eigenvalue problem defined by Eq. (75) leads to Eqs. (78) and (79). Finally, due to Eq. (78), Eq. (81) (i.e.
Eq. (72)) holds.

Remarks. 1)- In the particular case for which ρ(x) = ρ0 is a constant in domain Ω, we have [G ] = ρ−1
0 [M ]. 2)- If

the finite element method is used, then [G ] is a sparse matrix which is “similar” to mass matrix [M ].

4.4. Reduced model adapted to frequency band B

A- Definition of the reduced model

We consider the construction introduced in Section 3.4 in which we replace the eigenfunctions of E B by the eigen-
functions of EB,n. Let N < n (generally N � n). Let u(ω) ∈ V be the unique solution of Eq. (27), given by
Eq. (30). Then, the reduced model adapted to frequency band B is defined as the projection u N

n (ω) of u(ω) on the
subspace V N

n ⊂ Vn ⊂ V spanned by the eigenfunctions {en
1 , . . . , e

n
N} which correspond to theN highest eigenvalues

λn1 ≥ λn2 ≥ . . . ≥ λnN of operator EB,n,

V N
n = span {en1 , . . . , e

n
N} . (83)

For all ω in B ∪B̃, projection uN
n (ω) is written as

uN
n (x, ω) =

N∑
ν=1

θnν (ω) enν (x) , (84)

in which�n(ω) = (θn1 (ω), . . . , θ
n
N (ω)) ∈ CN is the solution of the linear equation

[An
N (ω)]�n(ω) = η(ω)Fn(ω) , (85)
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in which [An
N (ω)] is the symmetric (N×N) complex matrix defined by

[An
N (ω)]νν′ = a(enν′ , enν ;ω) , (86)

and where Fn(ω) = (Fn
1 (ω), . . . ,Fn

N(ω)) ∈ CN is such that (see Eqs. (14) and (15)),

Fn
ν (ω) =

∫
Γ

gsurf(x, ω) · enν (x) ds(x) +
∫
Ω

gvol(x, ω) · enν (x) dx . (87)

The set of Eqs. (84) to (87) constitutes the finite dimension approximation of the reduced model introduced in
Definition 2 and adapted to frequency band B. For all ω in B ∪ B̃, matrix [An

N (ω)] is invertible,

[T n
N (ω)] = [An

N (ω)]−1 , [T n
N (ω)]T = [T n

N (ω)] , (88)

and the solution of Eq. (85) is written as

�n(ω) = η(ω) [T n
N (ω)]Fn(ω) . (89)

B- Expression of the matrices of the reduced model

Let [Pn
N ] be the (n×N)real matrix whose columns consist of the N eigenvectors {P1, . . . ,PN} corresponding to the

N highest eigenvalues λn
1 ≥ . . . ≥ λnN of the generalized symmetric eigenvalue problem defined by Eq. (75),

[Pn
N ]α ν = P ν

α , α = 1, . . . , n , ν = 1, . . . , N . (90)

Substituting Eq. (80) into Eqs. (86) and (87) yields

[An
N (ω)] = [Pn

N ]T [An(ω)] [P
n
N ] , (91)

Fn(ω) = [Pn
N ]T F(ω) , (92)

in which matrix [An(ω)] and vector F are defined by Eqs. (59) and (57) respectively.

C- Energy of the response calculated with the reduced model and its upper bound when f� is independent of ω

In Sections 4.4.C and 4.4.D, we assume that f�(ω) = f� is independent of ω, i.e. gsurf(x, ω) = gsurf(x) and gvol(x, ω) =
gvol(x) are independent of ω. Therefore, from Eqs. (57) and (87), we deduce that F(ω) = F and F n(ω) = Fn are
independent of ω. Similarly to Section 3.5, energy εB(uN

n ) of uN
n is given by

εB(uN
n ) =

N∑
ν=1

λnν |Fn
ν |2 , (93)

and the upper bound of the normalized energy is such that

εB(uN
n )

‖Fn‖2 ≤ λn1 . (94)

It is clear that Eqs. (93) and (94) hold for N = n.

Proposition 6. Energy εB(uN
n ) of uN

n , given by Eq. (93), can also be expressed as

εB(uN
n ) = ([EN

B,n]F ,F)Rn , (95)

in which F defined by Eq. (57) is independent of ω and where [E N
B,n] is a positive symmetric (n×n) real matrix such

that

[EN
B,n] =

∫
B

[eNn (ω)] dω , (96− 1)

[eNn (ω)] = [Pn
N ] [εNn (ω)] [Pn

N ]T , (96− 2)

in which, for all ω in B, [εNn (ω)] is a positive-definite symmetric (N×N) real matrix such that

[εNn (ω)] =
1

π
ω2 |η(ω)|2 
e {[T n

N (ω)]∗ [Mn
N ] [T n

N (ω)]} , (96− 3)
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where [Mn
N ] = [Pn

N ]T [M ] [Pn
N ].

