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REDUCED MODELS FOR STRUCTURES IN THE MEDIUM-FREQUENCY
RANGE COUPLED WITH INTERNAL ACOUSTIC CAVITIES

Christian Soize

Structural Dynamics and Coupled Systems Department, ONERA, BP 72, F-92322 Chatillon
Cedex, France

ABSTRACT

This paper concerns the development of a method adapted for constructing reduced models in
the medium-frequency range to a general three-dimensionaldissipative structure consisting
of an anisotropic, inhomogeneous, viscoelastic bounded medium coupled with an internal
acoustic cavity. The reduced models are obtained using the Ritz-Galerkin method for which
the projection subspace corresponds to the dominant eigensubspace of the energy operator
of the structure in the medium-frequency band of analysis. Two fundamental cases are
considered: 1) both the structure and the internal acousticcavity have a medium-frequency
behavior in the frequency band of analysis; 2) the structurehas a medium-frequency behavior
in the frequency band of analysis while the internal acoustic cavity has a low-frequency
behavior.

PACS numbers: 43.40

INTRODUCTION

This paper is the continuation of two previous papers published by the author, concerning
the development of a method for constructing reduced modelsin the medium-frequency
(MF) range for general structural dynamics systems1 (structures in a vacuum) and external
structural-acoustic systems2 (structure coupled with an external acoustic fluid (gas or liquid)).

For a mechanical system such as a structure in a vacuum or a structural-acoustic system, its
response in the frequency domain (its “behavior”) depends on the frequency range defined as
follows (see Ref. 3).

The low-frequency range (LF) can be defined as the modal domain for which the associated
conservative system has a small number of modes; there are nomodal overlaps due to the
dissipation effects. In this LF range, the finite element method can be used for spatial
discretization and the dynamic analysis can be performed inthe frequency domain using
reduced models which are very efficient and popular tools in constructing the solution. Such
reduced models correspond to a Ritz-Galerkin reduction of the dynamical model using the
normal modes corresponding to the lowest eigenfrequenciesof the associated conservative
system. The efficiency of this kind of reduced model is due to the small number of generalized
dynamical degrees of freedom used in the representation andin addition, is obtained by solving
a well-stated generalized symmetric eigenvalue problem for which only the first eigenvalues
and the corresponding eigenfunctions have to be calculated. In addition when such a reduced
model is obtained, responses to any deterministic or randomexcitations can be calculated for
no significant additional numerical cost.

The high-frequency range (HF) can be defined as the frequencyband for which there is a
uniform high modal density; there is a uniform modal overlapdue to the high modal density
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and the dissipation effects. For this HF range, the finite element method cannot be used for
spatial discretization and the dynamic analysis has to be performed using the wave approach,
the global statistical energy approach (such as the very popular Statistical Energy Analysis)
and the local energy approach (such as the power flow analysisbased on continuous energy
equations).

For complex systems such as general three-dimensional structures, an intermediate frequency
range called medium-frequency range (MF) appears. The modal density exhibits large varia-
tions over the band. In addition, if there is a structural complexity related to the presence of
fuzzy substructures, mechanical models have to be adapted.This MF range cannot be ana-
lyzed with the tools used for the LF and HF ranges. A complex structure is then considered as
a master structure coupled with all the dynamical subsystems (fuzzy substructures). In the MF
range, probabilistic models have to be used to model the effects of fuzzy substructures on the
master structure and the finite element method can only be used for spatial discretization of the
master structure. In addition, random uncertainties have to be modeled in the master structure
in order to increase robustness of response predictions. Concerning dynamical analysis of the
master structure, the modal method which is very efficient inthe LF range for constructing
reduced models cannot be used in the MF range for general three-dimensional structures. It
should be noted that it is essential to have intrisinc reduced models in the MF range (as we
have in the LF range) for calculating the MF responses to any multiple loads constituted of
deterministic and random excitations. This is the reason why a reduced model method in the
MF range has been recently proposed for general dissipativestructural-dynamics systems1;2.
In this method, the reduced model is constructed using the Ritz-Galerkin projection of the
variational formulation of the boundary value problem on the dominant eigensubspace of
the energy operator of the structure over the medium-frequency band of analysis. Similarly
to the LF reduced models, the efficiency of the proposed MF reduced model is due to the
small number of generalized dynamical degrees of freedom used in the representation and in
addition, is obtained by solving a well-stated generalizedsymmetric eigenvalue problem for
which only the first eigenvalues and the corresponding eigenfunctions of the energy operator
related to the MF band have to be calculated. This means that the first normal modes of the LF
range are replaced by the first eigenfunctions of the energy operator in the MF range. Finally,
it should be noted that the efficiency of such a reduced model approach in the MF range can
be very high with respect to any direct approaches validatedin the MF range as soon as the
MF responses have to be calculated for a large number of multiple deterministic and random
loads, particularly for random excitations.

In this paper, we apply and adapt this method for constructing a reduced model in the
MF range to a general three-dimensional dissipative structure consisting of an anisotropic,
inhomogeneous, viscoelastic bounded medium coupled with an internal acoustic cavity filled
with a gas or a liquid. Two fundamental cases are considered:1) both the structure and
the internal acoustic cavity have a medium-frequency “behavior” in the frequency band of
analysis; 2) the structure has a medium-frequency “behavior” in the frequency band of analysis
while the internal acoustic cavity has a low-frequency “behavior”.
In Section I, we present the boundary value problem to be solved in the frequency domain
and we recall its variational formulation. In Section II, weintroduce a finite dimension
approximation. Section III concerns the construction of a vector basis for the reduced model
of the structure and the internal acoustic cavity in the MF range. We will see the role played
by the low-frequency structural modes on the acoustic cavity response in the MF range. As a
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consequence, we deduce a structural vector basis adapted tothe MF range when the structure
is coupled with an internal acoustic cavity. Section IV is devoted to the construction of the
reduced model while Section V deals with the construction ofthe dominant eigensubspaces.
In Section VI, we present the time-stationary random response using the reduced model.
Finally, we present a validation for the two fundamental cases introduced above.

I. BOUNDARY VALUE PROBLEM AND ITS VARIATIONAL FORMULATION

A. Definition of the boundary value problem

We consider linear vibrations (formulated in the frequencydomain!) of a three-dimensional
structural-acoustic system around a static equilibrium configuration considered as a natural
state at rest (see Fig. 1). Let
1 be the three-dimensional bounded domain occupied by the
structure and made of viscoelastic material. Let�
1 = �0[�1[�2 be its boundary andn1 =(n1;1; n1;2; n1;3) be its outward unit normal. Letu(x; !) = (u1(x; !); u2(x; !); u3(x; !)) be
the displacement field in each pointx = (x1; x2; x3) in Cartesian coordinates and at frequency!. On part�0 of the boundary, the structure is fixed(u = 0)whereas on part�1[�2 it is free.
The structure is coupled with an internal dissipative acoustic fluid (gas or liquid) occupying
the three-dimensional bounded domain
2 whose boundary�
2 is the coupling interface�2.
The outward unit normal to�
2 is denoted asn2 = (n2;1; n2;2; n2;3) and we haven2 = �n1.
We denote the pressure field in
2 asp(x; !). We introduce a narrow MF bandB such thatB = [!B ��!=2 ; !B +�!=2 ℄ ; (1)
in which !B is the center frequency and�! is the bandwidth such that�!=!B � 1 and!B > �!=2. With B we associate intervaleB = [�!B ��!=2 ;�!B +�!=2 ℄ : (2)
The structure is submitted to a square integrable surface force fieldx 7! �(!) g(x; !) from�1
into C3, in which�(!) is a function fromR intoC, such that�(!) = 0 if ! is not inB [ eB,
continuous onB, verifying j�(�!)j = j�(!)j and such thatj�(!)j 6= 0 for all ! in B.

