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Abstract

Numerical solutions on the influence of surface radiation on the laminar air flow induced
by natural convection in vertical, asymmetrically-heated channels are discussed. Variable
property effects are accounted for in a full-elliptic mathematical formulation. The density
variation is determined from the state equation for ideal gas. The experimental design and
data reported in Webb and Hill [1] are taken as the base cases for carrying out the compu-
tations. The occurrence of flow reversals is first considered and revisited for pure natural
convection, and the Nusselt number correlations derived from the numerical results are fa-
vorably compared with those reported in [1]. It is shown that the general effect of surface
radiation is to delete the onset of pocketlike recirculations at the top part of the channel, to
reduce the heated wall temperatures, and to increase the facing wall temperatures. Com-
parisons with usual methods used for decoupling the surface radiation effects are discussed.
In the range of parameters investigated, increases in differences between inlet and maximum
wall temperatures up to 200K are shown to have small influences on the flow field and
negligible effects on heat transfer performances.

Keywords: Natural convection, surface radiation, vertical channels, flow reversal, variable
property effects, numerical simulations

Nomenclature

a thermal diffusivity [m2/s]
A aspect ratio, A = 2H/D
B radiosity [W/m2]
cp specific heat [J/(K · kg)]
dψ width of the recirculation [m], Eqs. 36 and 37
D wall spacing [m]
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g gravitational acceleration [m/s2]
G irradiation or incoming radiative heat flux density [W/m2]
h heat transfer coefficient [W/(m2 ·K)]
H half of the total channel height [m]
k thermal conductivity [W/(m ·K)]
K kernel function (Eq. 10)
Lp penetration length [m]
ṁ mass flow rate [kg/(m · s)]
Ma molecular weight [kg/kmol]
ṁin mass flow rate in the entrance section, Eq. 34
ṁout mass flow rate leaving the channel, Eq. 35
NR conduction-to-radiation parameter, NR = qw/(σT

4
0 )

Nu mean Nusselt number
nx, nz numbers of grid points in x− and z−directions
p pressure [Pa]
pm sum of static and hydrostatic pressures [Pa]
ps pressure at the outlet section [Pa]
p∗ dimensionless pressure, p∗ = p/(ρ0w

2
0)

Pr Prandtl number, Pr = ν0/a0
q heat flux density [W/m2]
R ideal gas constant, R = 8.3145 [J/(mol ·K)]
Ra modified Rayleigh number based on qw, Ra = gβ0D

3qw/(a0ν0k0)
Ra∗ channel Rayleigh number, Ra∗ = Ra× (D/H)
t time [s]
T temperature [K]
u, w velocity components [m/s]
v velocity vector
x, z coordinates [m]
Greeks

α order of consistency of the numerical scheme
β thermal coefficient of volumetric expansion, β = 1/T0 [K−1]
∆T temperature difference scale, ∆T = qwD/k0 [K]
ǫ emissivity
γ non-Boussinesq parameter, γ = ∆T/T0
µ dynamic viscosity [kg/(m · s)]
ν kinematic viscosity, ν = µ/ρ [m2/s]
ρ density [kg/m3]
σ Stefan-Boltzmann constant, σ = 5.67 · 10−8 [W/(m2 ·K4)]
θ dimensionless temperature, θ = (T − T0)/∆T
τ dimensionless time, τ = t

√
gβ0∆TD/D

Subscripts

H quantity based on channel height
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c, i natural convection
max maximum
r radiative
w wall
0 inlet section
t total

Superscripts
− averaged quantity
∗ dimensionless quantity

1. Introduction

Natural convection in vertical parallel-plate channel is relevant to a wide range of appli-
cations such as the cooling of electronic equipments in which circuit cards containing heat
generating electronic devices are arrayed to form vertical channels, the design of solar pan-
els, energy efficient buildings, heat removal in nuclear technology, and a host of others. The
problem of natural convection in vertical channels has been the focus of extensive investiga-
tions since the pioneering work by Elenbass [2], resulting in numerous theoretical, numerical
and experimental works. However, the number of studies reported on combined surface ra-
diation and natural convection is very limited, despite radiative exchanges amongst surface
plays a significant role for most practical applications.

Developing and fully developed laminar free convection between vertical flat plates with
symmetric or asymmetric heating were reconsidered by Bodoia and Osterle [3], investigated
analytically and experimentally by Aung [4], and Aung et al. [5]. These studies were the
foundations for few others studies conducted later on. Amongst these, the experimental
work by Wirtz and Stutzman [6] on developing natural convection of air flowing between
vertical parallel plates with uniform and symmetric heat fluxes is frequently quoted. An up
to date review on the formulas for the calculation of the heat transfer and flow rate for two-
dimensional natural convection between vertical plates having uniform wall temperature or
uniform heat flux boundary conditions was presented by Olsson [7]. The recent experimental
study conducted by Lu et al. [8] for channels with large aspect ratio and narrow gap, and
with air as the working fluid, adds Nusselt number correlations for the case of symmetrical,
uniformly heated vertical walls. Although high wall temperatures were measured (up to
≈ 600K), the radiation effects may be considered as weak owing to the symmetrical heat-
ing, small size of the apertures and large aspect ratios.

Recently, laminar natural convection of air in parallel-plate vertical microchannels was in-
vestigated theoretically and numerically in the transient regime, with velocity slip and tem-
perature jump boundary conditions at the walls, by Buonomo and Manca [9, 10]. The
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microchannels were asymmetrically or symmetrically heated at uniform heat flux, and the
boundary layer assumption was invoked for various values of the Knudsen number over the
range of the first-order model for the continuum slip flow regime. Results showed overshoots
in the transient maximum wall temperature. A composite correlation was proposed to esti-
mate average Nusselt numbers at steady state.

1.1. Flow reversals

The theory of flow reversal of fully developed, aiding mixed convection and numerical so-
lutions for developing flows were presented by Aung and Worku [11, 12]. Since these early
studies, many numerical works dealing with the buoyancy effect on the flow structure and
heat transfer have been performed (see for example [13–16]) while a limited number of ex-
periments have been carried out.

The study of flow reversals in the case of pure natural convection in vertical channel was
considered in only few works.
An experimental study for natural convection in a vertical channel with the heated wall
maintained at uniform temperature and unheated facing wall was carried out with water
as the working fluid by Sparrow et al. [17]. For the first time, the formation of pocket of
recirculating flow at Rayleigh numbers exceeding a threshold value was revealed by flow
visualizations. It was found that the recirculation, fed by fluid drawn into the outlet sec-
tion of the channel adjacent to the adiabatic wall, has no effect on the heat transfer at
the heated wall. As in the work by Bar-Cohen and Rohsenow [18], a new dimensionless
group was introduced, the channel Rayleigh number Ra∗ = RaD × (D/H), which has been
shown to be the most convenient group for correlating the Nusselt number results. Since
this pioneer work, the study of the flow reversals in natural convection has received only
limited attention. The most salient studies are those by Kihm et al. [19] who identified the
occurrence of the onset and penetration lengths of the flow reversal in natural convection of
air through vertical isothermal channel walls, and the recent experimental study by Ospir
et al. [20] on natural convection in an asymmetrically heated vertical plane channel with
water as the working fluid. Flow visualization techniques based on laser tomography were
used in [20] for investigating the flow structure in steady-state, boundary layer flow regime
as well as in the early stage following the beginning of the heating. From the experiments
carried out for several values of the modified Rayleigh number and channel aspect ratios,
very new insights on the reversed flow structures were revealed.

1.2. Coupled natural convection and radiation

The problem of combined radiation and natural convection was extensively studied, specially
for closed cavities. It can be classified into two categories: one only with wall radiations, and
the other with both wall and gas radiations. For cases including gas radiation combined with
natural convection heat transfer, which is always important for combustion and engineering
applications, numerous papers have been published. Yamada et al. [21], Colomer et al. [22]
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and, more recently, Mondal and Li [23], who used an improved lattice-Boltzmann method,
presented relevant literature surveys on this subject. The present study encompasses only
combined surface radiation and natural convection that arises when the working fluid is
assumed transparent to infrared radiations.

1.2.1. Coupled natural convection and surface radiation in cavities

Numerical investigation of combined surface radiation and natural convection in a vertical
square, differentially heated cavity were reported by Balaji and Venkateshan [24]. They
showed that radiation has a dual effect of contributing to the overall heat transfer as well
as decreasing the convective component. They underlined that simple formulae that ac-
count for radiation in an additive way are not adequate. In a subsequent study, Balaji and
Venkateshan [25] proposed correlations for both convective and radiative heat transfers for
air as the working fluid. These correlations were found in fair agreement with the results
from an experimental study conducted by Ramesh and Venkateshan [26].

The impact of surface radiation on multiple solutions inside a square two-dimensional cavity
heated from below was studied numerically by Ridouane et al. [27]. The emissivities of the
isothermal horizontal walls were different from those of the vertical adiabatic walls and were
set to ǫ = 0.05 or to ǫ = 0.85. Four combinations of wall emissivities were considered. In
comparison with pure natural convection, it was shown that the ranges of the steady-state
modes as well as the nature and magnitude of periodic solutions were highly affected by
surface radiation.

