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REDUCED MODELS FOR STRUCTURES IN THE MEDIUM-FREQUENCY
RANGE COUPLED WITH INTERNAL ACOUSTIC CAVITIES

Christian Soize

Structural Dynamics and Coupled Systems Department, ONBRA2, F-92322 Chatillon
Cedex, France

ABSTRACT

This paper concerns the development of a method adaptedristracting reduced models in
the medium-frequency range to a general three-dimensassipative structure consisting
of an anisotropic, inhomogeneous, viscoelastic boundediumecoupled with an internal
acoustic cavity. The reduced models are obtained usingitaeZalerkin method for which
the projection subspace corresponds to the dominant eigspace of the energy operator
of the structure in the medium-frequency band of analysisvo Tundamental cases are
considered: 1) both the structure and the internal acoaatity have a medium-frequency
behavior in the frequency band of analysis; 2) the strudtasea medium-frequency behavior
in the frequency band of analysis while the internal acousdvity has a low-frequency
behavior.

PACS numbers: 43.40

INTRODUCTION

This paper is the continuation of two previous papers phbtisby the author, concerning
the development of a method for constructing reduced madetee medium-frequency
(MF) range for general structural dynamics systeffssructures in a vacuum) and external
structural-acoustic systefstructure coupled with an external acoustic fluid (gasoritl)).

For a mechanical system such as a structure in a vacuum arciustl-acoustic system, its
response in the frequency domain (its “behavior”) depemdbe frequency range defined as
follows (see Ref. 3).

The low-frequency range (LF) can be defined as the modal dofoaivhich the associated

conservative system has a small number of modes; there amodal overlaps due to the

dissipation effects. In this LF range, the finite elementhodtcan be used for spatial
discretization and the dynamic analysis can be performeitienfrequency domain using

reduced models which are very efficient and popular tool®mstructing the solution. Such

reduced models correspond to a Ritz-Galerkin reductiomefdynamical model using the
normal modes corresponding to the lowest eigenfrequenéidse associated conservative
system. The efficiency of this kind of reduced model is duaéssimall number of generalized
dynamical degrees of freedom used in the representatianaddition, is obtained by solving

a well-stated generalized symmetric eigenvalue problamwfach only the first eigenvalues

and the corresponding eigenfunctions have to be calcul&teatidition when such a reduced
model is obtained, responses to any deterministic or rarelaitations can be calculated for
no significant additional numerical cost.

The high-frequency range (HF) can be defined as the frequiesiegt for which there is a
uniform high modal density; there is a uniform modal ovedale to the high modal density
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and the dissipation effects. For this HF range, the finitenel® method cannot be used for
spatial discretization and the dynamic analysis has to Henpeed using the wave approach,
the global statistical energy approach (such as the verylpotatistical Energy Analysis)
and the local energy approach (such as the power flow andigsed on continuous energy
equations).

For complex systems such as general three-dimensionelgtes, an intermediate frequency
range called medium-frequency range (MF) appears. The dedaity exhibits large varia-
tions over the band. In addition, if there is a structural ptaxity related to the presence of
fuzzy substructures, mechanical models have to be adapted.MF range cannot be ana-
lyzed with the tools used for the LF and HF ranges. A complexcstire is then considered as
a master structure coupled with all the dynamical subsys{&mzy substructures). Inthe MF
range, probabilistic models have to be used to model thetsféd fuzzy substructures on the
master structure and the finite element method can only lwefosspatial discretization of the
master structure. In addition, random uncertainties habe tmodeled in the master structure
in order to increase robustness of response predictionsceloing dynamical analysis of the
master structure, the modal method which is very efficierthenLF range for constructing
reduced models cannot be used in the MF range for generaltimgensional structures. It
should be noted that it is essential to have intrisinc redunedels in the MF range (as we
have in the LF range) for calculating the MF responses to anlipte loads constituted of
deterministic and random excitations. This is the reasopaweduced model method in the
MF range has been recently proposed for general dissigsttivetural-dynamics systemé

In this method, the reduced model is constructed using tle &alerkin projection of the
variational formulation of the boundary value problem oe ttominant eigensubspace of
the energy operator of the structure over the medium-frecuband of analysis. Similarly
to the LF reduced models, the efficiency of the proposed Miiaged model is due to the
small number of generalized dynamical degrees of freedad imsthe representation and in
addition, is obtained by solving a well-stated generaliggtimetric eigenvalue problem for
which only the first eigenvalues and the corresponding éugpeions of the energy operator
related to the MF band have to be calculated. This meandthétst normal modes of the LF
range are replaced by the first eigenfunctions of the engygyator in the MF range. Finally,
it should be noted that the efficiency of such a reduced mquietach in the MF range can
be very high with respect to any direct approaches validat¢ide MF range as soon as the
MF responses have to be calculated for a large number ofpteutteterministic and random
loads, particularly for random excitations.

In this paper, we apply and adapt this method for constrgcéimreduced model in the
MF range to a general three-dimensional dissipative straatonsisting of an anisotropic,
inhomogeneous, viscoelastic bounded medium coupled withtarnal acoustic cavity filled
with a gas or a liquid. Two fundamental cases are considet¢doth the structure and
the internal acoustic cavity have a medium-frequency “emain the frequency band of
analysis; 2) the structure has a medium-frequency “beanithe frequency band of analysis
while the internal acoustic cavity has a low-frequency ‘detr”.

In Section I, we present the boundary value problem to beesoiv the frequency domain
and we recall its variational formulation. In Section II, weroduce a finite dimension
approximation. Section Ill concerns the construction oéeter basis for the reduced model
of the structure and the internal acoustic cavity in the Mige We will see the role played
by the low-frequency structural modes on the acoustic gaggponse in the MF range. As a
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consequence, we deduce a structural vector basis adapterlNt- range when the structure
is coupled with an internal acoustic cavity. Section IV isated to the construction of the

reduced model while Section V deals with the constructiothefdominant eigensubspaces.
In Section VI, we present the time-stationary random resparsing the reduced model.
Finally, we present a validation for the two fundamentaksastroduced above.

I. BOUNDARY VALUE PROBLEM AND ITS VARIATIONAL FORMULATION
A. Definition of the boundary value problem

We consider linear vibrations (formulated in the frequedoynainw) of a three-dimensional
structural-acoustic system around a static equilibriumfigoiration considered as a natural
state at rest (see Fig. 1). L@t be the three-dimensional bounded domain occupied by the
structure and made of viscoelastic material. 2@ = I'yUI'; UT's be its boundary and, =
(n1,1,n1,2,n1,3) be its outward unit normal. Let(x,w) = (u1 (X, w), u2(X,w), uz(X,w)) be
the displacement field in each point= (z1, 22, z3) in Cartesian coordinates and at frequency
w. On partl’, of the boundary, the structure is fixéa = 0) whereas on pait; UT'; itis free.
The structure is coupled with an internal dissipative atodkiid (gas or liquid) occupying
the three-dimensional bounded dom@inwhose boundary(2; is the coupling interfacg,.
The outward unit normal to€2, is denoted an; = (ng 1, n2 2, N2 3) and we have; = —n;.