For this structural-acoustic system, we use the model and the boundary value problem de-
veloped for the MF range in Chapter XIV of Ref. 3. Introducingcomponents(g1; g2; g3)
of g, the boundary value problem for the structure is written as follows in terms ofu (the
convention for the Fourier transform beingv(!) = RR e�i!tv(t) dt),�!2�1 ui � �ij;j = 0 in 
1 ; (3)�ijn1;j = � gi on �1 ; (4)�ijn1;j = �p n1;j on �2 ; (5)ui = 0 on �0 ; (6)
in which i = 1; 2; 3, where the summation over indexj is used, and where�1(x) > 0 is the
mass density of the structure and�ij;j =P3j=1 ��ij=�xj. For a linear viscoelastic material,
stress tensor�ij is written as�ij = aijkh(x; !) "kh(u) + bijkh(x; !) "kh(i! u) ; (7)
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in which the summation over indicesk andh is used and where"kh(u) = (�uk=�xh +�uh=�xk)=2 is the linearized strain tensor. Coefficientsaijkh(x; !) andbijkh(x; !) are real,
depend onx and!, verify the usual properties of symmetry and positiveness3�6 and are such
thataijkh(x;�!) = aijkh(x; !) andbijkh(x;�!) = bijkh(x; !).
Concerning the internal dissipative acoustic fluid, the pressure in the fluid is written (see
Chapter XIV of Ref. 3) asp(x; !) = �i! �2  (x; !)� ��2(u) in 
2 [ �2 ; (8)
in which� is a positive constant such that� = �2 
22j
2j ; j
2j = Z
2 dx ; (9)
where�2 > 0 and
2 are the constant mass density and the constant speed of soundof the
acoustic fluid at equilibrium and where�2(u) is defined by�2(u) = Z�2u(x; !)�n2(x) ds(x) : (10)
The new unknown field (x; !) is related to the velocity fieldv(x; !)of the dissipative acoustic
fluid by the equationv(x; !) = (1 + i! �)r (x; !) in which � is a constant coefficient3
related to the viscosity of the acoustic fluid (� may depend on frequency!). The boundary
value problem for the internal acoustic fluid is written as follows in terms of field �!2 �2
22  (x; !)� i! � �2r2 (x; !)� �2r2 (x; !) = � i!�
22 �2(u) in 
2 ; (11)�2(1+i!�) � �n2 = i! �2 u � n2 on �2 ; (12)Z
2  (x; !) dx = 0 : (13)
The boundary value problem of the structural-acoustic problem is defined by Eqs. (3) to (13).

B. Variational formulation

Let V1 be the space of admissible displacement fieldsu defined on
1 with values inC3 such
thatu = 0 on�0. Let V2 be the space of admissible fields defined on
2 with values inC
such that

R
2  (x) dx = 0. Below,z denotes the conjugate of the complex numberz. The
variational formulation of the boundary value problem inu and defined by Eqs. (3) to (13)
is obtained using the test-function method and is expressedas follows (see Chapters II and
XIV of Ref. 3). For all! in B [ eB, find fu(!) ;  (!)g in V1�V2 such that, for allfv ; �g inV1�V2, a1(u; v ;!) + � j(u; v) + i! 
( ; v) = f(v ;!) ; (14)i! 
(�; u)� a2( ; � ;!) = 0 ; (15)
in whichf(v ;!) is defined byf(v ;!) = �(!) Z�1 g(x; !)�v(x)ds(x) ; (16)
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and wherea1(u; v ;!) is written asa1(u; v ;!) = �!2m1(u; v) + i! d1(u; v ;!) + k1(u; v ;!) ; (17)m1(u; v) = Z
1 �1(x) u(x; !)�v(x)dx ; (18)d1(u; v ;!) = Z
1 bijkh(x; !) "kh(u) "ij(v) dx ; (19)k1(u; v ;!) = Z
1 aijkh(x; !) "kh(u) "ij(v) dx ; (20)
in which the summation over indicesi, j, k andh is used. It is assumed thatd1(u; v ;!) andk1(u; v ;!) are continuous functions on bandB with respect to!. In Eqs. (14) and (15), we
have 
( ; v) = �2 Z�2  (x; !) n2(x)�v(x)ds(x) ; (21)j(u; v) = �2(u)�2(v) ; (22)a2( ; � ;!) = �!2m2( ; �) + i! d2( ; � ;!) + k2( ; �) ; (23)m2( ; �) = �2
22 Z
2  (x; !)�(x) dx ; (24)d2( ; � ;!) = �(!) k2( ; �) : (25)k2( ; �) = �2 Z
2r (x; !) �r�(x) dx : (26)
For all ! in B [ eB, the problem defined by Eqs. (14) and (15) has a unique solutionfu(!) ;  (!)g in V1�V2.
II. FINITE DIMENSION APPROXIMATION

The finite dimension approximation of the problem defined by Eqs. (14) and (15) is obtained
by using the Ritz-Galerkin method. We then consider a complete family of independentR3-valued functionsfu�g��1 in admissible spaceV1 and a complete family of independent
real-valued functionsf �g��1 in admissible spaceV2. We consider 1) a subspaceV1;n1 � V1
of finite dimensionn1 � 1 spanned by the familyfu1; : : : ; un1g and 2) a subspaceV2;n2 � V2
of finite dimensionn2 � 1 spanned by the familyf 1; : : : ;  n2g. In practice, each family
can be either a finite element basis7;8 associated with a finite element mesh of domain
1 forfu�g� and domain
2 for f �g�, or, for particular cases corresponding to simple shapes of
geometry, any functional basis constructed in the context of an analytical approach such as a
sequence of structural normal modes9;10 of the structure in vacuo and a sequence of acoustic
modes9;11 of the internal acoustic cavity with a rigid wall. Letfu(!);  (!)g 2 V1�V2 be
the solution of Eqs. (14) and (15). Its projection onV1;n1�V2;n2 is written aseu(x; !) = n1X�=1 q1;�(!) u�(x) : (27)
J. Acoust. Soc. Am., 106(6), 3362-3374 (1999). 5 Christian Soize



e (x; !) = n2X�=1 q2;�(!) �(x) : (28)
From Eqs. (14) and (15), we deduce thatq1(!) = (q1;1(!); : : : ; q1;n1(!)) 2 Cn1 and
q2(!) = (q2;1(!); : : : ; q2;n2(!)) 2 Cn2 is the unique solution of the linear equation324 [A1(!)℄ + � [ J ℄ i![C ℄i! [C ℄T �[A2(!)℄35 24q1(!)

q2(!)35 = 24�(!)F(!)0 35 : (29)
In Eq. (29),[A1(!)℄ is an(n1�n1) symmetric complex matrix (invertible for all! in B [ eB)
which is written as [A1(!)℄ = �!2 [M1℄ + i! [D1(!)℄ + [K1(!)℄ ; (30)
in which [M1℄, [D1(!)℄ and [K1(!)℄ are positive-definite symmetric(n1�n1) real matri-
ces such that[M1℄��0 = m1(u�0 ; u�), [D1(!)℄��0 = d1(u�0 ; u� ;!) and [K1(!)℄��0 =k1(u�0 ; u� ;!). VectorF(!) = (F1(!); : : : ; Fn1(!)) 2 Cn1 is such that�(!)F�(!) = f(u� ;!) : (31)
Matrix [ J ℄ is an(n1�n1) symmetric real matrix which can be written as[ J ℄ = P2PT2 ;
in whichP2 = (�2;1; : : : ;�2;n1) 2 Rn1 is such that�2;� = �2(u�) : (32)
In Eq. (29),[A2(!)℄ is an(n2�n2) symmetric complex matrix (invertible for all real! inB [ eB) which is written as[A2(!)℄ = �!2 [M2℄ + i! [D2(!)℄ + [K2℄ ; (33)
in which [M2℄, [D2(!)℄ and[K2℄ are positive-definite symmetric(n2�n2) real matrices such
that [M2℄��0 = m2( �0 ;  �), [D2(!)℄ = �(!) [K2℄ and[K2℄��0 = k2( �0 ;  �). It should
be noted that[K2℄ is positive definite due to the constraint