Proof. Eqs. (36) and (18-1) yield

εB(uN
n ) =

1

2π

∫
B∪B̃

ω2m(uN
n (ω), uN

n (ω)) dω , (97)

where uN
n (ω) is given by Eq. (84). Substituting Eq. (84) with Eq. (89) into Eq. (97) yields

εB(uN
n ) = ([EN

B,n]Fn ,Fn)
RN

, (98)

in which [EN
B,n] =

∫
B
[εNn (ω)] dω. Substituting Eq. (92) into the right-hand side of Eq. (98) yields Eq. (96).

Remarks. The dimension of the null vector space of [EN
B,n] is n−N and we have

ker [EN
B,n] = span {PN+1, . . . ,Pn} . (99)

For all ω in B, we have
[enn(ω)] = [en(ω)] , (100)

where [en(ω)] is defined by Eq. (65-2) and [enn(ω)] by Eq. (96-2) with N = n.

D- Dominant eigensubspace of the energy operator and criterion for calculating the order of the reduced model

TakingN = n into Eq. (93) yields

εB(un) =

n∑
ν=1

λnν |Fn
ν |2 , (101)

where un(ω) is the projection of u(ω) on Vn. We then have εB(un) ≤ λn1 ‖Fn‖2 and since the upper bound is
effectively reached,

εmax = max
Fn∈Cn

εB(un) = λn1 ‖Fn‖2 . (102)

From Eqs. (93), (101) and (102), we deduce that

εB(un)− εB(uN
n )

εmax
≤
λnN+1

λn1
. (103)

Since {λν}ν is a decreasing sequence of positive numbers as ν approaches +∞, if n is sufficiently large, then there
exists N < n such that

λnN+1

λn1
� 1 . (104)

Definition 3. (Dominant eigensubspace). If N < n is such that Eq. (104) holds, then subspace V N
n is called the

dominant eigensubspace of operator EB,n corresponding to the N highest eigenvalues λn
1 ≥ . . . ≥ λnN and N is the

order of the reduced model.

5. Construction of the Dominant Eigensubspace Using the Subspace Iteration
Method

The reduced model defined by Eqs. (84) to (87) requires construction of the dominant eigensubspace of E B,n, i.e.
calculation of the eigenvectors P1, . . . ,PN in Rn corresponding to the highest eigenvalues λn

1 ≥ . . . ≥ λnN of the
generalized symmetric eigenvalue problem defined by Eq. (75). Since n is large and N � n, the subspace iteration
method or the Lanczos method (Bathe and Wilson, 1976; Parlett, 1980; Golub and Van Loan, 1989; Chatelin, 1993)
can a priori be used. The algebraic structure of matrix [En] defined by Eq. (65) shows that the use of the subspace
iteration method allows a very efficient solving method to be constructed. Below, we present this approach. Let m be
the dimension of the subspace used for the iterations such that N < m� n (in practice, m = min{2N ,N + 8}, see
Bathe and Wilson, 1976). Then, the generalized symmetric eigenvalue problem defined by Eqs. (75), (78) and (79) is
rewritten in matrix form as

[H ] [P ] = [G ] [P ] [ Λ ] , (105)

where [P ] is an (n×m) real matrix such that

[P ]T [G ] [P ] = [ I ] , [P ]T [H ] [P ] = [ Λ ] , (106)
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and where [ Λ ] is the (m×m) real diagonal matrix of the eigenvalues. We then have to calculate the N highest
eigenvalues λn

1 = [Λ ]11 ≥ . . . ≥ λnN = [Λ ]NN and the corresponding eigenvectors P1, . . . ,PN constituted by the
first N columns of matrix [P ]. Since the usual formulation of the subspace iteration method is adapted to calculating
the lowest eigenvalues, Eqs. (105) and (106) are transformed as follows

[G ] [S ] = [H ] [S ] [ Γ ] , (107)

in which [S ] is an (n×m) real matrix and [ Γ ] a diagonal (m×m) real matrix such that

[S ]T [H ] [S ] = [ I ] , [S ]T [G ] [S ] = [ Γ ] . (108)

with
[ Λ ] = [ Γ ]−1 , (109)

[P ] = [S ] [ Γ ]−1/2 . (110)

We then have to calculate the N lowest eigenvalues and associated eigenvectors of the symmetric eigenvalue problem
defined by Eqs. (107) and (108).