We denote the pressure field asp(x, w). We introduce a narrow MF ban@ such that

B =|wp—Aw/2,wp+ Aw/2] , (1)

in which wp is the center frequency amlw is the bandwidth such th&iw/wp < 1 and
wp > Aw/2. With B we associate interval

B=[-wp—Aw/2,—wp+ Aw/2] . (2)

The structure is submitted to a square integrable surface feeldx — 7(w) g(X, w) fromT'y
into C3, in whichn(w) is a function fromR into C, such that)(w) = 0 if w is notin BUB,
continuous orB, verifying |n(—w)| = |n(w)| and such thaty(w)| # 0 for all w in B.

For this structural-acoustic system, we use the model amdbdlundary value problem de-
veloped for the MF range in Chapter XIV of Ref. 3. Introducic@mponentsg, g2, g3)
of g, the boundary value problem for the structure is writtenad®ws in terms ofu (the
convention for the Fourier transform bein@u) = [ e="*v(t) dt),

—w2p1 Ui — 04,5 = 0 in Ql , (3)
oijni; =ng; on Iy | (4)
oijnij = —pnij on Ty (5)
U; = 0 on FO R (6)

in whichi = 1, 2, 3, where the summation over indgxs used, and wherg, (x) > 0 is the
mass density of the structure ang ; = Z?Zl do;;/0x;. For alinear viscoelastic material,
stress tensar;; is written as

O = ‘Dz'jkh(X7 w) exn(U) + [bz'jkh(X: w) epniwu) (7)

J. Acoust. Soc. AmL0§(6), 3362-3374 (1999). 3 Christian Soize



in which the summation over indicdsand h is used and wherey, (u) = (Ju/dzy +
Jdup,/0xy)/2 is the linearized strain tensor. Coefficienis,s (X, w) andb;;xs (X, w) are real,
depend orx andw, verify the usual properties of symmetry and positivefie$and are such
thatol-jkh (X, —w) = Qijkh (X, w) and[bijkh (X, —w) = [bl-jkh(x./ w).

Concerning the internal dissipative acoustic fluid, thespuee in the fluid is written (see
Chapter XIV of Ref. 3) as

p(X,w) = —iw pa P(X,w) — ke (U) N QaUTy (8)

in which  is a positive constant such that

2
P2 C3
K= , Q9 :/ dx 9

oy €2 o (9)

wherep, > 0 andc, are the constant mass density and the constant speed of gbtired
acoustic fluid at equilibrium and where (u) is defined by

m(u):/ru(x,w)-nQ(x) ds(x) . (10)

The new unknown field (x, w) is related to the velocity field(x, w) of the dissipative acoustic
fluid by the equatiorv(x,w) = (1 + iw 7) V1) (X, w) in which 7 is a constant coefficieht
related to the viscosity of the acoustic fluid hay depend on frequency). The boundary
value problem for the internal acoustic fluid is written alédiws in terms of fieldy

w2 B p(x,w) —iw T 0 V(X w) = p2 V(X w) = = ma(U) i Qp (1)
2 2
p2(1+iWT)8—w:iwp2U'n2 on Ty (12)
E)ng
P(X,w)dx =0 . (13)
Qo

The boundary value problem of the structural-acousticlerabs defined by Egs. (3) to (13).
B. Variational formulation

Let V; be the space of admissible displacement fieldefined orf2; with values inC? such
thatu = 0onT,. LetV; be the space of admissible fielgsdefined o2, with values inC
such thatfQ2 1 (X) dx = 0. Below,z denotes the conjugate of the complex numheiThe
variational formulation of the boundary value problenuiand defined by Egs. (3) to (13)
is obtained using the test-function method and is expreasddllows (see Chapters Il and
X1V of Ref. 3). For allw in BUB, find {u(w) , ¥ (w)} in V4 x V5 such that, for alfv, ¢} in
Vix Vs,

a1 (U, Viw)+ kj(u,v) +iwe(p,v) = f(Viw) (14)
iwe(p,u) —as(,p;w) =0 (15)

in which f(v;w) is defined by
f(viw) =n(w) A g(x, w)-v(x)ds(x) (16)
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and wherez; (U, v; w) is written as

a1 (U, V3 w) =~ mu (U, V) + i dy (U, V@) + k(U Viw) (17)
i) = [ 00 e w) Vi (18)

dy(U, v w) = /Q i ) un) e (V) e (19)

By (U, V3 w) = /Q (0. ) un) e (V) (20)

in which the summation over indicésj, k andh is used. It is assumed théf(u, v ;w) and
k1 (u,Vv;w) are continuous functions on ba@tiwith respect tav. In Egs. (14) and (15), we
have

W) =2 [ D060) Ma(0-VEX) () (21)
J(UV) = ma (W) (V) (22)

ax(th, ¢ w) = —w? ma(y, ) + iw da(, §1w) + k2(0,9) (23)
mzw,qﬁ):ﬁ—; V) 909 dx (24)

Ao, 65 w) = 7(w) ka(),§) . (25)
k() = p2 | Vixw) VPX) dx . (26)

For all w in BUB, the problem defined by Egs. (14) and (15) has a unique solutio
{u(w) , Y (w)} in Vi x V5.

Il. FINITE DIMENSION APPROXIMATION

The finite dimension approximation of the problem defined g.E14) and (15) is obtained
by using the Ritz-Galerkin method. We then consider a coragmily of independent
R3-valued functiongu, }»>1 in admissible spack; and a complete family of independent
real-valued function$: s } 5>1 in admissible spack,. We consider 1) a subspakte,,, C Vi

of finite dimensiom; > 1 spanned by the familju,, ..., u,, } and 2) asubspadé ,, C V>

of finite dimensionmn, > 1 spanned by the familye, ..., ¢,,}. In practice, each family
can be either a finite element bdstsassociated with a finite element mesh of donfajrfor
{u}o and domair2, for {¢z}3, or, for particular cases corresponding to simple shapes of
geometry, any functional basis constructed in the conteah@nalytical approach such as a
sequence of structural normal moeté of the structure in vacuo and a sequence of acoustic
mode$'!! of the internal acoustic cavity with a rigid wall. Léti(w), ¢ (w)} € Vi x V5 be

the solution of Egs. (14) and (15). Its projection¥dn,, x V ,,, is written as

UX,w) =Y qraw) Ua(X) - (27)
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D)= grplw) vp(x) (28)
B=1

From Egs. (14) and (15), we deduce thp{w) = (¢1,1(w),...,q1,n, (w)) € C™ and

J2(w) = (¢2,1(w), . .., q2,n, (w)) € C™ is the unique solution of the linear equatfon
(@] +rlI] 0] ] [a@)]  [r) F@)] )
[ iw[C]T —[Az(w)]J [qg(w)J { 0 J |

In Eq. (29),[A:1(w)] is an(ny xn1) symmetric complex matrix (invertible for all in B UB)
which is written as

[A1(w)] = —w? [My] + iw [D1(w)] + [K1(w)] (30)

in which [M;], [D;(w)] and [K;(w)] are positive-definite symmetrig:, x n1) real matri-
ces such thatMi]ae: = m1(Ua,Uy), [D1(w)]aar = di(Ug, Uy ;w) and [Ky(w)]aar =
k1(Uqgr, Uq s w). VectorF(w) = (F1(w), ..., Fn, (w)) € C™ is such that