R
2  dx = 0 which is included
in spaceV2. In the context of use of the finite element method, if this constraint is not
included in the construction off �g� , then[K2℄ is only positive and the constraintLTq2 = 0
corresponding to the finite element discretization of

R
2  dx = 0 has to be added to Eq. (29).
Finally, in Eq. (29),[C ℄ is an(n1�n2) real matrix such that[C ℄�� = 
( �; u�) : (34)
The approximation of pressure fieldp defined by Eq. (8) is written asep(x; !)=�i!�2 e (x; !)���2(eu), i.e., ep(x; !) = �i! �2	(x)T q2(!)� �PT2 q1(!) ; (35)
in which	(x) = ( 1(x); : : : ;  n2(x)) 2 Rn2 .
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III. CONSTRUCTION OF A VECTOR BASIS FOR THE REDUCED MODEL

A. Vector bases adapted to MF bandB for the structure in vacuo and the internal
acoustic cavity with rigid wall

Two vector bases adapted to MF bandB can be constructed for the structure in vacuo and
the internal acoustic cavity with rigid wall by applying themethod presented in Refs. 1 and
2 (for the details, we refer the reader to these references).These two vector bases correspond
to the dominant eigensubspaces of the energy operators relative to bandB for the structure
in vacuo and the internal acoustic fluid with rigid wall. In the context of the finite dimension
approximation introduced in Section II, the procedure can be summarized as follows. Leta = 1 or a = 2 be the index related to the structure or the internal acoustic fluid. LetNa � na be the order of the reduced model related to the structure(a = 1) or the internal
acoustic fluid(a = 2). Let [Pa℄ be the(na�Na) real matrix whose columns are theNa
eigenvectorsfP1a; : : : ;PNaa g corresponding to theNa highest eigenvalues�1a � : : : � �Naa
of the generalized symmetric eigenvalue problem[Ha℄ [Pa℄ = [Ga℄ [Pa℄ [�a℄ ; (36)
such that [Pa℄T [Ga℄ [Pa℄ = [Ia℄ ; (37)[Pa℄T [Ha℄ [Pa℄ = [�a℄ ; (38)
in which [Ia℄ is the (Na�Na) identity matrix, [�a℄ is the (Na�Na) diagonal matrix of
eigenvalues�1a; : : : ; �Naa and where[Ga℄ and[Ha℄ are positive-definite symmetric(na�na)
real matrices such that[G1℄��0 = Z
1 u�0 � u� dx ; [G2℄��0 = Z
2  �0 �  � dx ; (39)[Ha℄ = [Ga℄ [Ea℄ [Ga℄ : (40)
In Eq. (40), positive-definite symmetric(na�na) real matrix[Ea℄ is the projection of the
energy operator of the structure(a = 1) or the internal acoustic fluid(a = 2), such that[Ea℄ = ZB[ea(!)℄ d! ; (41)[ea(!)℄ = 1�!2 j�(!)j2<e f[Ta(!)℄� [Ma℄ [Ta(!)℄g ; (42)[Ta(!)℄ = [Aa(!)℄�1 ; [Ta(!)℄� = [Ta(!)℄T = [Ta(!)℄ ; (43)
in which [Aa(!)℄ is defined by Eq. (30) fora = 1 and Eq. (33) fora = 2.

B. Remark concerning the acoustic vector basis relative to MF bandB
It can easily be proved that for the internal acoustic fluid(a = 2), eigenvectorsfP12; : : : ;PN22 g,
associated with theN2 highest eigenvalues of generalized symmetric eigenvalue problem[H2℄ [P2℄ = [G2℄ [P2℄ [�2℄ relative to MF bandB, coincide with the finite dimension ap-
proximation of the acoustic modes of the internal acoustic cavity with rigid wall, whose
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eigenfrequencies are in MF bandB. This particular property is due to the fact that two
conditions are simultaneously satisfied: mass density�2 of the acoustic fluid is a constant
and damping sesquilinear formd2( ; � ;!) = �(!) k2( ; �) is diagonalized by the acoustic
modes. If either of these two conditions is not satisfied, then this particular property does not
hold; generally, these conditions are not satisfied for structures in the MF range. It should
be noted that, in the context of a finite element model of the internal acoustic fluid, if the
rank of the acoustic modes belonging to MF bandB is high (case of MF behavior of the
internal acoustic fluid), then the proposed method is an efficient tool for computation of these
acoustic modes. Conversely, if the rank of the acoustic modes belonging to MF bandB is
low (case of LF behavior of the internal acoustic fluid), thenthe usual numerical methods for
computation of the acoustic modes (such as subspace iteration or Lanczos methods12�15) are
more efficient.

C. Role played by the low-frequency structural modes on the acoustic cavity response in
MF band B
In this section, in order to analyze this role, we introduce particular assumptions for simplifying
the explanations. Let us assume thatf �g� corresponds to the acoustic modes verifyingk2( �; �) = !22;�m2( �; �) ; 8� 2 V2 ;
with the normalizationm2( �;  �) = 1 and such that[D2(!)℄��0 = 2 �2;� !2;� Æ��0 in
which�2;� > 0 is an acoustic damping rate depending on� but independent of!. We choosefu�g� = fbu�g� as the structural modes taking into account the additional stiffness term� j(u; v). Consequently, the spectral problem is written asbk1(bu�; v) = b!21;�m1(bu�; v) ; 8v 2 V1 ;
in whichbk1(u; v) = k1(u; v ; 0) + � j(u; v). The normalization is such thatm1(bu�;bu�) = 1
and it is assumed that[D1(!)℄��0 = 2 b�1;� b!1;� Æ��0 whereb�1;� > 0 is a structural damping
rate depending on� but independent of!. From Eqs. (29) to (34), we deduce thatq2(!) is
the solution of the linear matrix equation[A2(!)℄ q2(!) = F2(!) ;
in whichF2(!) is a given vector inCn2 and[A2(!)℄ is an(n2�n2) symmetric complex matrix
which can be written as[A2(!)℄ = [AF2 (!)℄+ [AS2 (!)℄ where, for all� and�0 in f1; : : : ; n2g,[AF2 (!)℄��0 = (�!2 + 2 i! !2;� �2;� + !22;�) Æ��0 ;[AS2 (!)℄��0 = � n1X�=1 !2C�� C��0�!2 + 2 i! b!1;� b�1;� + b!21;� :
Let us consider the MF response of the acoustic cavity due to an acoustic mode � whose
eigenfrequency is!2;� . Consequently,! and!2;� belong to MF bandB. Let us investi-
gate the contribution of the firstM low-frequency structural modes (whose eigenfrequenciesb!1;1; : : : ; b!1;M belong to the low-frequency range) to the acoustic mode � whose eigenfre-
quency is!2;� belonging to MF bandB. We then have0 < b!1;1 � : : : � b!1;M � ! 2 B ;
J. Acoust. Soc. Am., 106(6), 3362-3374 (1999). 8 Christian Soize



and therefore, the contribution in[A2(!)℄�� of structural modebu� whose eigenfrequencyb!1;� is such thatb!1;� � ! 2 B, is equal to�!2C2���!2 + 2 i! b!1;� b�1;� + b!21;� ' C2�� :
This positive termC2�� contributes to increase the value of the acoustic eigenfrequency!2;�
because generalized stiffness term!22;b in [A2(!)℄�� is increasing of positive termC2�� for
each structural modebu� such thatb!1;� � ! 2 B. Consequently, the rate of convergence of
the internal acoustic MF response can be increased by “adding” the lowest structural modesfbu1; : : : ;buMg (or equivalently the lowest structural modesfu1; : : : ; uMg of the structure in
vacuo) to vectorsfP11; : : : ;PN11 g adapted to the prediction of the structural response in MF
bandB.