This problem was reconsidered more recently by Gad and Balaji [28] for air-filled, rectan-
gular cavities heated from below with surface radiation spanning six different aspect ratios
(from A = 1 to A = 10). The critical Rayleigh number for the onset of convection was
determined as function of two parameters: the emissivity of the adiabatic sidewalls and the
aspect ratio for a cold top wall at Tc = 303 K, the emissivity of the horizontal walls being set
to ε = 0.85. It was shown that the onset of Rayleigh-Bénard convection is delayed with an
increase in the emissivity of the sidewalls and, that the effect of surface radiation diminishes
with an increase in the aspect ratio.

Natural convection for air in an open-ended cavity heated from above was experimentally
studied by Manca and Nardini [29] in the case of high emissivity of the horizontal walls.
They observed that surface radiation caused a temperature increase in the unheated lower
plate, which could rise to secondary motions due to plumes inside the cavity. Correlations
for average Nusselt numbers and maximum wall temperatures were proposed.

Studies on combined natural convection and surface radiation from a heated body inside a
cavity are more scarse (for an overview of recent references, see Bouali et al. [30], Lauriat and
Desrayaud [31], Mezrhab et al. [32]). In the paper by Mezrhab et al. [32], a differentially-
heated cavity of square cross-section containing a conducting, centered square body was
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numerically investigated. Amongst the conclusions drawn for this particular configuration,
the effect of the inner body on the flow field and heat transfer was shown much important
when surface radiation exchanges were taken into account. In the range of Rayleigh number
considered, it was also shown that radiation augments the fluid velocities in comparison with
those obtained for a cavity without an inner body. However, much of these conclusions are
specific to the geometrical case considered, as underlined in Sun et al. [33].

1.2.2. Coupled natural convection and radiation in vertical parallel plate channels

The interaction of surface radiation with developing laminar natural convection in vertical
parallel plate channels with asymmetric heating was numerically studied by Carpenter et
al. [34]. A parabolic formulation of the governing equations was employed and the Boussinesq
approximation invoked. They investigated the effects of the five dimensionless parameters
involved in the dimensionless formulation (heat flux ratio, Rayleigh number, aspect ratio,
emissivity, and radiation number), and showed that radiation significantly alters the pure
natural convection results by reducing the wall temperatures, especially the maximum value.

The effect of surface radiation was reconsidered by Webb and Hill [1] in their paper report-
ing on experiments designed to determine local and average heat transfer characteristics
for natural convection in a vertical parallel plate channel, one wall heated with uniform
heat flux and the other thermally insulated. Local temperatures along both walls were col-
lected for a wide range of heating rates and wall spacings corresponding to the high channel
Rayleigh number regime (i.e. 503 ≤ Ra∗ ≤ 1.75 · 107). Unheated entry and exit lengths
(7.62 cm ≈ H/2) were added to the heated section (H = 15.2 cm) to minimize radiation
losses near the channel entrance and exit. The local radiative heat flux was determined from
the temperature data by solving the system of equations describing the radiation exchanges
for channel walls assumed gray and diffuse with an emissivity measured to ε = 0.1. The
heating rate was then reduced by the calculated local radiation loss, and the corrected heat
transfer results were used in all correlations presented in the paper. The results compared
favorably with previous experimental data, and the importance of corrections for radiation
and conduction losses as well as the use of local thermophysical properties in correlating the
data were underlined.

The experimental design, wall spacings and heating rates described in [1] were numerically
simulated, as accurately as possible, in the preparation of the present paper.

Combined natural convection and thermal radiation in vertical parallel plate channels was
experimentally investigated by Manca and Naso [35]. The measurements showed that the
effect of surface radiation is more important for asymmetric heating than for symmetric
heating. In addition, it was emphasized that the flow patterns tend to those of symmetric
heating for high wall emissivities, and reduce the Rayleigh number corresponding to the
developing regime. Correlations between local Nusselt numbers at various emissivities have
also been proposed.
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Laminar natural convection and surface radiation between vertical parallel plates, a central,
highly emissive (ε = 0.85) hot plate and two unheated polished plates (ε = 0.05), was inves-
tigated experimentally by Krishnan et al. [36] for various plate spacings. The temperature
measurements were introduced as boundary conditions into a numerical code in order to ob-
tain the convective heat transfer rates. This study brought out the significance of radiation
at room temperature. A correlation for the average convective wall heat transfer was derived.

1.3. Channel extensions

Amongst the attempts for solving natural convection at low channel Rayleigh number, is
the use of channel extensions as it was suggested in many previous numerical studies that
we briefly review in what follows.

Naylor et al. [37] solved the full elliptic forms of the governing equations for pure natural
convection using inlet flow boundary conditions based on the Jeffrey-Hamel flow in order to
represent more realistically the entrance flow. Their solutions validated the inlet pressure
approximation (p = −ρ0w2/2) commonly used in parabolic formulations. Their predictions
of fluid separation at the channel inlet is not in agreement with most of the elliptic solutions
published so far, and appear to be caused by the shape of the extension. The optimization
of plate separation of an open, vertical, parallel-plate channel that is cooled by natural con-
vection of air with the plates symmetrically heated by uniform heat flux has been studied
by Morrone et al. [38] by solving the full elliptic conservation equations in a I-shaped com-
putational domain. Correlations for the dimensionless flow rate and optimal values of the
spacing were derived and compared with the predictions of Bar-Cohen and Rohsenow [18]
and Anand et al. [39].

Natural convection of air in channel-chimney systems was studied experimentally [40], and
numerically by using the stream function-vorticity approach and the control volume method
by Andreozzi et al. [41, 42] for vertical channels heated symmetrically at uniform heat
flux and with adiabatic extensions. Results obtained provide guidelines to determine if the
channel-chimney system is in critical condition related to flow reattachment or separation.

Closely related to these approaches is the paper by Bello-Ochende and Bejan [43]: the chan-
nel was fitted with upstream and downstream extensions whose lengths were selected based
on accuracy tests. For the downstream extension domain, free slip and no penetration were
specified at one side and zero stress at the other side in order to nullify the chimney effect.
From our point of view, this procedure leads to unrealistic outflow fields for a periodic array
of vertical channels.

As shown in a recent paper by Sun et al. [44], the use of inlet channel extensions is not
required, even for rather low channel Rayleigh numbers, since a regularization procedure
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allows to numerically solve the problem with a good accuracy. On the other hand, exten-
sions are required for the very low Rayleigh numbers at which backward thermal diffusion
dominates. Upper extensions lead obviously to other problems owing to superimposition of
chimney effects.

1.4. Aim of the present study

This paper reports a numerical study of a combined radiation and natural convection prob-
lem between vertical plates with asymmetric heating. The present study differs from the
aforementioned ones in the following issues:

• the problem formulation is based on a weakly compressible formulation in order to
account for unpredictable maximum temperature difference for uniformly heated walls.
Experimental studies reveal indeed surface-to-ambient temperature difference up to
about 500K according to the heating rate and/or wall spacings when air is the working
fluid [8, 45]. The dynamical inlet/outlet boundary conditions differ also;

• the flow reversal phenomenon for pure natural convection is revisited;

• the effects of surface radiation as well on the flow structure as on the heat transfer
rate are investigated and supported through comparisons with the experimental study
by Webb and Hill [1].

2. Problem statement

2.1. Dimensional form

The fluid flow and heat transfer are governed by the Navier-Stokes and energy equations
for a two-dimensional, laminar flow of a Newtonian fluid. The viscous dissipation term in
the energy equation is neglected and the fluid is assumed transparent to thermal radiation
leaving the channel walls. The energy equation is coupled with the equation dealing with ra-
diant interchanges amongst surfaces through the thermal boundary conditions. Since some
calculations were carried out for maximum temperature differences larger than that possible
for an accurate use of the Boussinesq approximation for ideal gases (∆Tmax ≤ 0.1T0, where
T0 is a reference temperature), a weakly compressible formulation was employed by assum-
ing the pressure work in the energy equation as negligible and, by calculating the density
field from the state equation with a uniform thermodynamic pressure within the channel.
The conservation equations are written as follows:

∂ρ

∂t
+∇ · (ρv) = 0 (1)

∂(ρv)

∂t
+∇ · (ρv⊗ v) = −∇(p+ ρ0gz) +∇ ·

[
µ

(
∇v +∇tv − 2

3
∇ · v

)]
+ (ρ0 − ρ)gez (2)

8



cp

(
∂(ρT )

∂t
+∇ · (ρvT )

)
= ∇ · (k∇T ) (3)

where ρ0 in the momentum equation is the density at a reference temperature, chosen as
the inlet fluid temperature and ez is the unit vector along the z-axis, pointing upward. All
thermophysical properties are considered as temperature dependent, i.e. ρ(T ), µ(T ), cp(T )
and k(T ). For dry air, cp(T ), k(T ) and µ(T ) are calculated according to the polynomial
relationships given by Lide and Kehiaian [46], valid in the range [100K, 600K]. These prop-
erties variations were used in [47] where the specific relationships employed herein can be
found.