N(w) Fo(w) = f(Uasw) (31)
Matrix [ J ] is an(nq x n1) Symmetric real matrix which can be written as
[J] =TI, 113
inwhichIly = (Tlz4,..., I3 ,,) € R™ is such that
Mo = m(Us) - (32)

In Eq. (29),[A2(w)] is an(ng x ng) symmetric complex matrix (invertible for all real in
B UB) which is written as

[A2(w)] = ~w? [Ma] + iw [Dy(w)] + [Ka] (33)

in which[Ms], [D2(w)] and[ K] are positive-definite symmetriaq xn) real matrices such
that[Ms]gsr = ma(vpr, thg), [D2(w)] = 7(w) [K2] and[Kz]gg: = ka(4s . 1p). It should
be noted thafK5| is positive definite due to the constray‘g2 Y dx = 0 which is included
in spaceV,. In the context of use of the finite element method, if thisstoaint is not
included in the construction dfy 3} 5, then[ K] is only positive and the constraibf g, = 0
corresponding to the finite element discretizatio[fg%fw dx = 0 has to be added to Eq. (29).

Finally, in Eq. (29),/C | is an(n; x ng) real matrix such that
[Clag = c(¥p,Ua) (34)

The approximation of pressure figldlefined by Eq. (8) is written agx, w) = —iprJ(x, w)
—kma(U),i.e.,
P, w) = —iw pp ¥ (X)7 Qo (w) — £TI5 G (w) (35)

inwhich®(x) = (¢Y1(X), ..., ¥n, (X)) € R™2,
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[ll. CONSTRUCTION OF A VECTOR BASIS FOR THE REDUCED MODEL

A. Vector bases adapted to MF bandB for the structure in vacuo and the internal
acoustic cavity with rigid wall

Two vector bases adapted to MF baBdcan be constructed for the structure in vacuo and
the internal acoustic cavity with rigid wall by applying theethod presented in Refs. 1 and
2 (for the details, we refer the reader to these referend@é®se two vector bases correspond
to the dominant eigensubspaces of the energy operatotivedia bandB for the structure

in vacuo and the internal acoustic fluid with rigid wall. Iretbontext of the finite dimension
approximation introduced in Section II, the procedure carsbmmarized as follows. Let
a = 1 ora = 2 be the index related to the structure or the internal acodlstid. Let
N, < n, be the order of the reduced model related to the strugiure 1) or the internal
acoustic fluid(a = 2). Let [P,] be the(n, x N,) real matrix whose columns are tié,
eigenvectord P!, ... PYNa} corresponding to théV, highest eigenvalues. > ... > A\Ne

of the generalized symmetric eigenvalue problem

[Ha] [Fa] = [Ga] [Pa] [Aa] (36)

such that
[P)" [Ga] [Pa] = (1] (37)
[P,)T [H,) [Pa) = [Aa] (38)

in which [I,] is the (N, x N,) identity matrix, [A,] is the (N, x N,) diagonal matrix of
eigenvalues\, ..., AN« and wherdG,] and[H,] are positive-definite symmetri@,, x n,)
real matrices such that

[G1]aar :/ Uar- Uq dX [G2][3B’ :/ Ypr-hpdx (39)
Ql QQ

[Ha] = [Ga] [Ea] [Ga] (40)

In Eq. (40), positive-definite symmetria, x n,) real matrix[E,] is the projection of the
energy operator of the structufe = 1) or the internal acoustic fluith = 2), such that

A /B eal@)]dw | (41)
ea(@)] = 1? [n(w)] Re ([T, (w))* M. [Ta(@)]) (42)
To@)] = [A@)] ™ : Ta(@)] = T(@)] = Ta@)] . (43)

in which[A,(w)] is defined by Eq. (30) fo = 1 and Eq. (33) fou = 2.
B. Remark concerning the acoustic vector basis relative to M band B

It can easily be proved that for the internal acoustic flaig= 2), eigenvector$Py, . .., P2},
associated with théV, highest eigenvalues of generalized symmetric eigenvatablgm
[Ho) [P2] = [G2][P:] [A2] relative to MF bandB, coincide with the finite dimension ap-
proximation of the acoustic modes of the internal acousditg with rigid wall, whose
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eigenfrequencies are in MF bariél This particular property is due to the fact that two
conditions are simultaneously satisfied: mass densitgf the acoustic fluid is a constant
and damping sesquilinear fori# (¢, ¢ ; w) = T(w) kao(1), ¢) is diagonalized by the acoustic
modes. If either of these two conditions is not satisfied theés particular property does not
hold; generally, these conditions are not satisfied forcsties in the MF range. It should
be noted that, in the context of a finite element model of thermal acoustic fluid, if the
rank of the acoustic modes belonging to MF babds high (case of MF behavior of the
internal acoustic fluid), then the proposed method is anieffi¢cool for computation of these
acoustic modes. Conversely, if the rank of the acoustic mbaéonging to MF band is
low (case of LF behavior of the internal acoustic fluid), thfe® usual numerical methods for
computation of the acoustic modes (such as subspacedtetlanczos methods15) are
more efficient.

C. Role played by the low-frequency structural modes on the @ustic cavity response in
MF band B

Inthis section, in order to analyze this role, we introduaeipular assumptions for simplifying
the explanations. Let us assume thag } s corresponds to the acoustic modes verifying

kQ(wﬁvd)):w%,ﬂmQ(wﬁvd)) , VoeVy

with the normalizationms(¢3,15) = 1 and such thafDs(w)|gs = 2&2,3w2,g0gs N
which¢, g > 0is an acoustic damping rate dependingsdout independent ab. We choose
{us}a = {U,}a as the structural modes taking into account the additiotifhess term
k j(u,v). Consequently, the spectral problem is written as

kl(aa,V) = @ia ml(ﬁa,v) , YW eV

in which %y (U, v) = k1 (u,v:0) + #j(u, v). The normalization is such that; (U, Uy ) = 1
and it is assumed thab (w)]aa' = 2 El,a ©1,a daa’ wheregl,a > 0 is a structural damping
rate depending on but independent ab. From Egs. (29) to (34), we deduce tlig{w) is
the solution of the linear matrix equation

[A2(w)] G2(w) = Fa(w)

inwhichFq(w) is a given vector itt”2 and[Ax(w)] is an(nexns) symmetric complex matrix
which can be written a@\, (w)] = [Al (w)] + [A5 (w)] where, for all3 ands’ in {1,. .., ns},

[AS (w)]gsr = (—w® + 2iwws g €5 + w3 g) Sppr

- 2Cup Capr
(A5 (@)]gsr = — ) < b b =
1 Wt 20wl 81,0 T W7,

Let us consider the MF response of the acoustic cavity due tacaustic modez whose
eigenfrequency is» 3. Consequentlyw andw, g belong to MF bandB. Let us investi-
gate the contribution of the firgt/ low-frequency structural modes (whose eigenfrequencies
w11, ..., w1,m belong to the low-frequency range) to the acoustic mogevhose eigenfre-
quency isw; g belonging to MF band3. We then have

0<LA0171§...§LA017M<<L«)€B ,
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and therefore, the contribution if\,(w)]ss of structural modei, whose eigenfrequency
W1,q is such thaty; , < w € B, is equal to

. ~ -~ /\2
—w? 4+ 2iwwr o €10 + B

This positive termC? ; contributes to increase the value of the acoustic eigenérayws s
because generalized stiffness terf, in [A2(w)]gps is increasing of positive terra? ; for
each structural mode, such thatv; , < w € B. Consequently, the rate of convergence of
the internal acoustic MF response can be increased by “gdthie lowest structural modes

{Uy,...,Up} (or equivalently the lowest structural modfs,, . . ., u,, } of the structure in
vacuo) to vector§Pji, ..., P{Vl} adapted to the prediction of the structural response in MF
bandB.