D. Structural vector basis adapted to MF bandB for prediction of the internal acoustic
response in MF bandB
Taking into account the conclusion of Section III.C, MF bandB being fixed, we consider
eigenvectorsfP11; : : : ;PN11 g introduced in Section III.A, such that (see Eq. (37)),

Pk1T [G1℄Pj1 = Æjk ; j and k in f1; : : : ; N1g ;
and we consider theN0 structural modesfQ11; : : : ;QN01 g corresponding to the lowest struc-
tural eigenfrequencies0 < !1;1 � : : : � !1;N0 such that, for all� in f1; : : : ; N0g,[K1(0)℄Q�1 = !21;� [M1℄Q�1 :
We assume that NS1 = N1 +N0 < n1 ;
and that vectorsfP11; : : : ;PN11 ;Q11; : : : ;QN01 g constitute a set of linearly independent vectors
in Rn1 . In practice,M structural modesfQ�11 ; : : : ;Q�M1 g are considered, the(n1�(N1+M)) real matrix [X ℄ = [P11 : : :PN11 Q

�11 : : :Q�M1 ℄ is constructed and finally, the[Q ℄ [R ℄
factorization of matrix[X ℄ is computed in which[Q ℄ is an(n1�n1) orthogonal matrix and[R ℄ is an(n1�(N1+M)) real upper triangular matrix. If none of the diagonal elements of[R ℄ is equal to zero, thenN0 = M ; if there arem0 diagonal elements equal to zero, thenN0 = M �m0 and the corresponding structural modesQ�j1 are eliminated. We then deduce
the setfQ11; : : : ;QN01 g. Finally, a Gram-Schmidt algorithm with respect to the inner product
defined by matrix[G1℄ is applied to the setfP11; : : : ;PN11 ;Q11; : : : ;QN01 g for constructing theNS1 linearly independent vectorsfP11; : : : ;PN11 ;PN1+11 ; : : : ;PN1+N01 g in Rn1 , such that forj andk in f1; : : : ; NS1 g, we havePk1T [G1℄Pj1 = Æjk. VectorsfPN1+k1 ; k = 1; : : : ; N0g are
constructed by the recurrencePN1+k1 = ak Wk in which

Wk = Qk1 � N1+k�1Xj=1 (Pj1T [G1℄Qk1)Pj1 ;ak = (WTk [G1℄Wk)�1 :
J. Acoust. Soc. Am., 106(6), 3362-3374 (1999). 9 Christian Soize



Finally, we introduce the(n1�NS1 ) real matrix[PS1 ℄ such that[PS1 ℄ = [P11 : : : PN11 Q11 : : : QN01 ℄ :
It should be noted that ifN0 = 0, thenNS1 = N1 and[PS1 ℄ = [P1℄.
IV. CONSTRUCTION OF THE REDUCED MODEL ADAPTED TO MF BAND B
The reduced model adapted to MF bandB is obtained1;2 by introducing the new vari-
able �1(!) = (�1;1(!); : : : ; �1;NS1 (!)) for the structure and the new variable�2(!) =(�2;1(!); : : : ; �2;N2(!)) for the internal acoustic fluid, such that

q1(!) = [PS1 ℄ �1(!) ; q2(!) = [P2℄ �2(!) : (44)
From Eqs. (29) and (44), we deduce that for all! in B [ eB, f�1(!); �2(!)g 2 CNS1 � CN2
is the unique solution of the linear equation24 [A1(!)℄ + � [J ℄ i![ C ℄i! [ C ℄T �[A2(!)℄35 24�1(!)�2(!)35 = 24�(!)F(!)0 35 ; (45)
in whichF(!) 2 CNS1 is written asF(!) = [PS1 ℄T F(!) ; (46)
and where[A1(!)℄ = [PS1 ℄T [A1(!)℄ [PS1 ℄ ; [A2(!)℄ = [P2℄T [A2(!)℄ [P2℄ ; (47)[J ℄ = [PS1 ℄T [ J ℄ [PS1 ℄ = ([PS1 ℄T P2) ([PS1 ℄T P2)T ; (48)[ C ℄ = [PS1 ℄T [C ℄ [P2℄ : (49)
From Eqs. (27) and (44), we deduce that for allx in 
1, the displacement field of the structure
is written as eu(x; !) = NS1Xk=1Uk(x) �1;k(!) ; (50)
in whichUk(x) 2 C3 is written asUk(x) = n1X�=1[PS1 ℄�k u�(x) : (51)
From Eqs. (35), (44) and (45), we deduce that for allx in 
2, the pressure field in the internal
acoustic fluid is written as ep(x; !) = NS1Xk=1Pk(x; !) �1;k(!) ; (52)
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in whichP(x; !) = (P1(x; !); : : : ;PNS1 (x; !)) 2 CNS1 is such thatP(x; !) = !2 �2 [ C ℄ [A2(!)℄�1 [P2℄T 	(x)� � [PS1 ℄T P2 : (53)
Equations (45), (50) and (52) constitute the reduced model adapted to MF bandB.

V. CONSTRUCTION OF DOMINANT EIGENSUBSPACES

Concerning the construction of the dominant eigensubspaceof the energy operator relative to
MF bandB for the structure on the one hand, and for the internal acoustic fluid on the other
hand, we can use the indirect procedure in the frequency domain or the procedure based on
the use of the MF solving method in the time domain presented in Refs. 1 and 2. A detailed
analysis of these procedures cannot be reproduced here. Nevertheless, in order to facilitate
the understanding of Sections VII and VIII, we summarize below the main results of the MF
solving method in the time domain that we use for the examples. Fora = 1 anda = 2, the
problem defined by Eqs. (36) to (38) is solved by calculating theNa lowest eigenvalues of
the following generalized symmetric eigenvalue problem[Ga℄ [Sa℄ = [Ha℄ [Sa℄ [�a℄ ; (54)[Sa℄T [Ha℄ [Sa℄ = [Ia℄ ; (55)[Sa℄T [Ga℄ [Sa℄ = [�a℄ ; (56)
for which the subspace iteration algorithm1;12�15 is used. The dimensionma of the subspace
used for iterations is such thatNa < ma � na with ma = f2Na ; Na+8g. Consequently,[Sa℄ is an(na�ma) real matrix and[�a℄ is a diagonal(ma�ma) real matrix. We have[e�a℄ = [�a℄�1 ; (57)[ ePa℄ = [Sa℄ [�a℄�1=2 ; (58)
where[ ePa℄ is the(na�ma) real matrix whose firstNa columns are eigenvectorsP1a; : : : ;PNaa
defining matrix[Pa℄. For each iteration of the subspace iteration algorithm, weonly need to
calculate an(na�ma) real matrix[Wa℄ = [Ea℄ [Xa℄, in which [Xa℄ is a given(na�ma) real
matrix. Let�0(t) be the complex-valued function defined onR by �0(t) = e�i!Bt �(t) in
which�(t) = (1=2�) RB ei!t b�(!) d! withb�(!) = 1� !2 j�(!)j21B(!) : (59)
Therefore,�0 is an LF signal whose band is[��!=2 ;�!=2 ℄. Then it is proved1 that [Wa℄
can be calculated by [Wa℄ = 2�<e f[Za(0)℄g ; (60)
in which [Za(t)℄ is the solution of the following LF equations in the time domain associated
with the MF equations,[Ma℄ [ �Ya(t)℄ + [ eDa℄ [ _Ya(t)℄ + [ eKa℄ [Ya(t)℄ = �0(t) [Xa℄ ; t 2℄�1 ;+1[ ; (61)[Ma℄ [ �Za(t)℄ + [ eDa℄ [ _Za(t)℄ + [ eKa℄ [Za(t)℄ = [Ma℄ [Ya(�t)℄ ; t 2℄�1 ; 0 [ ; (62)
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in which symmetric(na�na) complex matrices[ eDa℄ and [ eKa℄ are written, fora = 1 anda = 2, as [ eDa℄ = [Da(!B)℄ + 2 i !B [Ma℄ ; (63)[ eKa℄ = �!2B [Ma℄ + i !B [Da(!B)℄ + [Ka(!B)℄ : (64)
It should be noted that fora = 2, [K2(!B)℄ = [K2℄. In addition, if the constraint