5.1. Algorithm

Using Eq. (77) and since [G ] is invertible, the classical algorithm of the subspace iteration vector (Bathe and Wilson,
1976) applied to Eqs. (107) to (110) can be adapted and rewritten as follows.
1- Initialization:

[ Λ0] = [ 0 ] , [Q0] = [ I ] , [W0] , r0 = +∞ , (111)

in which [ 0 ] is the (m×m) null matrix, [ I ] is the (m×m) identity matrix and [W0] is an (n×m) real matrix of a
selection of the starting iteration vectors (constructed, for instance, using the Lanczos method). The columns of matrix
[W0] must be a set of m algebraically independent vectors in Rn.
2- For k = 1, 2, . . ., iterate from k − 1 to k:

[S̃k] = [Wk−1] [Qk−1] , (112)

in which [S̃k] and [Wk−1] are (n×m) real matrices and [Qk−1] is an (m×m) real matrix. Calculate the (m×m) real
matrices [H̃k] and [G̃k] such that

[Xk] = [G ] [S̃k] , (113)

[Wk] = [En] [Xk] , (114)

[H̃k] = [Xk]
T [Wk] , (115)

[G̃k] = [S̃k]
T [Xk] , (116)

in which [Xk] and [Wk] are (n×m) real matrices. Solve for the projected symmetric generalized eigenvalue problem
of dimension (m×m),

[G̃k] [Qk] = [H̃k] [Qk] [Γk] , (117)

with
[Qk]

T [H̃k] [Qk] = [ I ] , [Qk]
T [G̃k] [Qk] = [Γk] , (118)

and such that [Γk]11 ≤ [Γk]22 ≤ . . . ≤ [Γk]mm. Calculate [Λk] = [Γk]
−1. Measure the convergence by

sup
ν=1,...,N

∣∣∣∣ [Λk]νν − [Λk−1]νν
[Λk]νν

∣∣∣∣ ≤ ε , (119− 1)

or by the criteria

|rk − rk−1| ≤ ε , rk =
‖[WN

k ]− [WN
k−1]‖2

‖[WN
k ]‖2

, (119− 2)

where [WN
k ] is the (n×N) real matrix such that [WN

k ]jν = [Wk]jν for j = 1, . . . , n and ν = 1, . . . , N and where
‖[WN

k ]‖2
2
= tr{[WN

k ]T [WN
k ]}.

3- When convergence is reached, P1, . . . ,PN are the firstN columns of the (n×m) real matrix [P ]which is calculated
by

[P ] = [S̃k] [Qk] [Λk]
1/2 , (120)

and λn1 , . . . , λ
n
N are the first N diagonal elements of the (m×m) diagonal matrix [Λk].
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5.2. Solving method using a direct or indirect procedure in the frequency domain

A- Direct procedure in the frequency domain

If we look at the algorithm in Section 5.1, it would seem that the calculation of matrix [E n] is necessary. In fact, Eq.
(114) shows that we only need to calculate the (n×m) real matrix [W ] such that

[W ] = [En] [X ] , (121)

in which [X ] is a given (n×m) real matrix (we omit index k to simplify the notation). Let N freq be the number of
frequency points required for calculation of the integral in Eq. (65-1), N iter be the number of iterations necessary to
reach convergence (see Eq. (119)) and n b be the “mean” half-bandwidth of symmetric matrices [M ], [D(ω)] and
[K(ω)]. As suggested above, one possibility would be to calculate [En] using Eq. (65) and then calculate [W ] each
iteration. Below, we define an operation as a multiplication or an addition of two real or complex numbers. If the
calculation of symmetric complex matrix [T (ω)] is carried out using the Gauss elimination method and if it is assumed
that mNiter � n, then such a direct procedure in the frequency domain would lead to the following estimation n dir of
the number of operations

ndir � 2n3Nfreq (1 + 4nb/n) . (122)

B- Indirect procedure in the frequency domain

The following procedure is more efficient. Since [X ] is a real matrix, it can easily be verified that

[W ] =

∫
B


e
{
[Ẑ(ω)]

}
dω , (123)

where [Ẑ(ω)] is the (n×m) complex matrix which is the unique solution of the equations

[An(ω)] [Ŷ (ω)] = θ̂(ω) [X ] , (124)