D. Structural vector basis adapted to MF bandB for prediction of the internal acoustic
response in MF bandB

Taking into account the conclusion of Section I1l.C, MF baBdeing fixed, we consider
eigenvectord P!, ..., PM} introduced in Section IIl.A, such that (see Eq. (37)),

PG PI =0, . 4 and k in {1,....Ny}

and we consider th&/y structural mode$Q41, . .., Q]1V0} corresponding to the lowest struc-
tural eigenfrequenciegd < wy 1 < ... < wq N, such that, foralbkvin {1, ..., Ny},

[K1(0)] Qf = wi , [M1] QY

We assume that
N{ =Ni+No<ni ,

and that vector$Pi, . . ., Pf’l , Q... Q{VO} constitute a set of linearly independent vectors
in R™. In practice,M structural mode§Qy"....,Q{™} are considered, thgi; x (N +
M)) real matrix[ X | = [P1...PM Q" ...Q{"] is constructed and finally, theQ ][ R]
factorization of matriX X | is computed in which@ ] is an(n, xn;) orthogonal matrix and
[R]is an(ny x (N;+ M)) real upper triangular matrix. If none of the diagonal eletaeri

[ R] is equal to zero, theV, = M,; if there arem, diagonal elements equal to zero, then
Ny = M — mg and the corresponding structural mo@g$ are eliminated. We then deduce
the set{Q!,..., QM. Finally, a Gram-Schmidt algorithm with respect to the inpduct
defined by matriXG, ] is applied to the sefP!, ..., PM Ql,...,Q%°} for constructing the
N? linearly independent vectodP?, ..., PNt pNitt  pNi+Nolin R sych that for
jandkin {1,..., N5}, we havePt” [G4] P! = 5. Vectors{PM** k =1,..., Ny} are
constructed by the recurrenB" ™% = 4, W,, in which

Nifth—1 _
W = Qf — Z (P] [G1]QF) P
=1

ap = (W [G1]Wy) ™
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Finally, we introduce thén, x N7) real matrix[P7] such that
[PP]=[P{...P" Qi ... Q7"]

It should be noted that iVy = 0, thenN; = N; and[P?] = [P].
IV. CONSTRUCTION OF THE REDUCED MODEL ADAPTED TO MF BAND B
The reduced model adapted to MF baRdis obtained? by introducing the new vari-

able 01 (w) = (f1,1(w),...,0; ys(w)) for the structure and the new variatig(w) =
(02.1(w),...,02 n,(w)) for the internal acoustic fluid, such that
Gi(w) = [P]81(w) 5 Ga(w) =[Pa]Ba(w) . (44)

From Egs. (29) and (44), we deduce that foralh B UB, {0;(w), 82(w)} € CN7 x €2
is the unique solution of the linear equation

[Ar(w)] + k[T ] iw[C] {91@] {U(W) T(W)]
= ) (45)
iw[C]T —[As(w)] 0s(w) 0
in which F(w) € CN7 is written as
F(w) =[P Fw) . (46)
and where
(A (@)] = [PPTT [A1()] [PY], [Ae(w)] =[BT [As(w)] [P2] (47)
(7] =[PP]T [J]1PY] = ([P]T M) ([PP]T TI2)T (48)
[c] =[P [C][P] (49)

From Egs. (27) and (44), we deduce that foxat €21, the displacement field of the structure
is written as

Zuk X)01k(w) (50)
in whichUy, (x) € C? is written as
Up(x) = Y [PPlarUal(x) (51)
a=1

From Egs. (35), (44) and (45), we deduce that foxafi 2,5, the pressure field in the internal
acoustic fluid is written as

w) =Y Pr(Xw) i pw) (52)
k=1
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inwhich P (x, w) = (P1(X,w), ..., Pys(x,w)) € CV7 is such that
Px,w) = w? p2 [C][A(w)] ' [Po]T ®(x) =k [PP]T Iy . (53)

Equations (45), (50) and (52) constitute the reduced matigited to MF band.
V. CONSTRUCTION OF DOMINANT EIGENSUBSPACES

Concerning the construction of the dominant eigensubspicte energy operator relative to
MF bandB for the structure on the one hand, and for the internal amflsid on the other
hand, we can use the indirect procedure in the frequency itoon@he procedure based on
the use of the MF solving method in the time domain presemé®kefs. 1 and 2. A detailed
analysis of these procedures cannot be reproduced herertNeless, in order to facilitate
the understanding of Sections VIl and VI, we summarizeotsethe main results of the MF
solving method in the time domain that we use for the examffesa = 1 anda = 2, the
problem defined by Egs. (36) to (38) is solved by calculatheyY, lowest eigenvalues of
the following generalized symmetric eigenvalue problem

(Gl [Sa] = [Ha] [Sa] [Ta] (54)
[Sa]” [Ha) [Sa] = [1a] (55)
[Sa)” [Ga [Sa] = [Ta] (56)

for which the subspace iteration algorith#?—1° is used. The dimensian,, of the subspace
used for iterations is such that, < m, < n, with m, = {2N,, N,+8}. Consequently,
[S.]is an(n, xm,) real matrix andT’, ] is a diagonal(m, x m, ) real matrix. We have

[A] =[Ta)™" (57)
[Pa] = [Sa] [Ta) ™/, (58)
where[P,] is the(n, xm, ) real matrix whose firsiV, columns are eigenvecto, . .., PNs

defining matrix[P,]. For each iteration of the subspace iteration algorithmownlg need to
calculate arin, x m,) real matrix(W,| = [E,] [X,], in which[X,] is a given(n, xm,) real

matrix. Lety(t) be the complex-valued function defined Brby xo () = e~™5% x(t) in

which x(t) = (1/27) [ €™ X(w) dw with

$) = 1 0? In() 15 () (59)

Therefore,x, is an LF signal whose band s Aw/2, Aw/2]. Then itis proved that[W,,]
can be calculated by
[Wa] = 27 Re {[Z.(0)]} (60)

in which [Z,(t)] is the solution of the following LF equations in the time domassociated
with the MF equations,

[Mo] [Ya(t)] + [?a] [Ya(t)] + (Kol [Ya(t)] = xo(t) [Xa] , t €] =00, 400 , (61)
Z [Mo] [Ya(=1)] , t €] —00,0[ , (62)

S
N
—~
~
=
_|_
S
N-
IS}
—~
~
=
_I_
S
N
IS}
—~
~
=
I
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in which symmetric(n, x n,) complex matrice$D,] and[K,] are written, fora = 1 and
a=2,as B
[D,] = [Dy(wB)] + 2iwp [M,] (63)

[Ko) = —wh [Ma] + iwp [Do(wp)] + [Ka(wp)] (64)

It should be noted that far = 2, [K2(wp)] = [K»]. Inaddition, ifthe constralnﬁQ Ydx =0
is not included in the discretization, then, foe= 2, Egs. (61) and (62) must be solved with
the constraint (see Section Il)

LT [Ya(t)] = [0] ; LT[Z(t)]=1[0] . (65)

The LF Eqgs. (61) and (62) are solved using an unconditiorsafliple implicit step-by-step
integration method. Concerning Eq. (61), time interfval oo, oo is replaced by the finite
interval] ¢y , tx| with the initial conditiongY, (¢;)] = [Y,(¢t;)] = [0]. Concerning Eq. (62),
time interval] — oo, 0] is replaced by the finite interval- ¢ , 0] with the initial conditions
[Za(=tr)] = [Za(=tF)] = [0O].