R
2  dx = 0
is not included in the discretization, then, fora = 2, Eqs. (61) and (62) must be solved with
the constraint (see Section II)

LT [Y2(t)℄ = [ 0 ℄ ; LT [Z2(t)℄ = [ 0 ℄ : (65)
The LF Eqs. (61) and (62) are solved using an unconditionallystable implicit step-by-step
integration method. Concerning Eq. (61), time interval℄ �1 ;1[ is replaced by the finite
interval℄ tI ; tF ℄ with the initial conditions[Ya(tI)℄ = [ _Ya(tI)℄ = [ 0 ℄. Concerning Eq. (62),
time interval℄�1 ; 0℄ is replaced by the finite interval℄� tF ; 0℄ with the initial conditions[Za(�tF )℄ = [ _Za(�tF )℄ = [ 0 ℄.
VI. TIME-STATIONARY RANDOM RESPONSE USING THE REDUCED MODE L

The structural-acoustic system is submitted to a time-stationary second-order centered random
wall pressure fieldfp(x; t); x 2 �1; t 2 Rg with values inR and we are interested in
the stationary response of the structural-acoustic system. The cross-correlation function of
random fieldp is denoted asRp(x; y; �) = Efp(x; t+�) p(y; t)g in whichE is the mathematical
expectation and is such that16Rp(x; y; �) = ZR ei!� Sp(x; y; !) d! ; (66)
in whichSp(x; y; !) is the cross-spectral density function which is written asSp(x; y; !) = j�(!)j2 sp(x; y; !) : (67)
Let fF�(t); t 2 Rg be the stochastic process defined byF�(t) = � Z�1 p(x; t) n1(x)�u�(x) ds(x) : (68)
Therefore the(n1�n1)matrix-valued spectral density function[SF(!)℄of stationary stochastic
processF = (F1; : : : ;Fn1) indexed byR with values inRn1 is such that[SF(!)℄��0 = Z�1 Z�1 j�(!)j2sp(x; y; !) fn1(x)�u�(x)g � fn1(y)�u�0(y)g ds(x) ds(y) :(69)
From Eq. (50), we deduce that, for allx andy fixed in
1, the(3�3) matrix-valued cross--
spectral density function[S~u(x; y; !)℄ of theR3-valued stochastic fieldfeu(x; t); x 2 
1; t 2Rg, such that[R~u(x; y; �)℄ = Efeu(x; t+ �)eu(y; t)Tg = ZR ei!� [S~u(x; y; !)℄ d! ; (70)
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can be written as [S~u(x; y; !)℄ = NS1Xj=1 NS1Xk=1[S�1(!)℄jk Uj(x)Uk(y)T ; (71)
in which [S�1(!)℄ is the matrix-valued spectral density function ofRNS1 -valued mean-square
stationary stochastic processf�1(t); t 2 Rg. From Eq. (52), we deduce that, for allx andy
fixed in
2, the complex-valued cross-spectral density functionS~p(x; y; !) of the real-valued
stochastic fieldfep(x; t); x 2 
2; t 2 Rg, such thatR~p(x; y; �) = Efep(x; t+ �) ep(y; t)g = ZR ei!� S~p(x; y; !) d! ; (72)
can be written asS~p(x; y; !) = NS1Xj=1 NS1Xk=1[S�1(!)℄jkPj(x; !)Pk(y; !) : (73)
From Eqs. (45) and (46), and using linear filtering of stationary stochastic processes16�18,
we deduce that matrix-valued spectral density function[S�1(!)℄ (appearing in Eqs. (71) and
(73)) is written as [S�1(!)℄ = [T (!)℄ [PS1 ℄T [SF(!)℄ [PS1 ℄ [T (!)℄� ; (74)
in which (NS1 �NS1 ) symmetric complex matrix[T (!)℄ is written as[T (!)℄ = �[A1(!)℄ + � [J ℄� !2 [ C ℄ [A2(!)℄�1 [ C ℄T ��1 : (75)
VII. VALIDATION FOR A STRUCTURE HAVING AN MF BEHAVIOR COUPLE D
WITH AN INTERNAL ACOUSTIC FLUID HAVING AN LF BEHAVIOR IN MF
BAND B
This first example concerns an inhomogeneous structure having an MF behavior in a given
narrow MF bandB, coupled with an internal acoustic cavity filled with a gas and having an
LF behavior in MF bandB. We consider the MF time-stationary random response of this
structural-acoustic system in MF bandB, the structure being excited by a time-stationary
random wall pressure field.

A. Description of the structural-acoustic system

The structural-acoustic system is referenced to an(x1; x2; x3) coordinate system. The struc-
ture is a rectangular thin plate in bending mode, located in planeOx1x2, to which are attached
two point masses, three springs and five dashpots, as shown inFigure 2. Domain
1 = �1
of the plate (middle surface) is rectangular and the plate issimply supported, homogeneous
and isotropic, with constant thickness, widthL1 = 0:5 m, lengthL2 = 1:0 m, surface-
mass density�1 = 40 kg/m2, total mass�1 = �1L1L2 = 20 kg and constant damping
rate�1 = 0:002. We assume that the usual thin plate theory can be used. The thickness,
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Young’s modulus and Poisson’s ratio of the plate are such that the lowest eigenfrequency
of the associated conservative plate (without point massesand springs) is 5 Hz. To this
plate are attached (1) two point masses having a mass of 3 kg and 4 kg located at points(0:2; 0:4; 0) and(0:35; 0:75; 0) respectively, (2) three springs having the same stiffness coef-
ficientk = "k �1 !2ref with !ref = 2��550 rad/s,"k = 0:1, located at points(0:221; 0:278; 0),(0:332; 0:537; 0) and(0:443; 0:826; 0), and (3) five dashpots having the same damping coef-
ficientd = 2"d �1 �1 !ref with "d = 0:1, located at points(0:154; 0:165; 0), (0:145; 0:334; 0),(0:465; 0:373; 0), (0:247; 0:462; 0) and(0:268; 0:681; 0). This structure (the plate with point
masses, springs and dashpots) is coupled with an acoustic cavity constituted of a rectangular
room
2 (see Figure 2) bounded by five rigid walls lying along the planesx1 = 0, x1 = L1,x2 = 0, x2 = L2, x3 = L3 with L3 = 0:318 m. The sixth wall lying in planex3 = 0 is
not rigid and is constituted by the plate. This bounded room is filled with a gas having a
constant mass density�2 = 1 kg/m3, speed of sound
2 = 330 m/s and dissipative coefficient� = �2=!ref with �2 = 0:002. The total mass of the gas is�2 = �2L1L1L3 = 0:159
kg. We consider the MF response of this structural-acousticsystem in narrow MF bandB = 2�� [500 ; 550℄ rad/s, i.e. on the[500 ; 550℄ Hz frequency band. The excitation is
time-stationary random wall pressure fieldfp(x; t); x 2 �1; t 2 Rg introduced in Section VI,
for which the cross-spectral density function defined by Eq.(67) is such that for all! in B,j�(!)j = 1 andsp(x; y; !) = (L1L2)�1Æ0(x1 � y1) Æ0(x2 � y2) whereÆ0 is the Dirac delta
function onR at point0. For the validation, we are interested in calculating the power spectral
density functionSstruc(!) relative to the structure and defined bySstruc(!) = 1j�(!)j2 j
1j Z
1 tr [S~u(x; x; !)℄ dx ; (76)
and the power spectral density functionSacous(!) relative to the acoustic cavity and defined
by Sacous(!) = 1�22 
42 1j�(!)j2 j
2j Z
2 [S~p(x; x; !)℄ dx : (77)
B. Description of the finite dimension approximation