[An(ω)] [Ẑ(ω)] = [M ] [Ŷ (ω)] , (125)

in which ω �→ θ̂(ω) is the function from R into R+ such that, for all ω in R,

θ̂(ω) =
1

π
ω2 |η(ω)|2 1B(ω) . (126)

Assuming that theNfreq factorizations of matrices [An(ω)] are carried out using the Gauss elimination method outside
the iteration subspace loop, this procedure leads to the following estimation n ind of the number of operations

nind � nn2
b Nfreq (1 + 12Niterm/nb) . (127)

Consequently, the gain with respect to the direct procedure is n dir/nind = 2(n/nb)
2(1 + 4nb/n)/(1 + 12Niterm/nb).

For instance, in the context of the use of the finite element method, if n = 10000, n b = 500, m = 30 and Niter = 20,
then the gain is approximatively 60.

5.3. Procedure based on the use of the MF solution method in the time domain

If, for all ω in B, the approximation [D(ω)] � [D(ωB)] and [K(ω)] � [K(ωB)] can be used, then a more efficient
method than the method presented in Section 5.2.B can be used (if not, then the method of Section 5.2.B is required).
This method is based on the use of the MF solving method (Soize, 1982b) and requires factorization of only one
symmetric (n×n) complex matrix whose “mean” half-bandwidth is n b. Consequently, the core memory necessary for
this procedure is much smaller than for the indirect procedure in the frequency domain (Section 5.2.B) for whichN freq

factorizations are simultaneously present in the memory.

A- Definition of the input signal

Let ω �→ θ̂(ω) be the function defined by Eq. (126). Since ω �→ η(ω) is continuous on B (see Section 2.1),

θ̂ ∈ L2(R) , supp θ̂ = B , (128)

in which supp θ̂ denotes the support of function θ̂. Consequently, its inverse Fourier transform

θ(t) =
1

2π

∫
R
eiωt θ̂(ω) dω =

1

2π

∫
B

eiωt θ̂(ω) dω , t ∈ R , (129)
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belongs to L2(R) and can be written as

θ(t) = eiωBt θ0(t) , ∀t ∈ R . (130)

Function t �→ θ0(t) belongs to L2(R) and has a Fourier transform

θ̂0(ω) =

∫
R
e−iωt θ0(t) dt , ω ∈ R , (131)

which is such that
θ̂0 ∈ L2(R) , supp θ̂0 = B0 , (132)

where B0 denotes the compact interval of R,

B0 = [−Δω/2 ,Δω/2 ] . (133)

Function t �→ θ0(t) is the LF signal associated with the MF narrow-band signal t �→ θ(t) (see Soize, 1982b). If for all
ω in B, |η(ω)|2 = 1, then θ0 is written as θ0(0) = (β3 − α3)/(6π2) and for t �= 0,

θ0(t) =
1

2π2

{
(β2γ − α2γ)

it
− 2

(βγ − αγ)

(it)2
+ 2

(γ − γ)

(it)3

}
, (134)

in which α = ωB −Δω/2, β = ωB +Δω/2 and γ = exp{itΔω/2}.

B- Introduction of the approximation related to bandB

Let us assume that for all ω in B, we can write [An(ω)] � [AB(ω)] where [AB(ω)] is the invertible symmetric (n×n)
complex matrix

[AB(ω)] = −ω2 [M ] + iω [DB] + [KB] , (135)

in which [DB] and [KB] are the symmetric (n×n) real matrices independent of the frequency,

[DB] = [D(ωB)] , [KB] = [K(ωB)] . (136)

Consequently, for all ω in B, we have [Tn(ω)] � [TB(ω)] with

[TB(ω)] = [AB(ω)]
−1 , (137)

and Eqs. (63), (65-1) and (65-2) yield

[En] �
∫
B


e
{
θ̂(ω) [TB(ω)] [M ] [TB(ω)]

}
dω . (138)

It should be noted that the introduction of this assumption is justified because of the continuity of functions ω �→ θ̂(ω)
and ω �→ [Tn(ω)] on B (there exists Δω sufficiently small such that this approximation can be used).