VI. TIME-STATIONARY RANDOM RESPONSE USING THE REDUCED MODE L

The structural-acoustic system is submitted to a timaestaty second-order centered random
wall pressure field{p(x,t),x € TI';,t € R} with values inR and we are interested in
the stationary response of the structural-acoustic sysiEme cross-correlation function of
random fielpis denoted a®, (x,y, 7) = E{p(X, t+7) p(y, t) } inwhichE is the mathematical
expectation and is such tHéat

R,(X,y,T) = / e S, (X, Y, w)dw (66)
R
in which S, (x, y, w) is the cross-spectral density function which is written as

SP(X'/ y7w) = |n(w)‘23p(xv y7w) . (67)

Let {F,(t),t € R} be the stochastic process defined by

Folt) == [ p068) m0)-ua () ds() (65)
ry
Therefore thénxn; ) matrix-valued spectral density functip$ (w)] of stationary stochastic
process = (Fy,...,[F,,) indexed byR with values inR™ is such that
[SF (w '_/r . (w)?sp(X. ¥, w) {N1(X)-Ua(X)} x {N1(y)Uar(y)} ds(X) ds(y)

(69)
From Eg. (50), we deduce that, for allandy fixed in 4, the (3 x 3) matrix-valued cross--
spectral density functiofSz(x, y, w)] of the R3-valued stochastic fielditi(x,t),x € Q;,t €
R}, such that

[Ra(x,y,7)] = [E{G(thJrT)ﬁ(yvt)T}:/Rei” [Sa(x, Yy, w)]dw (70)
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can be written as

N7 NP

[Sa(x.y,w)] =Y > [Sp, (@)t () U ()T, (71)

j=1k=1

in which[Sg (w)] is the matrix-valued spectral density functionfdY: -valued mean-square
stationary stochastic proces8, (¢),t € R}. From Eq. (52), we deduce that, for alndy
fixed inQ, the complex-valued cross-spectral density funciig(x, y, w) of the real-valued
stochastic field p(x, t), x € Qq,t € R}, such that

Ra(x.y,7) = E{p(x.t + 1) (Y. 1)} = / T Sp(%, Yy w) di (72)

can be written as

Ny Ny

5(X, Y, w ZZ Sp, (W)]jxPj (X, w) Pr(y,w) . (73)

j=1k=1

From Egs. (45) and (46), and using linear filtering of statignstochastic processés?!®,
we deduce that matrix-valued spectral density functigy (w)] (appearing in Egs. (71) and
(73)) is written as

[Se, (@)] = [T@)][PPTT [SF@)][PY]T @) (74)

in which (N7 x N{) symmetric complex matrik7 (w)] is written as
[T(W)] = ()] +k[T] - w?[C][A()] 7 [CTT) . (75)

VII. VALIDATION FOR A STRUCTURE HAVING AN MF BEHAVIOR COUPLE D
WITH AN INTERNAL ACOUSTIC FLUID HAVING AN LF BEHAVIOR IN MF
BAND B

This first example concerns an inhomogeneous structur@dgpar MF behavior in a given
narrow MF bandB, coupled with an internal acoustic cavity filled with a gad &aving an

LF behavior in MF bandB. We consider the MF time-stationary random response of this
structural-acoustic system in MF bam] the structure being excited by a time-stationary
random wall pressure field.

A. Description of the structural-acoustic system

The structural-acoustic system is referenced twanz,, 23) coordinate system. The struc-
ture is arectangular thin plate in bending mode, locatedaing®) x5, to which are attached
two point masses, three springs and five dashpots, as shawgure 2. Domairf); = T’y

of the plate (middle surface) is rectangular and the plaseniply supported, homogeneous
and isotropic, with constant thickness, width = 0.5 m, lengthL, = 1.0 m, surface-
mass density; = 40 kg/n?, total massu; = pi1Li1L, = 20 kg and constant damping
rate¢; = 0.002. We assume that the usual thin plate theory can be used. Tdkadis,
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Young’s modulus and Poisson’s ratio of the plate are suchthielowest eigenfrequency
of the associated conservative plate (without point maasessprings) is 5 Hz. To this
plate are attached (1) two point masses having a mass of 3&kdg &g located at points
(0.2,0.4,0) and(0.35, 0.75, 0) respectively, (2) three springs having the same stiffnesé c
ficientk = ey pu1 w2 With wrer = 2x550 rad/sg;, = 0.1, located at pointg0.221, 0.278, 0),
(0.332,0.537,0) and(0.443, 0.826, 0), and (3) five dashpots having the same damping coef-
ficientd = 2e4 p1 &1 wref With ey = 0.1, located at point§0.154, 0.165, 0), (0.145, 0.334, 0),
(0.465,0.373,0), (0.247,0.462, 0) and(0.268, 0.681, 0). This structure (the plate with point
masses, springs and dashpots) is coupled with an acousgiiig canstituted of a rectangular
room¢, (see Figure 2) bounded by five rigid walls lying along the p&r, = 0, 1 = L1,
xo = 0, 9 = Lo, x3 = L3 with Lz = 0.318 m. The sixth wall lying in plane:s = 0 is
not rigid and is constituted by the plate. This bounded rosrfilled with a gas having a
constant mass density = 1 kg/m?, speed of sound, = 330 m/s and dissipative coefficient
T = & /wes With & = 0.002. The total mass of the gas j& = paL1L1Ls = 0.159
kg. We consider the MF response of this structural-acowsststem in narrow MF band
B = 27 x[500,550] rad/s, i.e. on thé500,550] Hz frequency band. The excitation is
time-stationary random wall pressure fidlax, ¢), x € I'1, ¢ € R} introduced in Section VI,
for which the cross-spectral density function defined by &T) is such that for alb in B,
In(w)| = 1ands,(X,y,w) = (L1L2)"'60(z1 — y1) do(z2 — y2) Whered is the Dirac delta
function onR at point0. For the validation, we are interested in calculating thegrespectral
density functionSsyyd(w) relative to the structure and defined by

1
n(@)2[21] Jo,

and the power spectral density functiSg.oudw) relative to the acoustic cavity and defined
by

Sstrudw) = tr [Sa(X, X, w)]dx (76)

1 1
P3¢ (W) Q] Jo,

Sacoudw) = 5%, X, )] dX . (77)