The finite dimension approximation is defined in Section II. Concerning the structure in
vacuo (plate with point masses, springs and dashpots), family u1; : : : ; un1 is chosen as the
first n1 modes of the associated conservative plate (without point masses and springs) whose
corresponding eigenfrequencies arefplate;1 � fplate;2 � : : : � fplate;n1 . For� = (�1; �2),�1 � 1 and�2 � 1, we haveu�(x) = (u�;1(x); u�;2(x); u�;3(x)) with u�;1(x) = u�;2(x) =0 and u�;3(x) = 2 sin(�1�x1L1 ) sin(�2�x2L2 ) :
From a convergence study of the structural-acoustic response over the [0,700] Hz frequency
band, we deduced the value ofn1 which is n1 = 407. We havefplate;1 = 5 Hz andfplate;407 = 1097 Hz. For all�, the normalization ofu� is such thatZ L10 Z L20 �1 ju�;3(x1; x2)j2 dx1 dx2 = �1 :
The(n1�n1) matrices[M1℄, [D1℄ and[K1℄ are independent of the frequency and are dense
due to the presence of the point masses, dashpots and springs. Matrix [G1℄ = L1L2 [ I1 ℄ is
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diagonal,[ I1 ℄ being the(n1�n1) unity matrix. The lowest eigenfrequency of the associated
conservative structure in vacuo (plate with point masses and springs) isf1;1 = 7:74 Hz (to be
compared withfplate;1 = 5 Hz). There are 255 modes of the structure in vacuo in frequency
band[0 ; 700℄Hz, 179 structural modes in frequency band[0 ; 500℄Hz and 20 structural modes
in narrow MF band[500 ; 550℄ Hz. Then the rank of the first structural mode belonging to
frequency band[500 ; 550℄ Hz is 180 and consequently, the structure has an MF behavior in
frequency bandB.
Concerning the acoustic cavity, family 1; : : : ;  n2 is chosen as the firstn2 acoustic modes of
the acoustic cavity with rigid walls whose corresponding eigenfrequencies aref2;1 � f2;2 �: : : � f2;n2 . For� = (�1; �2; �3) with �1 + �2 + �3 6= 0 and�1, �2, �3 � 0, we have �(x) = 2p2 
os(�1�x1L1 ) 
os(�2�x2L2 ) 
os(�3�x3L3 ) :
These functions satisfy the constraint

R
2  �(x; !) dx = 0. From a convergence study of the
structural-acoustic response over the [0,700] Hz frequency band, we deduced the value ofn2
which isn2 = 19. For all�, the normalization of � is such thatZ L10 Z L20 Z L30 �2 j �(x)j2 dx = �2 :
The(n2�n2)matrices[M2℄, [D2℄ and[K2℄ are independent of the frequency and are diagonal.
Matrix [G2℄ = L1L2L3 [ I2 ℄ is diagonal,[ I2 ℄ being the(n2�n2) unity matrix. The lowest
acoustic eigenfrequency of the acoustic cavity with rigid walls isf2;1 = 165Hz. There are 16
acoustic modes in frequency band[0 ; 700℄ Hz, 6 acoustic modes in frequency band[0 ; 500℄
Hz and 2 acoustic modes in narrow MF band[500 ; 550℄Hz. Then the rank of the first acoustic
mode in MF band[500 ; 550℄Hz is 7 and consequently, the acoustic cavity has an LF behavior
in MF bandB.
For� = (�1; �2), component�2;� of vectorP2 2 Rn1 , defined by Eq. (32), is such that�2;� = � 2L1L2�1�2 �2 � f
os(�1�)� 1g � f
os(�2�)� 1g : (78)
For� = (�1; �2) and� = (�1; �2; �3), coupling(n1�n2) real matrix[C ℄, defined by Eq.
(34), is such that[C ℄�� = �p2 �2 L1L2�2 � �1� 
osf�(�1 + �1)g�1 + �1 + 1� 
osf�(�1 � �1)g�1 � �1 �� �1� 
osf�(�2 + �2)g�2 + �2 + 1� 
osf�(�2 � �2)g�2 � �2 � : (79)
Finally, from Eq. (69), we deduce that[SF(!)℄��0 = j�(!)j2 Æ��0 .
C. Constructing the reference solution on a broad frequencyband

The reference solution is constructed on the[5 ; 700℄Hz broad frequency band with a sampling
frequency stepÆ� = 0:165 Hz. The power spectral density functionsSref

struc(!) andSref
acous(!)

corresponding to the reference solution and defined by Eqs. (76) and (77) are directly
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calculated in the frequency domain without using the reduced model. From Eqs. (76), (77),
(27), (29) and (35), we deduce thatSref

struc(!) = tr f[T (!)℄ [T (!)℄�g ; (80)Sref
acous(!) = 1�22 
42�tr f([V (!)℄ [T (!)℄) ([V (!)℄ [T (!)℄)�g+ �2([T (!)℄P2)� ([T (!)℄P2)� ; (81)

in which [T (!)℄ is the symmetric(n1�n1) complex matrix which is written as[T (!)℄ = �[A1(!)℄ + � [ J ℄� !2 [C ℄ [A2(!)℄�1 [C ℄T ��1 ;
where[A1(!)℄, [ J ℄, [A2(!)℄ and[C ℄ are the matrices defined by Eqs. (30), (32) with (78),
(33) and (79) respectively. In Eq. (81),(n2�n1) complex matrix[V (!)℄ is defined by[V (!)℄ = !2�2 [A2(!)℄�1 [C ℄T :
Figs.3 and 4 show the mappings� 7!10�log10(Sref

struc(2��)) and� 7!10�log10(Sref
acous(2��))

respectively over the[5 ; 700℄ Hz broad frequency band.

D. Reference solution on the narrow MF band

The reference solution on narrow MF bandB = [500 ; 550℄ Hz is constructed as explained
in Section VII C using the frequency resolutionÆ� = 0:166 Hz. The graphs of functions� 7! 10�log10(Sref

struc(2��)) and� 7! 10�log10(Sref
acous(2��)) (corresponding to Figures 3

and 4) of the reference solution on narrow MF bandB are used below (see the solid lines in
Figures 7 to 10) to evaluate the accuracy of the response constructed using the reduced model.