The system of conservation equations is completed by the ideal gas law used for the calcu-
lations of the density at any point M:

ρ(M, t) =
P̄0Ma

RT (M, t)
(4)

P̄0 is the uniform thermodynamic pressure, equal the average hydrostatic pressure in the
surroundings, P̄0 = P (0)− ρg H .
Boundary conditions:

• at the vertical walls:

– x = 0, 0 < z < H/2 and 3H/2 < z < 2H ,

v = 0, qr(z)− k
∂T

∂x
= 0 (5)

where qr is the net radiative heat flux density along the surface.

– x = 0 and H/2 < z < 3H/2,

v = 0, qr(z)− k
∂T

∂x
= qw (6)

– x = D and 0 < z < 2H ,

v = 0, qr(z) + k
∂T

∂x
= 0 (7)

• at the inlet/outlet sections:

– 0 < x < D and z = 0 or z = 2H ,

u = 0,
∂w

∂z
= 0,

{
if v · n < 0 (inlet condition), T = T0, pg = −ρw2

2

if v · n ≥ 0 (outlet condition), ∂T
∂z

= 0, pg = 0
(8)
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where pg = p + ρ0gz is the departure of the pressure from the hydrostatic pressure and
n is the unit normal vector pointing outward the computational domain. The inlet/outlet
conditions (Eq. 8) for the velocity assume that the fluid enters or exits normally to the
inlet/outlet sections.
The pressure and temperature boundary conditions at the bottom and top sections depend
on whether the fluid enters or exits the channel:

⋆ In the first case (v ·n < 0), the temperature equals the surroundings temperature and
the static and hydrostatic pressure drops equilibrate the increase in kinetic energy for
non-viscous fluids.

⋆ In the second case (v · n ≥ 0), the heat diffusion normal to the inlet/outlet section is
neglected and the fluid flow is assumed to behave as a jet with parallel streamlines.
With the jet approximation, the sum of the static and hydrostatic pressures is kept
constant at the outlet section and equal to its surrounding value which is arbitrary
fixed to zero.

2.1.1. Surface-to-surface radiation model

The radiative exchanges amongst the surfaces were calculated by considering the channel as
a two-dimensional enclosure consisting of four gray-diffuse, vertical surfaces (the three parts
of the left-hand side wall and the adiabatic right-hand side wall) and two horizontal surfaces
regarded as black radiators at an effective temperature T0. Since the vertical walls have the
same emissivity, ε, the temperature distributions are evaluated from

σT 4

i (ri) =
1− ε

ε
qi +Bi(ri) (9)

The position vector ri denotes the locations of elementary surfaces dSi on surface Si, and
Bi(ri) is the radiosity, which is the radiation heat flux density leaving surface Si. The
radiosity distributions along the vertical walls are defined as

Bi(ri) = qi(ri) +
6∑

j=1

∫

Sj

Bj(rj)K(ri, rj)dSj = qi(ri) +Gi(ri) (10)

The kernel function K reads K(ri, rj) = cos(θi)cos(θj)/πr
2
ij [48]. For plane or convex

surfaces, K(ri, ri) = 0. The term Gi(ri) is the radiative heat flux density incident on surface
Si. At the channel apertures, Bi(ri) = σT 4

0 .
The preceding set of equations may be combined to yield a system of integral equations that
relates temperatures and heat fluxes at the six surfaces. There follows

σT 4

i (ri)−
qi(ri)

εi
=

6∑

j=1

∫

Sj

σT 4

j (rj)K(ri, rj)dSj −
6∑

j=1

∫

Sj

1− εj
εj

qj(rj)K(ri, rj)dSj 1 ≤ i ≤ 6

(11)
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The above system of six integral equations contains six unknown functions: the four distri-
butions of temperature along the vertical walls and the two heat flux distributions at the
channel apertures.

2.1.2. Wall heat fluxes and heat transfer coefficients

For a uniform heat flux density qw prescribed at the heated surface, the local convective,
qc(z) and radiative, qr(z) fluxes must balance qw. Therefore

qw = qc(z) + qr(z) = k(z)
∂Tw(z)

∂x
n · ex +B(z)−G(z) (12)

where G(z) is the local irradiation onto the heated surface (second right-hand side term in
Eq. 10). The local convective heat transfer coefficient is determined using the relation (refer
to [1]):

h(z) =
qw − qr(z)

Tw(z)− T0
(13)

while a local radiative heat transfer coefficient may be defined as

hr(z) =
qr(z)

Tw(z)− T0
(14)

The total heat transfer coefficient is thus ht(z) = h(z) + hr(z). Average heat transfer
coefficients over the heated surface (x = 0, H/2 ≤ z ≤ 3H/2) are calculated according to
the relations

hc,1 =
1

H

∫ 3H
2

H
2

h(z) dz and hr,1 =
1

H

∫ 3H
2

H
2

hr(z) dz (15)

and ht,1 = hc,1 + hr,1.
The heat flux conservation at the heated surface may also be stated as:

qw = qc + qr (16)

Average heat fluxes are calculated by averaging qc(z) and qr(z). This leads to

qc =
1

H

∫ 3H
2

H
2

k(z)
∂Tw(z)

∂x
n · ex dz and qr =

1

H

∫ 3H
2

H
2

(B(z)−G(z)) dz (17)

It should be noted that two different average heat transfer coefficients may be also determined
using the two following relations (refer to Bianco et al. [49]):

hc,2 =
qc

Tw − T0
and hr,2 =

qr
Tw − T0

(18)

where Tw is the average temperature of the heated wall. The main advantage in using the
above definitions is that a heat transfer correlation yields automatically Tw when the input
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is the wall heat flux.

As a result, if the wall temperatures are recorded from experiments, as in [1, 36], the radia-
tive and total heat transfer coefficient can be calculated accurately, and the convective heat
transfer coefficient can be deduced by using either Eq. 15 or Eq. 18. However, this convective
heat transfer is meaningful in pure convection only if the surface radiation exchanges modify
slightly the temperature distribution along the heated wall. This point will be examined in
what follows.

2.2. Dimensionless form

2.2.1. Fluid flow and surface-to-surface radiation equations

The governing equations are cast in dimensionless form using the reference length scale D,
time scale D/(gβ0∆TD)0.5 where β0 = 1/T0, the velocity scale (gβ0∆TD)0.5, the dynamic
pressure scale ρ0gβ0∆TD, the temperature difference scale ∆T = qwD/k0, and the radiative
heat flux scale σT 4

0 . Note that these scales are those often used when invoking the Boussinesq
approximation for boundary-layer type flows. The resulting set of governing equations reads:

∂ρ∗

∂τ
+∇ · (ρ∗v∗) = 0 (19)

∂(ρ∗v∗)

∂τ
+∇·(ρ∗v∗⊗v∗) = −∇(p∗+

1

γ
z∗)+

√
Pr

Ra
∇·

[
µ∗

(
∇v∗ +∇tv∗ − 2

3
∇ · v∗

)]
+
1

γ
(1−ρ∗)ez

(20)

c∗p

(
∂(ρ∗θ)

∂τ
+∇ · (ρ∗v∗θ)

)
=

1√
RaPr

∇ · (k∗∇θ) (21)

ρ∗ =
1

(γθ + 1)
(22)

In the above equations, superscript ∗ indicates dimensionless dependent quantities and di-
mensionless fluid properties with the reference properties being those at T0. The dimension-
less temperature difference is θ = (T − T0)/∆T . The three dimensionless parameters are
the Prandtl and Rayleigh numbers and, the non-Boussinesq parameter, γ = ∆T/T0, that
characterizes the departure from the Boussinesq approximation. The dimensionless form of
Eq. 11 writes

T ∗
4

i (r∗i )−
q∗i (r

∗

i )

εi
=

6∑

j=1

∫

S∗

j

T ∗
4

j (r∗j)K(r∗i , r
∗

j)dS
∗

j −
6∑

j=1

∫

S∗

j

1− εj
εj

q∗j (r
∗

j)K(r∗i , r
∗

j)dS
∗

j 1 ≤ i ≤ 6

(23)
where T ∗ = γθ + 1 and q∗r,i = qr,i/σT

4
0 .
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2.2.2. Boundary conditions

• at the vertical walls:

– x∗ = 0, 0 < z∗ < A/4 and 3A/4 < z∗ < A,

v∗ = 0, q∗r (z
∗)−NR k

∗
∂θ

∂x∗
= 0 (24)

– x∗ = 0 and A/4 < z∗ < 3A/4,

v∗ = 0, q∗r(z
∗)−NR k

∗
∂θ

∂x∗
= NR (25)

– x∗ = 1 and 0 < z∗ < A,

v∗ = 0, q∗r(z
∗) +NR k

∗
∂θ

∂x∗
= 0 (26)

• at the inlet/outlet sections:

– 0 < x∗ < 1 and z∗ = 0 or z∗ = A,

u∗ = 0,
∂w∗

∂z∗
= 0,

{
if v∗ · n < 0 (inlet condition), θ = 0, p∗g = −w∗2

2

if v∗ · n ≥ 0 (outlet condition), ∂θ
∂z∗

= 0, p∗g = 0
(27)

The additional dimensionless parameters involved in the boundary conditions are the chan-
nel aspect ratio, A = 2H/D, and NR = qw/σT

4
0 , usually called the conduction-to-radiation

parameter for the effects of surface radiation without linearization of the radiative heat
flux [48].
Finally, the above mathematical modeling shows that the problem of two-dimensional, lam-
inar natural convection of a gas through a channel subjected to a prescribed heat flux at
one section of the walls while the others are assumed adiabatic (or subjected to the same
heat flux density), involves six dimensionless parameters (not accounted for is the reference
temperature T0 introduced in the relations used for modeling the temperature dependence of
the thermophysical properties): A, Pr, Ra, γ, NR and ε. The last three parameters account
for variable properties and surface radiation effects.