B. Description of the finite dimension approximation

The finite dimension approximation is defined in Section lbn€erning the structure in

vacuo (plate with point masses, springs and dashpots)|yfami. . ., u,, is chosen as the

first n; modes of the associated conservative plate (without poasises and springs) whose

corresponding eigenfrequencies &1 < foae2 < ... < folaten,- FOra = (ag, o),

a1 > landay > 1, we haveu, (X) = (uq,1(X), Ua,2(X), Uq,3(X)) With ug 1 (X) = ©q,2(X) =
1T (O DY)

0 and
L) sin(=)

From a convergence study of the structural-acoustic respower the [0,700] Hz frequency
band, we deduced the value of which isn; = 407. We havefyae1 = 5 Hz and
fplate 407 = 1097 Hz. For alla, the normalization ofl,, is such that

Li Ls
/ / p1 |3 (T1, 22)|* dzy dosy = 1y
o Jo

The (ny xnq) matrices/M;], [D1] and[K] are independent of the frequency and are dense
due to the presence of the point masses, dashpots and spuagyx [G1] = L1Lo[11] IS

Uq,3(X) = 2 sin(
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diagonal] I; | being the(n; xn4) unity matrix. The lowest eigenfrequency of the associated
conservative structure in vacuo (plate with point massdssanngs) isf1,; = 7.74 Hz (to be
compared withfyiate 1 = 5 Hz). There are 255 modes of the structure in vacuo in frequenc
band|0, 700] Hz, 179 structural modes in frequency batd500] Hz and 20 structural modes
in narrow MF band500, 550] Hz. Then the rank of the first structural mode belonging to
frequency bandh00, 550] Hz is 180 and consequently, the structure has an MF behawior i
frequency band3.

Concerning the acoustic cavity, family, . . ., v, is chosen as the first, acoustic modes of
the acoustic cavity with rigid walls whose correspondirgeaifrequencies arg ; < fo 2 <

oo < fan,- FOrB = (B1, B, B3) With 81 + B2 + B3 # 0 andpy, B2, B3 > 0, we have

By ) COS(Bzmcz ) Cos(ﬁzmﬂz)
Ly Lo L3

$5(x) = 2v/2 cos(

These functions satisfy the constrafgt2 Yp(X,w) dx = 0. From a convergence study of the
structural-acoustic response over the [0,700] Hz frequéaad, we deduced the valuerof
which isn, = 19. For all 3, the normalization of/s is such that

L, Lo Ls
[ eetwator ax=p
0 0 0

The(noxng) matrice§ M|, [Do] and[ K| are independent of the frequency and are diagonal.
Matrix [G2] = L1LsLs|[ I ] is diagonal] I, | being the(ns x n2) unity matrix. The lowest
acoustic eigenfrequency of the acoustic cavity with rigadlsvis f> ; = 165 Hz. There are 16
acoustic modes in frequency bajid 700] Hz, 6 acoustic modes in frequency bgfd500]

Hz and 2 acoustic modes in narrow MF bas@l , 550] Hz. Then the rank of the first acoustic
mode in MF band500 , 550] Hz is 7 and consequently, the acoustic cavity has an LF behavi
in MF bandB.

Fora = (a1, a2), componentl, , of vectorIl, € R, defined by Eq. (32), is such that

2L1Ls
10y T2

HZa:

)

x {cos(aym) — 1} x {cos(asm) — 1} . (78)

Fora = (a1, ay) ands = (51, B2, B3), coupling(ny x ns) real matrix| C |, defined by Eq.
(34), is such that

[Clap = _\/ip;Lle X {1 _ Cosoiﬂiaﬁlf A1)} n 1 - Cosa{lﬂiaﬂll— 51)}}
1 —cos{m(as + B2)} = 1—cos{m(aa — f2)}
- { Qg + (2 + s — B } . (79)

Finally, from Eq. (69), we deduce thiir (w)]aa = |7(w)]? daar -
C. Constructing the reference solution on a broad frequencyand

The reference solution is constructed on[thgr00] Hz broad frequency band with a sampling
frequency stepr = 0.165 Hz. The power spectral density functiof! (w) and Sl (w)
corresponding to the reference solution and defined by EG®) gnd (77) are directly
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calculated in the frequency domain without using the redunedel. From Egs. (76), (77),
(27), (29) and (35), we deduce that

Setudw) = r{[TW)][Tw)]*} (80)
Sheoudw) = pglc% (tr{([V(w)] [T()]) (V@) (w)])}

+ 17 ([T(w)|TI)* ([T(w)]ﬂz)) : (81)
in which [T'(w)] is the symmetri¢n; x n1) complex matrix which is written as

-1

[T ()] = ([A1()] + £ [J] = w? [C][As(w)] T [C]T)

where[A;(w)], [ ], [A2(w)] and[ C'] are the matrices defined by Egs. (30), (32) with (78),
(33) and (79) respectively. In Eq. (8112 xn1) complex matriXV (w)] is defined by

[V(w)] = w?p2 [Az(w)] T [C]"

Figs.3 and 4 show the mappings— 10xlog,, (S (27v)) andv + 10xlog, (S {27v))
respectively over th& , 700] Hz broad frequency band.

D. Reference solution on the narrow MF band

The reference solution on narrow MF baid= [500, 550] Hz is constructed as explained
in Section VIl C using the frequency resolution = 0.166 Hz. The graphs of functions
v = 10x1og,o (SRl (27v)) andv +— 10 xlog,,(SKEL {27v)) (corresponding to Figures 3
and 4) of the reference solution on narrow MF bahdre used below (see the solid lines in
Figures 7 to 10) to evaluate the accuracy of the responséraoted using the reduced model.

E. Constructing the dominant eigensubspaces

For the structure, the dominant eigensubspace of the eopenator relative to ban# for
the structure in vacuo (related to matri, | defined by Eqgs. (41) to (43)) is constructed using
the method presented in Section V with = 50. Figure 5 shows the graph of the function
4 = 10xlog;o(M) for j € {1,2,...,50} in which A}, ..., A3° are the highest eigenvalues
of the generalized symmetric eigenvalue problem defineddyy(B6) fora = 1. There is

a strong decrease in the eigenvalues which means thers thegpossibility of constructing
an efficient reduced model for the structure. Figure 5 shbasthe orderV; of the reduced
model is abou®5 for bandB.

For the internal acoustic fluid, the dominant eigensubspédke energy operator relative
to bandB for the internal acoustic cavity with rigid walls (relatematrix[F-| defined by
Egs. (41) to (43)) is constructed using the method presant&gction V withN, = 17.
Figure 6 shows the graph of the functipr> 10 xlog,,(\3) for j € {1,2,...,17} in which
AL, ..., A17 are the highest eigenvalues of the generalized symmegenealue problem
defined by Eqg. (36) fon = 2. Figure 6 shows that the ordé#, of the reduced model is
about4 for bandB.