E. Constructing the dominant eigensubspaces

For the structure, the dominant eigensubspace of the energyoperator relative to bandB for
the structure in vacuo (related to matrix[E1℄ defined by Eqs. (41) to (43)) is constructed using
the method presented in Section V withN1 = 50. Figure 5 shows the graph of the functionj 7! 10�log10(�j1) for j 2 f1; 2; : : : ; 50g in which�11; : : : ; �501 are the highest eigenvalues
of the generalized symmetric eigenvalue problem defined by Eq. (36) fora = 1. There is
a strong decrease in the eigenvalues which means there exists the possibility of constructing
an efficient reduced model for the structure. Figure 5 shows that the orderN1 of the reduced
model is about25 for bandB.
For the internal acoustic fluid, the dominant eigensubspaceof the energy operator relative
to bandB for the internal acoustic cavity with rigid walls (related to matrix [E2℄ defined by
Eqs. (41) to (43)) is constructed using the method presentedin Section V withN2 = 17.
Figure 6 shows the graph of the functionj 7! 10�log10(�j2) for j 2 f1; 2; : : : ; 17g in which�12; : : : ; �172 are the highest eigenvalues of the generalized symmetric eigenvalue problem
defined by Eq. (36) fora = 2. Figure 6 shows that the orderN2 of the reduced model is
about4 for bandB.

F. Reduced model adapted to the narrow MF band

In this section, we present a comparison of the reference solution constructed in Section VII D
with the solution obtained by the reduced model constructedusing the results of Sections IV
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and VI and Eqs. (76) and (77). Two reduced models are considered below. For the first reduced
model, the parameters areNS1 = N1 = 25 (thenN0 = 0) andN2 = 4. Figure 7 is related
to the structure and shows the comparison between function� 7! 10� log10(Sref

struc(2��))
(solid line corresponding to the reference solution) and function� 7! 10�log10(Sstruc(2��))
(dashed line corresponding to the first reduced model) on narrow MF band[500 ; 550℄ Hz.
Figure 8 is related to the internal acoustic fluid and shows the comparison between function� 7! 10�log10(Sref

acous(2��)) (solid line corresponding to the reference solution) and function� 7! 10�log10(Sacous(2��)) (dashed line corresponding to the first reduced model) on narrow
MF band[500 ; 550℄Hz. Figure 7 shows that the comparison is very good for the structure, but
Figure 8 shows that this first reduced model (N0 = 0) is not so good for the internal acoustic
fluid. The problem which appears in Figure 8 has been explained in Sections III C and III D;
to accelerate convergence of the reduced model for prediction of the acoustic pressure in the
internal acoustic fluid, it is necessary to takeN0 > 0 (see below).

For the second reduced model, the parameters areN1 = 25, N0 = 10 (thenNS1 = 35) andN2 = 4. Figure 9 is related to the structure and shows the comparison between function� 7! 10�log10(Sref
struc(2��)) (solid line corresponding to the reference solution) and function� 7! 10� log10(Sstruc(2��)) (dashed line corresponding to the second reduced model) on

narrow MF band[500 ; 550℄ Hz. Figure 10 is related to the internal acoustic fluid and shows
the comparison between function� 7! 10�log10(Sref

acous(2��)) (solid line corresponding to
the reference solution) and function� 7! 10�log10(Sacous(2��)) (dashed line corresponding
to the second reduced model) on narrow MF band[500 ; 550℄ Hz. Figure 9 is quite similar to
Figure 7 and shows that the comparison is very good for the structure and Figure 10 shows
that this second reduced model (N0 = 10) is good. Consequently, for this structural-acoustic
system whose structure has an MF behavior and whose internalacoustic fluid has an LF
behavior (MF-LF coupling), the reduced model developed in Section IV based on the use of
the structural vector basis constructed in Section III D is validated.

VIII. VALIDATION FOR A STRUCTURE HAVING AN MF BEHAVIOR COUPL ED
WITH AN INTERNAL ACOUSTIC FLUID HAVING AN MF BEHAVIOR IN MF
BAND B
This second example concerns the inhomogeneous structure defined in Section VII, having
an MF behavior in given narrow MF bandB, coupled with an internal acoustic cavity filled
with a gas and having an MF behavior in MF bandB. We consider the MF time-stationary
random response of this structural-acoustic system in MF bandB, the structure being excited
by the time-stationary random wall pressure field used in Section VII.

A. Description of the structural-acoustic system

We consider the structural-acoustic system defined in Section VII A for which acoustic
rectangular room
2 is such thatL3 = 9:0 m (instead ofL3 = 0:318 m, see Figure 2). The
total mass of the gas is�2 = �2L1L1L3 = 4:5 kg. We consider the MF response of this
structural-acoustic system in narrow MF bandB = [500 ; 550℄ Hz. The excitation is the
time-stationary random wall pressure field defined in Section VII A. For the validation, we
are interested in calculating the power spectral density functions defined by Eqs. (76) and
(77).

B. Description of the finite dimension approximation

The finite dimension approximation of the structure in vacuo(plate with point masses, springs
and dashpots) is defined in Section VII B. We haven1 = 407. There are 255 modes of the
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structure in vacuo in frequency band[0 ; 700℄ Hz, 179 structural modes in frequency band[0 ; 500℄ Hz and 20 structural modes in narrow MF band[500 ; 550℄ Hz. Then the rank of the
first structural mode belonging to frequency band[500 ; 550℄ Hz is 180 and consequently, the
structure has an MF behavior in frequency bandB.
Concerning the acoustic cavity, we use the finite dimension approximation defined in Section
VII B for which the value ofn2 has to be increased. From a convergence study of the
structural-acoustic response over the [0,700] Hz frequency band, we deduced the value ofn2
which isn2 = 353 (instead of 19). The lowest acoustic eigenfrequency of the acoustic cavity
with rigid walls isf2;1 = 18:33 Hz. There are 289 acoustic modes in frequency band[0 ; 700℄
Hz, 128 acoustic modes in frequency band[0 ; 500℄ Hz and 34 acoustic modes in narrow MF
band[500 ; 550℄ Hz. Then the rank of the first acoustic mode in MF band[500 ; 550℄ Hz is
129 and consequently, the acoustic cavity has an MF behaviorin MF bandB.

C. Constructing the reference solution on a broad frequencyband

The reference solution is constructed on the[5 ; 700℄Hz broad frequency band with a sampling
frequency stepÆ� = 0:165 Hz. The power spectral density functionsSref

struc(!) andSref
acous(!)

corresponding to the reference solution and defined by Eqs. (76) and (77) are calculated
directly in the frequency domain, using Eqs. (80) and (81), without using the reduced
model. Figures 11 and 12 show the mappings� 7! 10� log10(Sref

struc(2��)) and � 7!10�log10(Sref
acous(2��)) respectively over the[5 ; 700℄ Hz broad frequency band.

D. Reference solution on the narrow MF band

The reference solution on narrow MF bandB = [500 ; 550℄ Hz is constructed as explained
in Section VIII C using the frequency resolutionÆ� = 0:166 Hz. The graphs of functions� 7! 10� log10(Sref

struc(2��)) and� 7! 10� log10(Sref
acous(2��)) (corresponding to Figures

11 and 12) of the reference solution on narrow MF band[500 ; 550℄ Hz are used below to
evaluate the accuracy of the response constructed using thereduced model (see the solid lines
in Figures 14 to 17).

E. Constructing the dominant eigensubspaces

For the structure, we use the dominant eigenspace calculated in Section VII E. For the internal
acoustic fluid, the dominant eigensubspace of the energy operator relative to bandB for the
internal acoustic cavity with rigid walls (related to matrix [E2℄ defined by Eqs. (41) to (43))
is constructed using the method presented in Section V withN2 = 50. Figure 13 shows the
graph of the functionj 7! 10�log10(�j2) for j 2 f1; 2; : : : ; 50g in which�12; : : : ; �502 are the
highest eigenvalues of the generalized symmetric eigenvalue problem defined by Eq. (36) fora = 2. Figure 13 shows that the orderN2 of the reduced model is about40 for bandB.