Owing to this number of parameters, the derivation of a general Nusselt number correlation
appears to be rather cumbersome. Note that the number of parameters is still 6 even if the
maximum possible temperature difference is compatible with the validity of the Boussinesq
approximation. This approximation makes sense a priori only if the maximum temperature
difference is prescribed. A large class of practical applications, such as the cooling of elec-
tronic or lighting equipments (HB-LED, for example) does not match this requirement.
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2.2.3. Correlations for average channel Nusselt numbers and maximum wall temperature

For pure natural convection, the flow and heat transfer are governed by the height to width
ratio H/D, the Rayleigh number, the Prandtl number, and the non-Boussinesq parameter.
For an asymmetric heating the following Rayleigh numbers are used:

Ra =
gβ0qwD

4

a0ν0k0
and Ra∗ = Ra× D

H
the modified or channel Rayleigh number (28)

As in many of the previous studies [1, 8, 50], we did not use local Rayleigh numbers in
what follows for deriving Nusselt number or θmax correlations. Correlation equations were
determined for the local Nusselt number at midheight of the heated plate, for average Nusselt
numbers based either on Eq. 15 or 18, and for maximal heated wall temperature:

Nu 1

2

=
qwD

2k0(T 1

2

− T0)
= a∗Ra∗

m

, Nu = b∗Ra∗
n

and θmax = c∗Ra∗
−p

(29)

with T 1

2

the average of the two wall temperature at z = H and θmax = k0(Tmax − T0)/qwD;

the definition of Nu 1

2

refers to [1, 5]. The convective, radiative and total average Nusselt
number are calculated according to the relations

Nuc,i =
h̄c,iD

k0
, Nur,i =

h̄r,iD

k0
, Nut,i = Nuc,i+Nur,i for i = 1, 2 (see Eqs. 15 and 18)

(30)
It should be noted that the fluid thermal conductivity is that at the inlet temperature be-
cause, from a practical viewpoint, the only available data in the design of a uniformly heated,
flat plate channel are the wall heat flux, the inlet temperature and the dimensions of the
channel.

3. Numerical methods

3.1. Numerical scheme

The equations for mass (Eq. 1), momentum (Eq. 2) and energy (Eq. 3) are discretized by
a collocated finite volume scheme based on methods initially developed for incompressible
fluid flows on unstructured meshes and for fully coupled velocity-pressure equations [51],
and later on extended to the low Mach number approximation [52]. This latter method
has been adapted to a velocity-pressure decoupling scheme and applied here for structured
rectangular grids. Details on the numerical method can be found in [53].

Some key points of the spatial discretization are briefly recalled. Variables are located at
the center of the rectangular cells. The thermal diffusion and the viscous part ∇· (µ∇v) are
discretized with the classical 5 points-scheme with fluxes evaluated on cell faces with a two-
points approximation. In order to mimic as much as possible the kinetic energy balance (and
the quadratic form of the thermal balance), additional conditions must be fulfilled. First,
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the discrete expression of the pressure gradient is the dual form of the discrete divergence
of the velocity. Then, the mass flow rate acting in the transport contribution is the same as
the one used in mass equation. Moreover, the convected quantities (the velocity components
and the temperature) are evaluated on cell faces with a centered approximation, even if the

mesh is irregular. Finally, the remaining viscous contributions∇·
(
µ(∇v)t − 2/3µ(∇ · v)I

)
,

with I the unit tensor, are expressed with a weak formulation. It is worth noticing that
mimicking the energy balances is also a convenient way to ensure some numerical stability
of the numerical solutions provided the scheme is fully implicit.

A second order implicit Euler scheme is used for diffusion, with Adams-Bashforth ex-
trapolations in time for convective and advective terms, and for the viscous part ∇ ·(
µ(∇v)t − 2/3µ(∇ · v)I

)
. The velocity-pressure decoupling is provided by a projection

method [54]. The pressure correction Φn+1 = pn+1 − pn is solution of the Poisson problem:

∇2Φn+1 = f (31)

where f is an appropriate source term and ∇2Φn+1 ≡ ∇ · (∇Φn+1), with ∇ · (.) and ∇(.)
the collocated divergence and gradient. The solution of such a problem is well known to
produce unrealistic checkerboard oscillations in the solution. To prevent this, the collocated
Laplacian ∇2(.) in (Eq. 31) is substituted by the stable 5-points Laplacian ∇̃2(.) defined on
staggered grids:

∇̃2Φn+1 = f (32)

The view factors between the elements of the discretized wall surfaces and of the inlet/outlet
sections (facets) were calculated by Hottel’s crossed-string method. The coupling between
the discretized energy equation and radiosity equation was first handled by discretization of
the integral term in Eq. 10 by using the 1-point Gauss method, leading to a linear system
of equations. Then, starting from the known wall temperatures at time tn, we calculate the
radiative heat fluxes on each facet. The radiative heat fluxes are then introduced into the
boundary conditions (Eq. 5-7) to get new temperatures at the time tn+1.

The resolution of the linear system of radiosity equations was performed by the Gauss
method with partial pivoting. Solutions of Helmholtz problems for both the components
of velocity and the temperature field, and the solution of the pressure correction equation
(Eq. 32) were obtained by the Bi-Conjugate Gradient Stabilized method, preconditioned by
an incomplete LU-decomposition. The time step value was controlled by fixing the upper
bound of the Courant-Friedrich-Levy number, for example CFL = 0.5. The stationary
solution was assumed reached when En,n+1 < 10−6 with

En,n+1 = max

(‖un+1 − un‖
2

‖un+1‖
2
∆tn

,
‖wn+1 − wn‖

2

‖wn+1‖
2
∆tn

,
‖T n+1 − T n‖

2

‖T n+1‖
2
∆tn

)
(33)

where ‖.‖
2
is the discrete norm L2 and ∆tn = tn+1 − tn.

15



3.2. Validation

A thorough check of the dependence of numerical solutions with the mesh size was conducted
for the natural convection case, with H = 15.2 cm and two plate spacings, D = 7.1 cm and
D = 1.71 cm (Tab. 1). The mesh consists of nx × nz cells uniformly distributed in the
vertical direction. To accurately represent the dynamic and thermal boundary layers, the
grid was refined in the horizontal direction with a ratio between the largest and smallest
cells equal to 5. Table 1 provides:

• the mass flow rate in the entrance section,

ṁin =

∫ D

0

ρ(x, 0)w(x, 0) dx (34)

the mass flow rate leaving the channel (only the positive values of the vertical velocity
are taken into account)

ṁout =

∫ D

0

ρ(x, 2H)
w(x, 2H) + |w(x, 2H)|

2
dx (35)

• the widths of the recirculation at the outlet of the channel (z = 2H) and in the section
of the outlet of the heated wall (z = 3H/2) are calculated from

dψ(2H) = D − x1 with ψ(x1, 2H) = ψw (36)

dψ(3H/2) = D − x2 with ψ(x2, 3H/2) = ψw (37)

with ψw the value of the stream function along the right plate, arbitrary set to zero;

• the two convective coefficients h̄c,1 and h̄c,2.

Based on data reported in Tab. 1, we adopted the mesh with the smallest grid size to
simulate the natural convection flows, i.e. the mesh 160 × 3200. On the other hand, since
the coupled problems are much more costly in computational time, the slightly coarser grid
80 × 1600 is chosen for computing fluid flows and heat transfers when surface-to-surface
radiations are accounted for.

Some comparisons are also made with the results reported in [16] for mixed convection of air
(Pr = 0.71). In that configuration, the aspect ratio of the whole vertical channel is A = 12,
and flow reversal occurs for some set of Reynolds number, Re, and Richardson number
Ri = Ra/(PrRe2). The entire left wall is subjected to a heat flux whereas the opposite plate
is thermally isolated. The solid boundaries are perfectly reflecting surfaces (ε = 0). The inlet
conditions (Eq. 8) at z = 0 are slightly modified in order to set a uniform velocity profile
at the lower section of the channel. Because the velocity is now imposed, the pressure is set
free in the lower section, such that ∂pg/∂n = 0 (same condition implicitly set on solid walls).
Note that imposing a velocity profile or the coupled pressure/velocity condition deduced from
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the Bernoulli relation (Eq. 8) in the entrance section of the channel for mixed convection
was discussed in [55]. The depth of flow reversal is determined by the dimensionless length
build on the hydraulic diameter of the channel and defined by Z∗

r = (H − zr)/(2D) where
zr designates the ordinate satisfying the condition ∂w/∂x|x=D = 0. In this section, the
computations are performed with a 32 × 128 uniform grid, the same mesh as in reference
[16]. Table 2 shows a good agreement with a maximal discrepancy of 5.3% for Re = 400
and Ri = 100.