F. Reduced model adapted to the narrow MF band
In this section, we present a comparison of the referencsisonlconstructed in Section VII D
with the solution obtained by the reduced model construgsaal the results of Sections IV
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andVlandEgs. (76)and (77). Tworeduced models are coresidheiow. Forthefirstreduced
model, the parameters ah&® = N; = 25 (thenN, = 0) and N, = 4. Figure 7 is related
to the structure and shows the comparison between funetien 10 x log,,(S® (27v))
(solid line corresponding to the reference solution) amtfiony — 10x1og;,(Sstruc(27V))
(dashed line corresponding to the first reduced model) orowaF band[500 , 550] Hz.
Figure 8 is related to the internal acoustic fluid and showsctimparison between function
v = 10xlog,, (S {27v)) (solid line corresponding to the reference solution) amtfion

v — 10xlog;,(Sacoud 27v)) (dashed line corresponding to the first reduced model) aowar
MF band[500 , 550] Hz. Figure 7 shows that the comparison is very good for theegire, but
Figure 8 shows that this first reduced mod¥®}, (= 0) is not so good for the internal acoustic
fluid. The problem which appears in Figure 8 has been exglam8ections Il C and Il D;
to accelerate convergence of the reduced model for prediofithe acoustic pressure in the
internal acoustic fluid, it is necessary to takg > 0 (see below).

For the second reduced model, the parameterdvare: 25, Ny = 10 (then N7 = 35) and

N, = 4. Figure 9 is related to the structure and shows the compabstween function

v = 10xlog,(S®! (27v)) (solid line corresponding to the reference solution) amatfion

v — 10 x logy(Ssrud(27mv)) (dashed line corresponding to the second reduced model) on
narrow MF band500, 550] Hz. Figure 10 is related to the internal acoustic fluid andasho
the comparison between function— 10 x log,, (S {27v)) (solid line corresponding to
the reference solution) and function— 10xlog;,(Sacoud 277)) (dashed line corresponding
to the second reduced model) on narrow MF bgitd , 550] Hz. Figure 9 is quite similar to
Figure 7 and shows that the comparison is very good for thetstre and Figure 10 shows
that this second reduced modalf = 10) is good. Consequently, for this structural-acoustic
system whose structure has an MF behavior and whose intacoailstic fluid has an LF
behavior (MF-LF coupling), the reduced model developedeaati®n IV based on the use of
the structural vector basis constructed in Section Il Dalkdated.

VIII. VALIDATION FOR A STRUCTURE HAVING AN MF BEHAVIOR COUPL ED
WITH AN INTERNAL ACOUSTIC FLUID HAVING AN MF BEHAVIOR IN MF
BAND B

This second example concerns the inhomogeneous struatined in Section VII, having
an MF behavior in given narrow MF barf@, coupled with an internal acoustic cavity filled
with a gas and having an MF behavior in MF baBd We consider the MF time-stationary
random response of this structural-acoustic system in Mie 33 the structure being excited
by the time-stationary random wall pressure field used ini@e¥|l.

A. Description of the structural-acoustic system

We consider the structural-acoustic system defined in @edtil A for which acoustic
rectangular roonf2, is such that.; = 9.0 m (instead ofL.; = 0.318 m, see Figure 2). The
total mass of the gas is: = paL1L1L3 = 4.5 kg. We consider the MF response of this
structural-acoustic system in narrow MF baBd= [500,550] Hz. The excitation is the
time-stationary random wall pressure field defined in Sactitd A. For the validation, we
are interested in calculating the power spectral densitgtians defined by Eqgs. (76) and
(77).

B. Description of the finite dimension approximation

The finite dimension approximation of the structure in vaalate with point masses, springs
and dashpots) is defined in Section VII B. We haye= 407. There are 255 modes of the
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structure in vacuo in frequency baif@, 700] Hz, 179 structural modes in frequency band
[0, 500] Hz and 20 structural modes in narrow MF bda@0 , 550] Hz. Then the rank of the
first structural mode belonging to frequency baeD , 550] Hz is 180 and consequently, the
structure has an MF behavior in frequency bdhd

Concerning the acoustic cavity, we use the finite dimengipmaimation defined in Section
VII B for which the value ofn, has to be increased. From a convergence study of the
structural-acoustic response over the [0,700] Hz frequéaad, we deduced the valuerof
which isns = 353 (instead of 19). The lowest acoustic eigenfrequency of toaistic cavity
with rigid walls is f> 1 = 18.33 Hz. There are 289 acoustic modes in frequency Bandoo]

Hz, 128 acoustic modes in frequency bafd>00] Hz and 34 acoustic modes in narrow MF
band[500, 550] Hz. Then the rank of the first acoustic mode in MF baD , 550] Hz is
129 and consequently, the acoustic cavity has an MF behavidF bandB.

C. Constructing the reference solution on a broad frequencyand

The reference solution is constructed on[thgr00] Hz broad frequency band with a sampling
frequency stepr = 0.165 Hz. The power spectral density functiof$' (w) and SieL (w)
corresponding to the reference solution and defined by E@6) and (77) are calculated
directly in the frequency domain, using Egs. (80) and (8litheut using the reduced
model. Figures 11 and 12 show the mappings> 10 x log,,(S® (27v)) andv +

10 xlog (S (27v)) respectively over th§ , 700] Hz broad frequency band.

D. Reference solution on the narrow MF band

The reference solution on narrow MF baBd= [500, 550] Hz is constructed as explained
in Section VIII C using the frequency resolutiom = 0.166 Hz. The graphs of functions
v = 10 x log,(S®l (27v)) andv +— 10 x log,, (S (27v)) (corresponding to Figures
11 and 12) of the reference solution on narrow MF b&wd , 550] Hz are used below to
evaluate the accuracy of the response constructed usimgdbheed model (see the solid lines
in Figures 14 to 17).

E. Constructing the dominant eigensubspaces

For the structure, we use the dominant eigenspace calduheSzction VII E. For the internal
acoustic fluid, the dominant eigensubspace of the energyatgaelative to band3 for the
internal acoustic cavity with rigid walls (related to matf¥,| defined by Egs. (41) to (43))
is constructed using the method presented in Section V With= 50. Figure 13 shows the
graph of the function — 10xlog,,(M\3) for j € {1,2,...,50} inwhich A, ..., A3? are the

highest eigenvalues of the generalized symmetric eigaayaioblem defined by Eq. (36) for
a = 2. Figure 13 shows that the ordak of the reduced model is aboui for bandB.

F. Reduced model adapted to the narrow MF band

In this section, we present a comparison of the referenegignlconstructed in Section VIl
D with the solution obtained by the reduced model constdugseng the results of Sections IV
and VI and Egs. (76) and (77). As for the first example preskint&ection VII, two reduced
models are considered below. For the first reduced modegbatameters aryf =Ny =30
(thenNy = 0) and N, = 45. Figure 14 is related to the structure and shows the congraris
between functionv — 10 x log,, (S (27v)) (solid line corresponding to the reference
solution) and function — 10 x log,,(Ssiruc(277)) (dashed line corresponding to the first
reduced model) on narrow MF bafid0 , 550] Hz. Figure 15 is related to the internal acoustic
fluid and shows the comparison between functiors 10 x log,, (Sl (27v)) (solid line
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corresponding to the reference solution) and functior 10 x log;(Sacoud 277v)) (dashed
line corresponding to the first reduced model) on narrow Mida00 , 550] Hz. Figures 14
and 15 show that the comparison is good for both the struahualehe internal acoustic fluid.