C- Expression of [W ] using the equations in the frequency domain

In the context of the approximation defined in Section 5.2.B, [W ] is given by Eq. (123) but Eqs. (124) and (125) must
be replaced by

[AB(ω)] [Ŷ (ω)] = θ̂(ω) [X ] , (139)

[AB(ω)] [Ẑ(ω)] = [M ] [Ŷ (ω)] . (140)

From Eq. (128) and since ω �→ [TB(ω)] is continuous on B, we deduce that ω �→ [Ŷ (ω)] and ω �→ [Ẑ(ω)] are square
integrable functions from R intoMatC(n,m) (set of all the (n×m) complex matrices) and that their supports are such
that

supp [ Ŷ ] = supp [ Ẑ ] = B . (141)

D- MF equation in the time domain

Let t �→ [Y (t)] and t �→ [Z(t)] be the square integrable functions from R into MatC(n,m) such that (inverse Fourier
transforms)

[Y (t)] =
1

2π

∫
R
eiωt [Ŷ (ω)] dω , [Z(t)] =

1

2π

∫
R
eiωt [Ẑ(ω)] dω . (142)
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From Eqs. (129), (135), (139) and (140), we deduce that [Y (t)] and [Z(t)] verify the MF equations in the time domain

[M ] [Ÿ (t)] + [DB] [Ẏ (t)] + [KB] [Y (t)] = θ(t) [X ] , (143)

[M ] [Z̈(t)] + [DB] [Ż(t)] + [KB] [Z(t)] = [M ] [Y (−t)] . (144)

E- Associated LF equation in the time domain

Let [Y0] and [Z0] be the LF signals associated with the MF signals [Y ] and [Z ] respectively, such that

[Y (t)] = eiωBt [Y0(t)] , [Z(t)] = eiωBt [Z0(t)] , ∀t ∈ R . (145)

Therefore, t �→ [Y0(t)] and t �→ [Z0(t)] are square integrable functions from R into MatC(n,m) and their Fourier
transforms

[Ŷ0(ω)] =

∫
R
e−iωt [Y0(t)] dt , [Ẑ0(ω)] =

∫
R
e−iωt [Z0(t)] dt , (146)

are square integrable functions from R into MatC(n,m) such that

supp [ Ŷ0 ] = supp [ Ẑ0 ] = B0 , (147)

in which B0 is defined by Eq. (133). Substituting Eq. (145) into Eqs. (143) and (144) and using Eq. (130) yields the
LF equations in the time domain associated with the MF equations (143) and (144),

[M ] [Ÿ0(t)] + [D̃B] [Ẏ0(t)] + [K̃B] [Y0(t)] = θ0(t) [X ] , (148)

[M ] [Z̈0(t)] + [D̃B] [Ż0(t)] + [K̃B] [Z0(t)] = [M ] [Y0(−t)] , (149)

in which the symmetric (n×n) complex matrices [D̃B] and [K̃B] are written as

[D̃B] = [DB] + 2 i ωB [M ] , (150)

[K̃B] = −ω2
B [M ] + i ωB [DB] + [KB] , (151)

F- Expression of [W ] using the solution of the associated LF equation in the time domain

Let t �→ [Y0(t)] and t �→ [Z0(t)] be the functions verifying Eqs. (148) and (149). From Eqs. (123) and (142), we
deduce that [W ] = 2π
e {[Z(0)]}. Using Eq. (145) for t = 0 yields

[W ] = 2π
e {[Z0(0)]} . (152)

G- Solving procedure

The associated LF equations (148) and (149) are solved using an unconditionally stable implicit step-by-step integration
method such as the Newmark method or the Wilson θ method (see for instance, Bathe and Wilson, 1976). Since Eqs.
(148) and (149) have the same differential operator [M ] d 2/dt2 + [D̃B] d/dt + [K̃B], only one symmetric (n×n)
complex matrix has to be factorized. The basic sampling time step denoted τ is given by Shannon’s theorem (see for
instance Soize, 1993b). From Eqs. (133) and (147), we deduce that τ = 2π/Δω. The integration time step of the
step-by-step integration method is then written as Δt = τ/μ where μ > 1 is an integer. Since θ 0 and [Y0] are square
integrable functions, for any ε > 0, there exists an initial time t I = −I0 × τ where I0 > 1 is an integer and a final
time tF = J0 × τ where J0 > 1 is another integer, such that

∫ tI

−∞
|θ0(t)|2 dt ≤ ε‖θ0‖2L2 ,

∫ +∞

tF

‖[Y0(t)]‖2 dt ≤ ε

∫ tF

tI

‖[Y0(t)]‖2 dt . (153)

We have the following procedure.
Step 1. Construction of the sequence [Y0(j×Δt)] for j = −I, . . . , J with I = I0×μ and J = J0×μ by solving Eq.
(148) for t ∈] tI , tF ] with the initial conditions [Y0(tI)] = [Ẏ0(tI)] = [ 0 ].
Step 2. Construction of the sequence [Z0(k×Δt)] for k = −J, . . . , 0 by solving Eq. (149) for t ∈]− tF , 0 ] with the
initial conditions [Z0(−tF )] = [Ż0(−tF )] = [ 0 ].
For details on the MF solving method, such as the usual values of μ, I , J , we refer the reader to Soize, 1982b and
Soize et al. 1986 and 1992.