4. Results

4.1. Comparisons with the experimental results by Webb and Hill [1]

The experimental apparatus used by Webb and Hill [1] consisted in a vertical parallel plate
channel of high 2H = 30.4 cm formed by two walls, one heated and the other adiabatic (Fig.
1). The length of the heated section was H = 15.2 cm and unheated H/2 = 7.6 cm entry and
exit lengths were added to minimize radiation losses with the cold ambient environment.
The three wall spacings (D = 1.02 cm, 2.02 cm and 3.8 cm), the three Ohmic dissipation
fluxes at the heated wall (qw = 235W/m2, 300W/m2 and 375W/m2) considered in the
present subsection are those used for preparing Fig. 2 displayed in [1]. The data reported
in these figures were digitalized and are illustrated in the first two figures discussed below.
The first remark about the design of this experimental set-up, is that the upper extension has
a significant effect on the flow, as it was demonstrated in others experimental or numerical
works, [40, 42] for example.
The profiles of the temperature differences from the inlet temperature T0 along the heated
section are plotted in Fig. 2(a) for the three heating rates, a wall spacing of D = 2.02 cm
and an emissivity of both vertical wall of ǫ = 0.1, as it was assumed by Webb and Hill
[1]. These fluxes are not corrected for the conduction losses, estimated less than 1.8 percent
of the Ohmic heating [1]. Since the ambient air temperature was not specified in [1], an
inlet temperature of T0 = 290K was retained. Note that lower T0-values increase slightly
the radiative heat losses from the heating section. However, computations carried out with
T0 = 273K did not shown significant changes in the results reported in Fig. 2(a), owing to
the small view factors between the heated section and the fictitious black surfaces, formed
by the openings at the channel bottom and top provided that the channel aspect ratio is
large enough. When the wall heat flux increases, the temperature differences along the walls
increases, as expected. The maximum temperature is predicted at the top end of the heated
wall, and it is followed by an abrupt temperature decrease along the adiabatic section. As
can be seen, the temperature profile are similar to those reported in [1] while the present
numerical results show higher temperatures, all the more since the wall heat flux is increased.
These discrepancies are attributed to the conduction to the polystyrene insulation and to
the conduction in the aluminum foil used for covering the adiabatic top section which acts
as a fin. This point was mentioned in [1].
Figure 2(b) illustrates the ratio of radiative heat flux to the heat flux dissipated in the
heated section for qw = 300W/m2 and three plate spacings. The net radiative heat flux is
positive (radiative heat losses) over the heated and adiabatic top sections of the left-hand
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side (LHS) wall while is it negative along both the bottom adiabatic section of the LHS-wall,
and the facing unheated wall. The qr(z)/qw profiles are closely similar to those reported in
[1]. However, the discrepancies increase as the spacing increases. It should be noted that
the values provided in [1] were calculated from the temperature measurements (Fig. 2(a))
and, are therefore obviously smaller than those computed in the present study.

4.2. Pure natural convection

In order to show the importance of the effects on radiation, computations were firstly carried
out for pure natural convection for various spacings and wall heat fluxes. The height of
the one-sided heated vertical channel is the same as in the previous subsection [1]. The
thermophysical properties of air at T0 = 290K are as follows:

ρ0 = 1.2174 kg/m3, µ0 = 1.8058 · 10−5 kg/(m · s), β0 = 1/T0K
−1

cp0 = 1006.1 J/(kg ·K), k0 = 0.025505W/(m ·K)

These properties were used for calculating the reference value of the channel Rayleigh num-
ber reported in subsequent Tables and Figures. Since the height of the heated section was
set to H = 0.152m, it follows that Ra∗ = 2.825 · 1010qwD5. Note that all computations
were carried out for variable thermophysical properties based on the polynomial expressions
given in [46].
At section z = H/2 (inlet of the heated section), the vertical velocity turns from a parabolic
profile (developing flow) into an almost flat profile as the wall spacing increases, while the
flow rate increases first with D and then decreases to, apparently, reaches an asymptotic
value, as shown in Table 3. The vertical velocity and temperature profiles at the outlet of
the heated section and at the outlet of the channel are plotted in Figs. 3 and 4. As soon as
the fluid enters the heated section, the velocity profile for spacings larger than D = 2.02 cm
exhibits a boundary layer structure, well established at the outlet section of the heated wall,
as shown in Fig. 3(a), the maximum vertical velocity being almost independent of the spac-
ing. On the other hand, negative velocities are seen forD ≥ 2.02 cm. That demonstrates the
existence of flow reversals whose extends increase with the spacing. This pocket of downflow
and recirculation was revealed experimentally for the first time by Sparrow et al. [17], with
water as the working fluid. The temperature profiles reported in Fig. 3(b) are typical of a
boundary layer flow along a single plate for D ≥ 1.4 cm.
At the outlet channel section, the velocity profile (Fig. 3(c)) are not strongly modified, ex-
cept for the increase in the downflow velocities. The main changes in the flow variables are
seen from the temperature profiles (Fig. 3(d)) because the flow reversal induces an abrupt
transition to the surroundings temperature.
The distributions of the temperature differences from the inlet temperature T0 along the
two vertical walls are plotted in Fig. 4 for a heating rate of qw = 300 W/m2 and wall
spacings ranging from D = 1.02 cm to D = 7.1 cm (i.e. 945 ≤ Ra∗ ≤ 1.54 · 107). When
the wall spacing augments, the temperatures of the heated wall increase and reach their
maximum values for D ≈ 2.3 cm, showing that the single-plate limit is approached. The
bottom adiabatic section is almost uniformly at T0 while the temperature of the top adiabatic
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section decreases abruptly from a maximum value almost independent of D provided that
D ≥ 1 cm: Tmax ≈ 346K. This result indicates that the minimum heat transfer coefficient,
hmin = qw/(Tmax−T0), does not depend on D. On the other hand, the average temperature
of the heated section increases first with D and reaches then an almost constant value for
D ≥ 2.3 cm. Therefore, the mean heat transfer coefficient, calculated by using either Eq. 15
or Eq. 18, decreases at first with the wall spacing. For 1.02 cm ≤ D ≤ 2.3 cm, the adiabatic
RHS-wall is heated by the flow of hot air at its upper part, and the decrease in its tempera-
ture as D increases shows the transition to the asymptotic regime, for which the RHS-wall
is uniformly at T0.

Figure 5 shows the isotherms (left side) and streamlines (right side) for D = 2.02 cm (Ra∗ =
945) and D = 3.8 cm (Ra∗ = 6.78 · 105) in the case qw = 300W/m2. The dimensional
steamfunction ([kg/(m ·s)]) for 2D and variable density flows is calculated from its definition
as

ρ u =
∂ψ

∂z
, ρw = −∂ψ

∂x
(38)

In what follows, the plots of the streamlines are for a streamfunction value at the RHS
wall arbitrarily set to zero. The dashed lines (negative ψ-values) are for the streamlines
into the pocket of flow recirculation. The streamlines show boundary layer development
along the heated wall and penetration of a downcoming flow along the RHS-wall. At the
stagnation point located very close to the RHS-wall, the downward flow starts to merge
into the flow coming from the inlet section. The formation of reversal flow results from air
drawn in through the channel exit due to insufficient incoming air through the inlet. The
size of the pocket-like streamlines increase with Ra∗ (or D) and the penetration depth of
the recirculating flow increases also. This result is in good agreement with the experimental
and numerical studies by Sparrow et al. [17] for a one-sided heated vertical channel and by
Kihm et al. [19] for isothermal vertical walls.
The recirculation pocket extends both downward and in width as D increases, as illustrated
in Fig. 5. The width dψ of the recirculation at the outlet of the heated section (dψ(3H/2)
at z = 3H/2, Eq. 37) and at the channel outlet (dψ(2H) at z = 2H , Eq. 36), and the
penetration length Lp are provided in Fig. 6 versus the wall spacing. These quantities are
based on the location of the ψ = 0 value of the streamfunction: the width of the circulation
at any z-position is the distance between the ψ = 0 streamline and the RHS-wall, and the
penetration length is the distance from the outlet section at which the ψ = 0 streamline
separates from the RHS-wall (stagnation point). Figure 6(a) shows the increases in the re-
circulation width versus the wall spacing at the two aforementioned channel sections. It can
be seen that the wall spacing for the onset of the recirculation appears to be very close to
D = 1.5 cm and that the recirculation width increases almost linearly with D (or as Ra∗1/5),
and that dψ(3H/2) ≈ dψ(2H) for D ≥ 4 cm. The penetration length (Fig. 6(b)) increases
sharply with D just after the formation of a recirculating flow while a slow augmentation of
Lp is observed for D ≥ 4 cm. This behavior is in fairly good agreement with that reported
in Kihm et al. [19] for symmetrically isothermal walls and much smaller modified-Rayleigh
numbers.
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The mass flow rate (ṁin, Eq. 34) through the inlet section is reported in Table 3 as a
function of the wall spacing. As can be seen, ṁin reaches a maximum for D ≈ 1.7 cm, and
decreases thereafter. An optimal plate spacing for natural convection between an array of
symmetrically heated plates was first demonstrated at the same time by Bar Cohen and
Rohsenow [18] and Bejan [56], and discussed in details in a recent paper by Sun et al. [44].
The present results show that such an optimum exists also for asymmetrically heated chan-
nels, but no attempt at correlating this spacing with Ra∗ was done for the specific case
considered, because it is clear that it depends also on the length of the adiabatic upper
section (chimney effect). However, the main difference with symmetric heating is that the
reduction in the mass flow rate at the inlet section occurs almost simultaneously with the
onset of a flow reversal at the top part of the channel. From the present computations for
qw = 300W/m2, it can be concluded that the optimal spacing is close to D = 0.75 cm if it is
based on the D-value at which the mean and maximum temperatures of the heated section
reach asymptotic values (T ≈ 333K, Tmax ≈ 347K).
From the values of the mass flow rate through the outlet section reported in Table 3, ṁout