F. Reduced model adapted to the narrow MF band
In this section, we present a comparison of the reference solution constructed in Section VIII
D with the solution obtained by the reduced model constructed using the results of Sections IV
and VI and Eqs. (76) and (77). As for the first example presented in Section VII, two reduced
models are considered below. For the first reduced model, theparameters areNS1 = N1 = 30
(thenN0 = 0) andN2 = 45. Figure 14 is related to the structure and shows the comparison
between function� 7! 10� log10(Sref

struc(2��)) (solid line corresponding to the reference
solution) and function� 7! 10� log10(Sstruc(2��)) (dashed line corresponding to the first
reduced model) on narrow MF band[500 ; 550℄Hz. Figure 15 is related to the internal acoustic
fluid and shows the comparison between function� 7! 10� log10(Sref

acous(2��)) (solid line

J. Acoust. Soc. Am., 106(6), 3362-3374 (1999). 18 Christian Soize



corresponding to the reference solution) and function� 7! 10�log10(Sacous(2��)) (dashed
line corresponding to the first reduced model) on narrow MF band [500 ; 550℄ Hz. Figures 14
and 15 show that the comparison is good for both the structureand the internal acoustic fluid.

For the second reduced model, the parameters areN1 = 30, N0 = 10 (thenNS1 = 40) andN2 = 45. Figure 16 is related to the structure and shows the comparison between function� 7! 10�log10(Sref
struc(2��)) (solid line corresponding to the reference solution) and function� 7! 10� log10(Sstruc(2��)) (dashed line corresponding to the second reduced model) on

narrow MF band[500 ; 550℄ Hz. Figure 17 is related to the internal acoustic fluid and shows
the comparison between function� 7! 10�log10(Sref

acous(2��)) (solid line corresponding to
the reference solution) and function� 7! 10�log10(Sacous(2��)) (dashed line corresponding
to the second reduced model) on narrow MF band[500 ; 550℄Hz. Figure 16 is quite similar to
Figure 14 and Figure 17 to Figure 15. This means that for an MF-MF coupling, the reduced
model of the structure can be constructed withN0 = 0.

IX. CONCLUSIONS

A theoretical approach is presented for constructing a reduced model in the MF range in
the area of structural acoustics for a general three-dimensional anisotropic, inhomogeneous,
viscoelastic bounded structure with an arbitrary geometrycoupled with an internal acous-
tic fluid (gas or liquid). The boundary value problem formulated in the frequency domain
and its variational formulation are presented. For a given MF band, the energy operator
of the structure in vacuo and the energy operator of the internal acoustic cavity with rigid
walls are positive-definite symmetric operators which havea countable set of decreasing
positive eigenvalues. The eigenfunctions corresponding to the highest eigenvalues (domi-
nant eigensubspace) of each energy operator constitute an appropriate functional basis of the
corresponding admissible function space for the structureand for the internal acoustic fluid.
For an MF structure (i.e. a structure having an MF behavior) coupled with an MF internal
acoustic fluid (i.e. an internal acoustic fluid having an MF behavior) in the MF band consid-
ered, these two functional bases allow a reduced model of thestructural-acoustic system to
be constructed using the Ritz-Galerkin method. If the MF structure is coupled with an LF
internal acoustic fluid, then it is more efficient to completethe structural vector basis relative
to the MF band with a few LF structural modes in order to accelerate convergence of the
solution for the internal acoustic cavity response in the MFband. A finite dimension approx-
imation of the continuous case is introduced in a general context (using the finite element
method or not). For construction of the dominant eigensubspace of each energy operator, an
efficient procedure based on the use of the subspace iteration method is proposed. It does
not require explicit calculation of the energy operator. Wethen obtain an efficient method for
constructing a reduced model in the MF range: 1) an intrinsicreduced model is constructed
for general structural-acoustic systems and can be considered as a progress independently of
any computer time aspects; 2) the efficiency of such a reducedmodel in the MF range can
be very high with respect to any other techniques validated in the MF range as soon as the
MF responses have to be calculated for a large number of multiple deterministic and random
loads, particularly for random excitations; 3) the implementation of this method is easily
to peform in any usual finite element computer code. Finally,concerning the structure, the
results presented can be extended straightforwardly to a structure made of beams, plates and
shells. Analysis of the two examples (MF-LF coupling and MF-MF coupling) validates the
reduced model methodology proposed for the MF range.
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Geometrical configuration of the structural-acoustic system.

FIG. 2. Rectangular thin plate with point masses, springs and dashpots, coupled with an
acoustic cavity constituted of a bounded rectangular room filled with a gas (air).

FIG. 3. Graph of function� 7! 10�log10(Sref
struc(2��)) corresponding to the reference solution

for the MF structure coupled with the LF internal acoustic fluid.

FIG. 4. Graph of function� 7! 10� log10(Sref
acous(2��)) corresponding to the reference

solution for the LF internal acoustic fluid coupled with the MF structure.

FIG. 5. Graph of functionj 7! 10�log10(�j1) showing the distribution of eigenvalues�j1 of
the energy operator of the MF structure in vacuo.

FIG. 6. Graph of functionj 7! 10�log10(�j2) showing the distribution of eigenvalues�j2 of
the energy operator of the LF internal acoustic cavity with rigid walls.

FIG. 7. Reduced model of the dynamical response of the MF structure coupled with the LF
internal acoustic fluid: comparison between function� 7! 10�log10(Sref

struc(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sstruc(2��)) (reduced model forN1 = 25,N0 = 0 andN2 = 4 (dashed line)).

FIG. 8. Reduced model of the dynamical response of the LF internal acoustic fluid coupled
with the MF structure: comparison between function� 7! 10�log10(Sref

acous(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sacous(2��)) (reduced model forN1 = 25,N0 = 0 andN2 = 4 (dashed line)).

FIG. 9. Reduced model of the dynamical response of the MF structure coupled with the LF
internal acoustic fluid: comparison between function� 7! 10�log10(Sref

struc(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sstruc(2��)) (reduced model forN1 = 25,N0 = 10 andN2 = 4 (dashed line)).

FIG. 10. Reduced model of the dynamical response of the LF internal acoustic fluid coupled
with the MF structure: comparison between function� 7! 10�log10(Sref

acous(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sacous(2��)) (reduced model forN1 = 25,N0 = 10 andN2 = 4 (dashed line)).

FIG. 11. Graph of function� 7! 10� log10(Sref
struc(2��)) corresponding to the reference

solution for the MF structure coupled with the MF internal acoustic fluid.

FIG. 12. Graph of function� 7! 10� log10(Sref
acous(2��)) corresponding to the reference

solution for the MF internal acoustic fluid coupled with the MF structure.

FIG. 13. Graph of functionj 7! 10�log10(�j2) showing the distribution of eigenvalues�j2 of
the energy operator of the MF internal acoustic cavity with rigid walls.

FIG. 14. Reduced model of the dynamical response of the MF structure coupled with the MF
internal acoustic fluid: comparison between function� 7! 10�log10(Sref

struc(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sstruc(2��)) (reduced model forN1 = 30,N0 = 0 andN2 = 45 (dashed line)).

FIG. 15. Reduced model of the dynamical response of the MF internal acoustic fluid coupled
with the MF structure: comparison between function� 7! 10�log10(Sref

acous(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sacous(2��)) (reduced model forN1 = 30,N0 = 0 andN2 = 45 (dashed line)).
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FIG. 16. Reduced model of the dynamical response of the MF structure coupled with the MF
internal acoustic fluid: comparison between function� 7! 10�log10(Sref

struc(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sstruc(2��)) (reduced model forN1 = 30,N0 = 10 andN2 = 45 (dashed line)).

FIG. 17. Reduced model of the dynamical response of the MF internal acoustic fluid coupled
with the MF structure: comparison between function� 7! 10�log10(Sref

acous(2��)) (reference
solution (solid line)) and function� 7! 10�log10(Sacous(2��)) (reduced model forN1 = 30,N0 = 10 andN2 = 45 (dashed line)).
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