H- Number of operations
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We use the notations introduced in Section 5.2. Based on the use of the Newmark method, this procedure leads to the
following estimation of the number of operations,

nMF � nn2
b + 4nnbmNiter (3I + 7J) . (154)

Consequently, the gain with respect to the indirect procedure in the frequency domain is n ind/nMF = Nfreq(1 +
12Niterm/nb)/(1 + 4(3I + 7J)Niterm/nb)). For instance, in the context of the use of the finite element method, if
n = 10000, nb = 500,m = 30 and Niter = 20, then the gain is approximativelyN freq/(I + 2.2J).

6. Example

The example concerns an inhomogeneous continuous dynamical system which has a nondiagonal generalized damping
matrix with respect to the normal eigenmodes of the associated conservative dynamical system.

6.1. Description of the dynamical system

We consider the MF response of the dynamical system consisting of a rectangular thin plate in bending mode coupled
with springs and dashpots as shown in Fig. 1, on the narrow MF band B = 2π×[550,600] rad/s defined by Eq.
(1), i.e. on the [550,600] Hz frequency interval. We then have (see Eq. (2)) Δω/ω B = 0.087 and, for all ω in B,
function η is such that |η(ω)| = 1. The plate is homogeneous and isotropic, simply supported, rectangular, with a
constant thickness, width L1 = 0.5 m, length L2 = 1.0 m, surface-mass density ρs = 40 kg/m2, constant damping
rate ξ = 0.001. We assume that the usual thin plate theory can be used. The lowest eigenfrequency of the associated
conservative uncoupled plate is 5 Hz. The plate is coupled with 3 springs having the same stiffness coefficient
k = εk μω

2
B with εk = 0.1, μ = ρsL1L2 = 20 kg (total mass of the plate) and with 5 dashpots having the same

damping coefficient d = 2εd μ ξ ωB with εd = 0.1. The family ψ1, . . . , ψn of functions introduced in Section 4 is
chosen as the first n eigenmodes of the associated conservative uncoupled plate whose corresponding eigenfrequencies
are f1 < f2 < . . . < fn. The value retained for n is 407 and has been deduced from the convergence study of the
dynamical system response over the [0,700] Hz frequency band. The values of f 1, . . . , fn are such that f1 = 5 Hz,
f201 = 549 Hz, f202 = 557 Hz, f219 = 596 Hz, f220 = 601 Hz and f407 = 1097 Hz. Consequently, there are
201 plate eigenmodes whose eigenfrequencies are below 550 Hz, 18 plate eigenmodes whose eigenfrequencies lie
inside the narrow MF band [550,600] Hz, and 188 plate eigenmodes whose eigenfrequencies are between 600 Hz and
1100 Hz. The normalization of the plate eigenmodes is such that, for all α,

∫ L1

0

∫ L2

0 |ψα(x1, x2)|2 ρs dx1 dx2 = μ.
Concerning the finite dimension approximation of the dynamical system operators, matrices [M ] and [G ] defined by
Eqs. (60) and (76) are diagonal, and matrices [D ] and [K ] defined by Eqs. (61) and (62) are dense and independent
of the frequency. Let f DS

1 < fDS
2 < . . . be the eigenfrequencies of the associated conservative dynamical system

(estimated using the finite dimension approximation introduced in Section 4). These eigenfrequencies are such that
fDS
1 = 10.25 Hz, fDS

198 = 548.99 Hz, fDS
199 = 552.99 Hz, fDS

217 = 598.45 Hz and fDS
218 = 604.59 Hz. It can then

be seen that the spectrum of the associated conservative dynamical system is such that there are 198 eigenmodes
whose eigenfrequencies are below 550 Hz and 19 eigenmodes whose eigenfrequencies lie inside the narrow MF band
[550,600] Hz.

6.2. Constructing the reference solution on a broad frequency band

The reference solution is obtained by constructing the mapping ω �→ tr[e n(ω)] using Eq. (65-2), with a sampling
frequency step δω = 2π×0.46. In Eq. (65-2), [Tn(ω)] is calculated using Eq. (63) in which matrix [An(ω)] is
calculated by Eq. (59) with matrices [M ], [D ] and [K ] given by Eqs. (60), (61) and (62). Fig. 2 shows the
mapping ω �→ 10×log10(tr[en(ω)]) from the broad frequency band 2π×[0,700] rad/s into R+ (it should be noted that
this mapping does not depend on the spatial excitation).