(Eq. 35), it can be seen that ṁin = ṁout up to D = 1.4 cm. Since ṁout is the sum of ṁin

plus the upward recirculating flow, the difference ṁout − ṁin characterizes the onset and
intensity of the recirculation. From Table 3, it can be seen that ṁout is almost constant
for D ≥ 2.02 cm while ṁin decreases (see also Fig. 11). The effect of the recirculation is
to concentrate the streamlines corresponding to the induced air flow at the entrance region
(ψ > 0) and to provide enough cold air, suck in through the outlet section, in order to feed
the boundary layer. Hence the rise in the boundary layer thickness as D increases is due to
the downcoming flow through the outlet section.
The present numerical results can be well fitted by the least square method with correlation
coefficients greater than r2 = 0.99. The correlations turned out to be:

Nuc,1 = 0.859Ra∗
0.183

, Nuc,2 = 0.763Ra∗
0.188

,

Nu1/2 = 0.721Ra∗
0.189

, θmax = 1.86Ra∗
−0.201

(39)

The agreement between the above correlations and those reported from the experimental
results by Webb and Hill [1] for the same configuration could considered as rather good.
Table 4 gives a more realistic view about the discrepancies between these correlations for
the lowest and highest Rayleigh numbers corresponding to both works. Note that the range
of Ra∗ considered is within the so-called single-plate regime. The first result is that the
discrepancies increase with Ra∗ from 2.9% to 13% for Nuc,1. The second result clearly indi-
cates that the definition of the average heat transfer coefficient following Eq. (15) or Eq. (18)
has a significant influence (up to 8% for Ra∗ = 103). This finding was not mentioned previ-
ously. The differences between the experimentally [1] and numerically determined midheight
Nusselt numbers are within the range 6.1% to 11% for 103 ≤ Ra∗ ≤ 1.5 · 107. About the
maximum heated wall temperature, the discrepancies with the experimental results from
Manca et al. [50] can be attributed to different chimney effects in the two studies since the

20



upper extension was larger than the channel width in [50].

4.3. Effects of surface radiation on the flow field and heat transfer

From the above result discussion (subsection 4.1), it is clear that radiative exchanges amongst
surfaces have a significant effects on the flow field and heat transfer when the facing plates
are submitted to imposed heat fluxes. Figure 7 shows the effect of radiation on the tem-
perature distributions along the two vertical walls according to their emissivity, assumed
equal for both walls. The selected case is D = 3.8 cm and qw = 300W/m2, i.e. the largest
configuration experimentally studied in [1]. As can be seen, the temperature of the heated
surface decreases when the emissivity is increased, the opposite being predicted for the fac-
ing adiabatic surface whose temperature increases. Therefore, radiation modifies the flow
field, and hence the wall convective heat transfer. This point raises some doubts about the
interpretation of experimental results and derivation of Nusselt number correlations when
the effects of radiation are not properly evaluated. For example, if the radiative exchanges
amongst the surfaces can be calculated from the surface temperature measurements, the
convective heat flux profiles can be easily obtained (provided that the conductive heat losses
are accurately estimated). Nevertheless, the temperature distribution along the heated sur-
face, used in the definition of the local heat transfer coefficient, results from the coupling
between radiation and convection. Therefore, the heat transfer coefficient is overestimated
for a surface cooled by radiation and underestimated if heated by radiation.

The effect of radiation on the vertical velocity profiles at three channel cross sections are
seen in Figs. 8(a)-8(c). The increase in the velocities (and in flow rate because the density
variations from the channel inlet are very small) with emissivity at the inlet section of the
heated wall is clearly seen in Fig. 8(a). The reason is that the adiabatic RHS-wall becomes
thermally active as soon as its temperature raises significantly under the effect of surface
radiation. When the fluid proceeds upwards the boundary-layer like velocity profile along
the heated wall turns into a boundary layer profile of an asymmetrically heated channel,
as seen in 8(b) and 8(c) for ε = 1. Furthermore, the flow reversal disappears for a wall
emissivity as small as ε = 0.1. The profiles of the temperature differences reported in Figs.
8(d)-8(f) give another view of the decrease in the heated wall temperature, and increases of
the fluid and adiabatic wall temperatures.
The net radiative heat flux distribution along the LHS-heated wall and RHS-adiabatic wall
are drawn in Figs. 9(a) and 9(b) for ε = 0.1 and ε = 1, respectively (D = 2.02 cm,
qw = 300W/m2). Positive qr(z)-values are for radiative cooling and negative ones for radia-
tive heating. For both cases, the RHS-wall is heated by radiation over most of its surface
and the heating rate increases sharply with emissivity. The bottom adiabatic part of the
LHS-wall is heated by the radiation reflected by the RHS-wall, and cooled by radiation
exchanges with the cold inlet section, assumed to be a black surface at T0 = 290K. Since
the view factor between the inlet section and the bottom of the walls is rather small, the
adiabatic bottom of the heated wall is always heated by radiation. This result is just specific
to the small D-value considered. More significant is the relative magnitude of the radiative
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heat losses, qr, to the heating flux, qw, along the heated section. For ε = 0.1 (as in the
experiments by Webb and Hill [1]), the average radiative heat flux is qr = 23W/m2 (7%
of qw) and reaches qr = 118W/m2 (more than 40% of qw) for ε = 1. As expected, the
peaks in qr(z) correspond to the maximum in wall temperature. The results are that, both
the average and maximum temperatures of the heated section decrease under the effects of
surface radiation. We will consider in what follows the effect of surface radiation on the
convective Nusselt number when introducing a decoupling between convective and radiative
modes, as it is usually done when maximum surface temperatures do not exceed about 10%
of the inlet gas temperature (in K).

Comparisons between the isothermal and streamline patterns shown in Fig. 5 for ε = 0
and those in Fig. 10 for D = 2.02 cm and 3.8 cm clearly exhibit the large changes in the
flow topology under the effects of surface radiation for ε = 0.1 and ε = 1. These patterns
demonstrate that radiation exchanges lead to a modification in the thermal conditions from
a one-wall heating to an asymmetric heating, with the disappearance of the flow reversal.
The insulated wall being heated by radiation, the downcoming flow from the outlet section
cannot persist as soon as the temperature of that wall exceeds just a little the surrounding
temperature. That happens at very low emissivity of the walls. When the radiative heating
of the insulated wall is large enough, a thermal boundary layer develops along the wall, and
starts at a lower z-elevation than at the heated wall. These observations may explain why
flow reversals are difficult to observe experimentally if the working fluid is a gas. On the
other hand, the recent experiments conducted by Ospir et al. [20] with water as the working
fluid and for the same boundary conditions as in the present study provide very reliable
pictures on the flow reversal.