For the second reduced model, the parametersvare 30, Ny = 10 (then N = 40) and

N, = 45. Figure 16 is related to the structure and shows the congralistween function

v 10xlog,,(S® (27v)) (solid line corresponding to the reference solution) amatfion

v — 10 x logy(Ssrud(27mv)) (dashed line corresponding to the second reduced model) on
narrow MF band500, 550] Hz. Figure 17 is related to the internal acoustic fluid andasho
the comparison between function— 10 x log,, (S {27v)) (solid line corresponding to

the reference solution) and function— 10 xlog,,(Sacoud 277)) (dashed line corresponding

to the second reduced model) on narrow MF bgid , 550] Hz. Figure 16 is quite similar to
Figure 14 and Figure 17 to Figure 15. This means that for anMeoupling, the reduced
model of the structure can be constructed wih= 0.

IX. CONCLUSIONS

A theoretical approach is presented for constructing aacediunodel in the MF range in
the area of structural acoustics for a general three-dirmealkanisotropic, inhomogeneous,
viscoelastic bounded structure with an arbitrary geometypled with an internal acous-
tic fluid (gas or liquid). The boundary value problem forntathin the frequency domain
and its variational formulation are presented. For a given band, the energy operator
of the structure in vacuo and the energy operator of thenateacoustic cavity with rigid
walls are positive-definite symmetric operators which haveountable set of decreasing
positive eigenvalues. The eigenfunctions correspondidpe highest eigenvalues (domi-
nant eigensubspace) of each energy operator constitufgaopaiate functional basis of the
corresponding admissible function space for the struauacefor the internal acoustic fluid.
For an MF structure (i.e. a structure having an MF behaviodpted with an MF internal
acoustic fluid (i.e. an internal acoustic fluid having an Mkdeor) in the MF band consid-
ered, these two functional bases allow a reduced model dftthetural-acoustic system to
be constructed using the Ritz-Galerkin method. If the MiEdtire is coupled with an LF
internal acoustic fluid, then it is more efficient to complite structural vector basis relative
to the MF band with a few LF structural modes in order to age¢deconvergence of the
solution for the internal acoustic cavity response in theldRd. A finite dimension approx-
imation of the continuous case is introduced in a generalextrfusing the finite element
method or not). For construction of the dominant eigensabspf each energy operator, an
efficient procedure based on the use of the subspace iteragbdhod is proposed. It does
not require explicit calculation of the energy operator. t¥Aé&n obtain an efficient method for
constructing a reduced model in the MF range: 1) an intrireiciced model is constructed
for general structural-acoustic systems and can be carsi@des a progress independently of
any computer time aspects; 2) the efficiency of such a redowstel in the MF range can
be very high with respect to any other techniques validatetiée MF range as soon as the
MF responses have to be calculated for a large number ofpteutteterministic and random
loads, particularly for random excitations; 3) the implerta¢ion of this method is easily
to peform in any usual finite element computer code. Finatycerning the structure, the
results presented can be extended straightforwardly twetste made of beams, plates and
shells. Analysis of the two examples (MF-LF coupling and MF-coupling) validates the
reduced model methodology proposed for the MF range.
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Geometrical configuration of the structural-acmusgstem.

FIG. 2. Rectangular thin plate with point masses, springs @dashpots, coupled with an
acoustic cavity constituted of a bounded rectangular rothed fivith a gas (air).

FIG. 3. Graph of functiow — 10xlog,, (S (27v)) corresponding to the reference solution
for the MF structure coupled with the LF internal acoustiodflu

FIG. 4. Graph of functionv — 10 x log,, (Sl (27v)) corresponding to the reference
solution for the LF internal acoustic fluid coupled with thé&Mtructure.

FIG. 5. Graph of functiorj — 10 xlog,,(\’) showing the distribution of eigenvalua$ of
the energy operator of the MF structure in vacuo.

FIG. 6. Graph of functiorj — 10 xlog,,(\}) showing the distribution of eigenvalua$ of
the energy operator of the LF internal acoustic cavity wigidrwalls.

FIG. 7. Reduced model of the dynamical response of the MFEtsirel coupled with the LF
internal acoustic fluid: comparison between functions 10 x log,,(S%f,(27v)) (reference
solution (solid line)) and function — 10 xlog,,(Ssirud27v)) (reduced model foN; = 25,
Ny = 0 andN, = 4 (dashed line)).

FIG. 8. Reduced model of the dynamical response of the LFnatecoustic fluid coupled
with the MF structure: comparison between functiors 10xlog;, (Sl (27v)) (reference
solution (solid line)) and function — 10x1log;(Sacoud 277)) (reduced model foN; = 25,
Ny = 0 andN; = 4 (dashed line)).

FIG. 9. Reduced model of the dynamical response of the MFEtsirel coupled with the LF
internal acoustic fluid: comparison between functions 10 x log,,(S%! (27v)) (reference
solution (solid line)) and function — 10 x1og;,(Ssirud(277)) (reduced model foN; = 25,
Ny = 10 and N, = 4 (dashed line)).

FIG. 10. Reduced model of the dynamical response of the ldfriat acoustic fluid coupled
with the MF structure: comparison between functiors 10xlog;, (Sl (27v)) (reference
solution (solid line)) and function — 10x1og;(Sacoud 27v)) (reduced model foN; = 25,
Ny = 10 and N, = 4 (dashed line)).

FIG. 11. Graph of functions ~ 10 x log,,(S® (27v)) corresponding to the reference
solution for the MF structure coupled with the MF internabastic fluid.

FIG. 12. Graph of function — 10 x log;,(S%ef {27v)) corresponding to the reference
solution for the MF internal acoustic fluid coupled with théMtructure.

FIG. 13. Graph of functioni — 10xlog,,()}) showing the distribution of eigenvalua$ of
the energy operator of the MF internal acoustic cavity widgiidrwalls.

FIG. 14. Reduced model of the dynamical response of the MiEtstre coupled with the MF
internal acoustic fluid: comparison between functions 10 x log,,(S%! (27v)) (reference
solution (solid line)) and function — 10 x1og;,(Sstrud(277)) (reduced model foN; = 30,
Ny = 0 and N, = 45 (dashed line)).

FIG. 15. Reduced model of the dynamical response of the Mifniat acoustic fluid coupled
with the MF structure: comparison between functiors 10xlog,, (Sl (27v)) (reference
solution (solid line)) and function — 10x1og;,(Sacoud 27v)) (reduced model foN; = 30,
Ny = 0 and N, = 45 (dashed line)).

J. Acoust. Soc. Anl06(6), 3362-3374 (1999). 21 Christian Soize



FIG. 16. Reduced model of the dynamical response of the Migtstre coupled with the MF
internal acoustic fluid: comparison between functions 10 x log,,(S%!,(27v)) (reference
solution (solid line)) and function — 10 xlog,,(Ssirud27v)) (reduced model foN; = 30,
Ny = 10 and N, = 45 (dashed line)).

FIG. 17. Reduced model of the dynamical response of the Mifniat acoustic fluid coupled
with the MF structure: comparison between functions 10xlog,, (Sl {27v)) (reference
solution (solid line)) and function — 10x1og;(Sacoud 27v)) (reduced model foN; = 30,
Ny = 10 and N, = 45 (dashed line)).
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