6.3. Constructing the reference solution on the narrow MF band

Fig. 3 (which is a close-up of Fig. 2) shows the mapping ω �→ 10× log10(tr[en(ω)]) on narrow MF band B. This
function is constructed with a frequency resolution δω = Δω/N freq in which Nfreq = 300. This graph is used below
as reference solution to evaluate the accuracy of the response constructed using the reduced model. For this reference
solution related to frequency band B, matrix [En] defined by Eq. (65-1) is calculated using the approximation

[En] � δω
∑Nfreq

j=1 [en(ωj)] in which ωj’s are the sampling frequencies of band B. For the reference solution, the
eigenvalues λn

1 ≥ λn2 ≥ . . . ≥ λnn > 0 and the corresponding eigenfuctions {en
1 , . . . e

n
n} of energy operator EB,n (see

Eq. (70)) are calculated using Proposition 5 (Eqs. (75) to (81)). Fig. 4-a shows the graph of the function ν �→ λ n
ν for

ν ∈ {1, 2, . . . , 40} and Fig. 4-b shows the graph of the function ν �→ 10×log10(λ
n
ν ) for ν ∈ {1, 2, . . . , 400}. There

is a strong decrease of the eigenvalues in the interval [18, 23] which means there exists a possibility of constructing an
efficient reduced model independent of the spatial excitation of the dynamical system.
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6.4. Reduced model adapted to the narrow MF band

In this section, we present a comparison of the reference solution constructed in Section 6.C (see Fig. 3) with the solution
obtained by the reduced model constructed using the results of Section 4.4 in which eigenfunctions {e n

1 , . . . , e
n
N} are

those calculated in Section 6.C. For the three values 17, 20 and 30 of the reduced model of order N , Fig. 5 shows
the comparison of function ω �→ 10×log10(tr[en(ω)]) (reference solution) with function ω �→ 10×log10(tr[e

N
n (ω)])

(reduced model) calculated for each value of orderN using Proposition 6.

6.5. Construction of the dominant eigensubspace using the subspace iteration method

For construction of the reference solution (Section 6.C), all the eigenvalues and the corresponding eigenfunctions of
matrix [En] were calculated (in practice, calculation of all the eigenvalues is never done and cannot be carried out for
large finite element models). In this section, we consider the construction of the dominant eigensubspace using the
subspace iteration method (this is the method proposed for large models).

A- Solution method using the direct procedure in the frequency domain

For the reduced model of order N = 20, the subspace iteration algorithm defined by Eqs. (111) to (120) is used with
m = 28 and is initialized with an (n×m) real matrix of +1s and −1s whose columns are orthogonal (Hadamard
matrix). Each iteration, matrix [Wk] defined by Eq. (114) is calculated using the direct procedure in the frequency
domain described in Section 5.2.A. It should be noted that, for large models, this direct procedure is tricky and
must be replaced by the indirect procedure described in Section 5.2.B as was explained (for the present validation
of the subspace iteration algorithm, this point is not crucial, and in addition, validation of the indirect procedure
is straightforward). Convergence of the subspace iteration method is measured using Eq. (119-1) with ε = 10 −4.
Convergence is obtained for N iter = 4 iterations. Fig. 6 shows the comparison of function ω �→ 10×log10(tr[en(ω)])
(reference solution) with function ω �→ 10×log10(tr[e

N
n (ω)]) (reduced model) for N = 20 using Proposition 6. This

result validates the procedure.

B- Procedure using the MF solution method in the time domain

For the reduced model of order N = 20, the subspace iteration algorithm defined by Eqs. (111) to (120) is used with
m = 28 and is initialized as in Section 6.5.A. Each iteration, matrix [Wk] defined by Eq. (114) is calculated by using
the the MF solution method in the time domain described in Section 5.3. The Newmark step-by-step integration method
is used (Bathe and Wilson, 1976, with scheme parameters α = 1/4 and δ = 1/2). Function θ 0(t) is generated using
Eq. (134). The parameters introduced in Section 5.3.G for the time-solution procedure are μ = 6, I 0 = 4 and J0 = 26,
i.e. I = 24 and J = 156. Convergence of the subspace iteration method is measured using Eq. (119-2) with ε = 0.5.
Convergence is obtained forN iter = 4 iterations. Fig. 7 shows the graph of function j �→ tr{[Y0(j×Δt)]∗ [Y0(j×Δt)]}
for j = −I, . . . , J and Fig. 8 shows the graph of function k �→ tr{[Z 0(k×Δt)]∗ [Z0(k×Δt)]} for k = −J, . . . , 0,
corresponding to the last iteration of the subspace iteration algorithm (see Step 1 and Step 2 described in Section
5.3.G). These two figures show that the values of parameters I0 and J0 are correctly chosen (a similar result is obtained
for each iteration, and not only for the last one). Fig. 9 shows the comparison of function ω �→ 10×log 10(tr[en(ω)])
(reference solution) with function ω �→ 10×log10(tr[e