The variation of the mass flow rate reported in Fig. 11 for qw = 300W/m2 indicates contin-
uous increases in ṁin with the wall spacing for ε = 0.1 and ε = 1 since any downcoming air
flow is predicted for both wall emissivities. On the other hand, the flow reversal discussed
previously for ε = 0 leads to a maximum in the flow rate at the inlet section (see Table 3)
while the outcoming flow rate at the outlet section ṁout (Eq. 35) is almost constant for
D ≥ Dopt, as seen in Fig. 11. The influence of surface radiation on the mean and maximum
temperature of the heated section is reported in Table 5 for the minimum and maximum
plate spacings considered in the present study. The overall effect is a reduction in both T
and Tmax as ε increases. Such a reduction is in part due to the radiative exchanges with the
outlet section assumed as a black surface at T0. That explains why the effect of radiation
is more important as the modified Rayleigh is increased. Here again, this result is specific
to the cases considered because the variations in Ra∗ are only due to changes in D while
the channel height is kept constant. Hence, it cannot be concluded that radiation effects
increase with the Rayleigh number, as it has been assumed in many papers.
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4.3.1. Correlations

Owing to the present definition of the conduction-to-radiation parameter, NR = 0.748 for
an inlet air temperature T0 = 290K and qw = 300W/m2. The radiative Nusselt is therefore
of the order of magnitude of the convective Nusselt number for black surfaces. Note that
the emissivity is not accounted for in the definition of NR: the influence of surface radiation
is thus much smaller for low surface emissivities than it seems, just by considering only the
NR value.
The convective and radiative Nusselt numbers defined by Eq. 29 are reported in Fig. 12.
In comparison with ε = 0, Nuc,2 is slightly modified for ε = 0.1 while its reduction is more
significant for ε = 1. In that case Nur,2 is of the order of Nuc,2. The combined radiation
convection effect produces a reduction in the maximum temperature of the heated wall, all
the more large since the plate spacing and the emissivity increase. For qw = 300W/m2 and
ε = 1, that reduction lies between 16.0K for D = 1.02 cm and 24.2K for D = 7.1 cm. The
present computations lead to the following correlations

Nuc,2 = 0.753Ra∗
0.189

, Nur,2 = 0.0279Ra∗
0.248

for ε = 0.1 (40)

Nuc,2 = 0.759Ra∗
0.181

, Nur,2 = 0.253Ra∗
0.232

for ε = 1 (41)

θmax = 1.88Ra∗
−0.207

for ε = 0.1, θmax = 1.60Ra∗
−0.226

for ε = 1 (42)

4.4. On the procedures used for the determination of the convective heat transfer coefficient
from temperature measurements

As discussed in the previous sections, surface radiation has a strong influence on the flow
field and makes difficult the observation of air flow reversals. Its effect on the total heat
transfer rate at the heated wall is also significant when mirror like wall surfaces are not used
in experimental set up. Since emissivities as low as ε = 0.05 are difficult to maintain due
to oxidation produced by the air flow (except if the wall are covered with gold films), most
experiments conducted for different heat fluxes prescribed to the walls are for non negligible
combined effects of surface radiation and natural convection. The usual ways employed to
determine the convective heat transfer coefficient are first the evaluation of the radiative heat
flux from the temperature measurements along the walls. The convective heat flux is then
obtained, just by subtraction, i.e. qcv(z) = qw − qr(z) (provided that the conductive heat
losses have been properly considered in the evaluation of qw (i.e. qw = qOhmic − qconduction)).

Such a procedure has been followed, for example, by Webb and Hill [1] and more recently
by Krishnan et al. [36] who used a combined experimental and numerical approach. Since
we are modeling the full coupled heat transfer modes, it is easy to proceed exactly as it was
done by experimentalists.
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As an example, the case D = 2.02 cm and qw = 300W/m2 is considered (note that the
effects of radiative exchanges with the cold inlet or outlet sections are rather weak in that
case). The coupled solutions are displayed in Fig. 10(a) (ε = 0.1) and in Fig. 10(b) (ε = 1).
The heat transfer results for the three approximate approaches are summarized in Table 6.
The corresponding streamlines and isotherms are displayed in Figs. 13 when the radiative
heat fluxes or temperature distributions computed from the coupled problem for ε = 0.1
and ε = 1, respectively, are used to generate the thermal boundary conditions on the heated
section: q′w, Tw(z) or T .

• qr is subtracted from qw (rows 2a and 3a in Table 6).
First, the average radiative flux at the heated section is calculated from the coupled
computations: qr = 19W/m2 for ε = 0.1 and qr = 108W/m2 for ε = 1.
Computations were carried out by setting ε = 0 and q′w = qw − qr. The plots of the
isotherms and streamlines reported in Figs. 13(a) and 13(d) exhibit large differences
both between the true flow fields (Figs. 10(a) and 10(b)) while it resembles more
or less those which are in the absence of surface radiation (i.e. for qw = 300W/m2,
row 1 in Table 6). Hence it could be assumed that this procedure leads to wrong
calculations of the heat transfer rate. However, the overall convective heat transfer
is weakly altered by the presence of a flow reversal, as it was also noted by Kihm et
al. [19]. Comparisons between the hc,1, hc,2 and Tmax reported in rows 1, 2 and 2a
for ε = 0.1 show that the differences are within 1%. Therefore the procedure followed
by Webb and Hill [1] may be considered accurate. Similar comparisons between rows
3 and 3a for ε = 1 show slightly larger differences, but less than 3%. On the other
hand, comparisons between rows 1, 3 and 3a demonstrate that a radiative heat flux
correction is needed for black surfaces, since the departures decrease from 6% (without
correction) to 3% (with correction).

• Temperatures at the heated section used as boundary conditions for the computa-
tions [36] (rows 2b-c and 3b-c in Table 6).
The temperature at the heated section is either the temperature distribution (Figs.
13(b) and 13(e)) or the average temperature (Figs. 13(c) and 13(f)) extracted from
the coupled problem. For the four cases considered, the average temperatures of the
adiabatic wall sections determined from the coupled problem are applied as bound-
ary conditions [36]: at the RHS-wall (T = 292.7K and T = 302.5K for ε = 0.1
and ε = 1, respectively), at the bottom extension of the LHS-wall (T = 290.4K and
T = 290.8K for ε = 0.1 and ε = 1, respectively), and at the top extension of the
LHS-wall (T = 319.0K and T = 309.0K for ε = 0.1 and ε = 1, respectively). Note
that the small increase in the average temperature of the RHS-wall for ε = 0.1 is
enough to almost suppress the flow reversal, and that the top extension is colder for
ε = 1 than for ε = 0.1.

The streamlines and isotherms displayed in Figs. 13(b)-(c) and Figs. 13(e)-(f) show
a better agreement with those reported in 10(a) and 10(b) than those obtained by

24



subtracting the average radiative flux. However, the average temperature applied at
the adiabatic wall may lead to the development of a thermal boundary layer from its
bottom (see the isotherms in Figs. 13(e)-(f)).

The results reported in rows 2b and 2c of Table 6 show that the mean heat transfer
rate and maximum temperature do not differ much from the previous cases if the
temperature distribution (Tw(z)) applied at the heated section is that deduced from
the coupled formulation. On the other hand, the use of the average temperature leads
to more significant differences, both in the convective coefficient and in the maximum
temperature. This result conflicts with the analysis reported in [36].

4.5. Non-Boussinesq effects

The influence of property variations on natural convection from a vertical isothermal, heated
surface was experimentally investigated by Clausing and Kempka [57]. By using a cryogenic
environment, the ratio of the absolute temperature of the wall to the ambient temperature
of gaseous nitrogen was varied in the range 1 < Tw/T0 ≤ 2.6. The experimental apparatus
allowed to study parts of both laminar and turbulent regimes (107 ≤ RaH ≤ 2 · 1010). It
was shown that variable properties have virtually no influence in the laminar regime while
cause large increases in heat transfer rates in the turbulent regime. Guo and Zhao [45]
used laser speckle photographic techniques for studying laminar natural convection between
two isothermal vertical parallel plates in air. The surface-to-ambient temperature difference
varied from 15K to 530K, and the spacing of the 10 cm-high plates was between 3mm
and 20mm. The experiments showed that the effects of variable properties are much larger
than on a single plate. The subsequent numerical study by Guo and Wu [58] based on a
parabolic formulation indicated strongest effects for small spacings and large values of the
non-Boussinesq parameter. From these two studies, it was also shown that, unlike for the
constant property case, the mass flow rate exhibits a nonmonotonic change with a maxi-
mum whose amplitude depends both on the spacing and heating rate. This question was
numerically revisited by Zamora and Hernández [59] who used an elliptic formulation for
an asymmetric heated channel with prescribed temperature at the hot wall and unheated
facing wall. They showed in particular that variable property effects produce an important
reduction of the recirculation region. It should be noted that experiments and computations
showing large variable property effects on the flow patterns were carried out for very high
temperature differences between the inlet and wall temperatures (up to 7×T0). Hence, con-
clusions about large variable property effects must be cautiously taken into consideration
for practical applications dealing with cooling of electronic equipments or non-concentrated
solar collectors, for example.

In what follows, results obtained from the variable property formulation are compared with
those derived by invoking the Boussinesq approximation. One of the reasons is that Webb
and Hill [1] suggested that the use of local properties is more appropriate for correlating
local heat transfer data despite the maximum measured temperature differences between the
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bottom and top ends of the heated section were much smaller than in the work by Clausing
and Kempka [57].