N
n (ω)]) (reduced model) for N = 20 using Proposition 6. This

result validates the procedure.

7. Conclusion
A theoretical approach is presented for the construction of a reduced model in the medium frequency range in the area
of structural dynamics for a general three-dimensional anisotropic and inhomogeneous viscoelastic bounded medium
with an arbitrary geometry. The boundary value problem in the frequency domain and its variational formulation are
presented. For a given medium frequency band, the energy operator which is intrinsic to the dynamical system is a
positive-definite symmetric trace operator in a Hilbert space which depends on the conservative and dissipative parts
of the dynamical system. The eigenfunctions corresponding to the highest eigenvalues (dominant eigensubspace) of
the energy operator allow a reduced model to be constructed using the Ritz-Galerkin method. A finite dimension
approximation of the continuous case is introduced in a general context (for instance using the finite element method).
An effective construction of the dominant subspace of the energy operator is proposed using the subspace iteration
method with the introduction of two procedures, one based on the use of an indirect procedure in the frequency domain
and the other on the use of the MF solution method in the time domain. We then obtain an efficient method for
constructing a reduced model in the MF range. In addition, it can easily be seen that all the results presented can be
extended straightforwardly to beams, plates and shells. We present a simple example to validate the concepts and the
algorithms.
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Fig. 1. Geometrical configuration of the dynamical system constituted by a homogeneous isotropic

rectangular simply supported thin plate coupled with springs and dashpots.
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Fig. 2. Reference solution: graph of function ω �→ 10×log10(tr[en(ω)]) over band B = [0, 700]

expressed in Hz.
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Fig. 3. Reference solution: graph of function ω �→ 10×log10(tr[en(ω)]) over band B = [550, 600]

expressed in Hz.
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Fig. 4-a. Reference solution: graph of function ν �→ λn
ν for ν = 1, . . . , 40, showing the distribution

of eigenvalues λn
ν of energy operator EB,n (see Eq. (70)).
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Fig. 4-b. Reference solution: graph of function ν �→ 10×log10(λ
n
ν ) for ν = 1, . . . , 400, showing

the distribution of eigenvalues λn
ν of energy operator EB,n (see Eq. (70)).
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Fig. 5. Reduced model: comparison between function ω �→ 10×log10(tr[en(ω)]) (reference solution

(solid line)) and functions ω �→ 10×log10(tr[e
N
n (ω)]) (reduced model for N = 17 (dashdot line),

forN = 20 (dashed line) and forN = 30 (dotted line)), over band B = [550, 600]

expressed in Hz.
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Fig. 6. Reduced model constructed using the subspace iteration method and the direct procedure in the

frequency domain: comparison between function ω �→ 10×log10(tr[en(ω)]) (reference solution

(solid line)) and function ω �→ 10×log10(tr[e
N
n (ω)]) (reduced model forN = 20 (dashdot line)),

over band B = [550, 600] expressed in Hz.
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Fig. 7. Construction of [Wk] in the subspace iteration method using the MF solution method in the time

domain: graph of function j �→ tr{[Y0(j×Δt)]∗ [Y0(j×Δt)]} for j = −I, . . . , J (see Step 1
of Section 5.3.G).
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Fig. 8. Construction of [Wk] in the subspace iteration method using the MF solution method in the time
domain: graph of function k �→ tr{[Z0(k×Δt)]∗ [Z0(k×Δt)]} for k = −J, . . . , 0 (see Step 2
of Section 5.3.G).
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Fig. 9. Reduced model constructed using the subspace iteration method and the MF solution method in
the time domain: comparison between function ω �→ 10×log10(tr[en(ω)]) (reference solution
(solid line)) and function ω �→ 10×log10(tr[e

N
n (ω)]) (reduced model forN = 20 (dashdot line),

over band B = [550, 600] expressed in Hz.
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