For the range of Ra∗ investigated, the influence of D (or A) was found negligible. The
reason is that the maximum wall temperature is almost insensitive to D provided that
D ≥ 1 cm, as shown in subsection 4.2. Therefore, we discuss only results obtained for
D = 2.02 cm. In order to focus on the influence of variable property effects, pure natural
convection is considered. The wall heat flux was varied from qw = 375W/m2 to qw =
1400W/m2 (3.56 · 104 ≤ Ra∗ ≤ 1.33 · 105). The non-Boussinesq parameter was thus in
the range 1.02 ≤ γ ≤ 3.82, and the corresponding maximal wall temperature was found in
the range 358K ≤ Tmax ≤ 489K, i.e. ∆Tmax/T0 between 0.23 and 0.69, larger than the
usual 0.1-limit for the validity of the Boussinesq approximation. The dynamical viscosity
and thermal conductivity of mixtures of ideal polyatomic gases increase with temperature,
roughly as the absolute temperature to the power 0.6 to 1.0, while the density decreases as
T−1 (the pressure effects being negligibly small, see Eq. 4). Therefore, the opposite effects
on viscous drag and buoyancy may produce non-monotonic and unpredictable variations of
the flow rate with increasing the maximum temperature difference.
Figure 14 shows that the non-Boussinesq effects have a weak influence on the flow patterns
near the heated wall for qw = 375W/m2, and that the flow rate at the inlet section is slightly
increased (about 9%) for qw = 1400W/m2 due to variable property effects. The most salient
result is about the reduction of the size of the recirculation region (width and penetration
length). This reduction and the increase in ṁin are linked, as discused previously (Figs.
6 and 11). Concerning the heat transfer results, it has been found that the influence of
variables properties is almost null for the smallest heat flux considered (qw = 235W/m2)
while the changes in average and maximum temperatures of the heated section were about
1% for the highest qw-value (qw = 1400W/m2). Hence it can be concluded that the Nusselt
number correlations reported previously would have been identical if the Boussinesq approx-
imation has been invoked. As a result, taking variable properties effects into consideration
for natural convection of air is not required for maximum increase in temperature less than
about 200K. These trends are in general agreement with the results discussed by Zamora
et Hernández [59] for asymmetric isothermal channels.

Conclusion

The combined effects of surface radiation and air natural convection in vertical, asymmet-
rically heated plate channels have been numerically investigated thanks to an improved
mathematical formulation in which the temperature variations of all thermophysical prop-
erties are accounted for. The present formulation does not imply excessive increases in
the computational costs. Extensive comparisons with the experimental results by Webb et
Hill [1] have been carried out and heat transfer correlations for pure natural convection as
well as for combined effects are provided. The agreement with the experimental results is
fairly good and the onset of flow reversal for pure natural convection has been revisited.
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The study leads to the following conclusions:

• The onset of flow reversal is delayed upon the effect of surface radiation. Mirror like wall
surfaces are required to observe experimentally flow recirculations when using air as the
working fluid. The effect of the plate spacing on the formation of a recirculating flow and
on the mass flow rates through both inlet and outlet sections has been analyzed in detail.
The large feeding of the boundary layer along the heated wall due the penetration of a
downcoming flow along the opposite wall has been quantitatively explored.

• The radiation contribution is to increase the temperatures of the adiabatic wall facing the
heated section, leading to prevent the occurrence of down flow for wall emissivity as small as
ε = 0.1. Radiation enhances the cooling of the heated wall and its contribution to the total
heat transfer rate is significant. For black surface at room temperatures, the heat transfer
by radiation is of the order of that by natural convection.

• Procedures generally used which consist in subtracting the radiative contribution to the
heat flux applied to the hot surface, qw, have been examined. If the radiative heat flux
distribution or the average radiative heat flux is subtracted from qw, the coupled (i.e. ε 6= 0)
and uncoupled (i.e. ε = 0) numerical solutions lead to quite accurate predictions of the
average convective heat transfer coefficient and maximum wall temperature. However, a
flow reversal is predicted in the uncoupled solutions while it is not for the coupled solutions.
If the measured temperature distribution along the heated section is used as the thermal
boundary condition in a combined experimental and numerical approach, the heat transfer
predictions are also quite accurate. On the other hand, large discrepancies are found when
the average temperature of the heated section is employed as thermal boundary condition.

• Since the maximum temperature of the heated wall is a priori unknown for prescribed wall
heat flux, a weakly compressible formulation for ideal gas has been used in carrying out the
computations. This point was raised in [1] since maximum wall temperatures 50K above
the inlet temperature were measured. It could be much greater for higher wall heat fluxes or
smaller plate spacings. The comparisons between the usual Boussinesq formulation and fully
variable fluid properties (including density in the transport terms) showed that negligible
influence of the variable property effects for surface-to-ambient temperature difference up to
200K.

• In order to allow the check of the numerical results reported in the Tables discussed herein,
all the required data are fully provided.
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TABLES

(a) D = 7.1 cm, qw = 300W/m2, Ra∗ = 1.52 · 107

nx × nz ṁin ṁout dψ(2H) dψ(3H/2) hc,1 hc,2
[g/(m · s)] [g/(m · s)] [cm] [cm] [W/(m2 ·K)] [W/(m2 ·K)]

80× 800 1.379 2.747 6.606 6.532 6.479 6.179
120× 1200 1.380 2.747 6.605 6.531 6.470 6.172
160× 1600 1.381 2.748 6.604 6.530 6.467 6.170

(b) D = 1.71 cm, qw = 300W/m2, Ra∗ = 1.24 · 104

nx × nz ṁin ṁout dψ(2H) dψ(3H/2) hc,1 hc,2
[g/(m · s)] [g/(m · s)] [cm] [cm] [W/(m2 ·K)] [W/(m2 ·K)]

40× 800 2.629 2.658 0.4652 0 7.292 6.751
80× 1600 2.633 2.658 0.4530 0 7.294 6.750
160× 3200 2.633 2.658 0.4523 0 7.294 6.750

Table 1: Natural convection. Effect of the grid size for (a) D = 7.1 cm, (b) D = 1.71 cm (qw = 300W/m2).

(Re, Ri) (200, 100) (200, 400) (400, 100) (400, 400)
Z∗

r , present results 3.71 4.44 2.34 3.53
Z∗

r , [16] 3.8 4.5 2.47 3.6
Relative difference 2.4% 1.4% 5.3% 2.0%

Table 2: Dimensionless length of the reversal flow Z∗

r as a function of the Reynolds number and Richardson
number Ri = Ra/(PrRe2).
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D [cm] 1.02 1.23 1.40 1.71 2.02 2.30 3.80 7.10
Ra∗ 945 2.41 · 103 4.60 · 103 1.25 · 104 2.88 · 104 5.51 · 104 6.78 · 105 1.54 · 107

ṁin [g/(m · s)] 1.84 2.23 2.44 2.63 2.59 2.43 1.70 1.38
ṁout [g/(m · s)] 1.84 2.23 2.44 2.66 2.75 2.75 2.71 2.75

Table 3: Natural convection. Mass flow rate as a function of the wall-spacing (qw = 300W/m2).

Ra∗ = 103 Ra∗ = 1.5 · 107

Nuc = 0.82Ra∗
0.194

[1] 3.13 20.2

Nuc,1 = 0.859Ra∗
0.183

(present) 3.04 17.7

Nuc,2 = 0.763Ra∗
0.188

(present) 2.80 17.0

Nu 1

2

= 0.58Ra∗
0.206

[1] 2.41 17.4

Nu 1

2

= 0.721Ra∗
0.189

present 2.66 16.4

θmax = 1.735Ra∗
−0.220

[50] 0.380 0.0458

θmax = 1.86Ra∗
−0.201

(present) 0.464 0.0672

Table 4: Natural convection. Comparisons between the present results with previous correlations [1, 50]
for the range of channel Rayleigh numbers considered (single-plate regime).

D = 1.02 cm D = 7.1 cm
(Ra∗ = 945) (Ra∗ = 1.54 · 107)

ε = 0 T 332.8 338.6
Tmax 347.7 347.7

ε = 0.1 T 331.2 334.4
Tmax 344.9 341.4

ε = 1 T 321.2 320.7
Tmax 331.7 323.5

Table 5: Comparisons between the average and maximum heated wall temperatures (qw = 300W/m2).
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B.C. type qw Ra∗ hcv,1 hcv,2 Tmax
[W/m2] [W/(m2 ·K)] [W/(m2 ·K)] [K]

1 ε = 0 qw (N.C.) 300 2.88 · 104 7.06 6.59 346.5

2 ε = 0.1 qw (Coupled) 300 2.88 · 104 7.05 6.56 342.5
2a ε = 0 q′w 281 2.69 · 104 6.98 6.52 343.5
2b − Tw(z) 282∗ 2.71 · 104 6.63 6.60 342.7
2c − Tw 268∗ 2.57 · 104 6.27 6.27 332.8

3 ε = 1 qw (Coupled) 300 2.88 · 104 6.67 6.20 327.2
3a ε = 0 q′w 192 1.85 · 104 6.47 6.11 329.3
3b − Tw(z) 194∗ 1.86 · 104 6.51 6.25 327.4
3c − Tw 186∗ 1.78 · 104 5.99 5.99 321.0

Table 6: Comparisons between the different procedures used for the convective part (D = 2.02 cm). N. C.:
pure natural convection, Coupled: combined radiation and natural convection, ∗ denotes an output from
the temperature distribution, Ra∗ are based on the average wall heat flux given in column 4.

36



FIGURES

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

H/2

H/2

x

z

O

H
ea

te
d 

w
al

l

D

H

Figure 1: Geometry of the parallel-plate channel.
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