G. Biros and O. Ghattas, Parallel Lagrange--Newton--Krylov--Schur Methods for PDE-Constrained Optimization. Part I: The Krylov--Schur Solver, SIAM Journal on Scientific Computing, vol.27, issue.2, pp.687-713, 2005.
DOI : 10.1137/S106482750241565X

C. Desceliers, R. G. Ghanem, and C. Soize, Maximum likelihood estimation of stochastic chaos representations from experimental data, International Journal for Numerical Methods in Engineering, vol.11, issue.6, pp.978-1001, 2006.
DOI : 10.1002/nme.1576

URL : https://hal.archives-ouvertes.fr/hal-00686154

C. Desceliers, C. Soize, and R. G. Ghanem, Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests, Computational Mechanics, vol.60, issue.5, pp.831-838, 2007.
DOI : 10.1007/s00466-006-0072-7

URL : https://hal.archives-ouvertes.fr/hal-00686150

C. C. Douglas, G. Haase, and M. Iskandarani, An additive Schwarz preconditioner for the spectral element ocean model formulation of the shallow water equations, Elec. Trans. Numer. Anal, vol.15, pp.18-28, 2003.

P. P. Eggermont and V. N. Lariccia, Maximum Penalized Likelihood Estimation. Volume I: Density estimation, 2001.

R. G. Ghanem and P. D. Spanos, Polynomial Chaos in Stochastic Finite Elements, Journal of Applied Mechanics, vol.57, issue.1, pp.197-202, 1990.
DOI : 10.1115/1.2888303

R. G. Ghanem and P. D. Spanos, Stochastic finite elements. A spectral approach , rev, 2003.

J. C. Gilbert and C. Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

A. Hyvärinen, Survey on Independent Component Analysis, Neural Comput . Survey, vol.2, pp.94-128, 1999.

M. Iskandarani, D. B. Haidvogel, and J. P. Boyd, A staggered spectral element model with application to the oceanic shallow water equations, International Journal for Numerical Methods in Fluids, vol.60, issue.5, pp.393-414, 1995.
DOI : 10.1002/fld.1650200504

P. S. Koutsourelakis, A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters, Journal of Computational Physics, vol.228, issue.17, pp.6184-6211, 2009.
DOI : 10.1016/j.jcp.2009.05.016

Y. M. Marzouk and H. N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics, vol.228, issue.6, pp.1862-1902, 2009.
DOI : 10.1016/j.jcp.2008.11.024

Y. M. Marzouk, H. N. Najm, and L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, AIP Conference Proceedings, pp.560-586, 2007.
DOI : 10.1063/1.2149785

A. Owen and Y. Zhou, Adaptive importance sampling by mixtures of products of beta distributions, Stanford university, Tech. Rep, vol.24, 1998.

C. Soize and R. G. Ghanem, Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.21-26, pp.21-26, 2009.
DOI : 10.1016/j.cma.2008.12.035

URL : https://hal.archives-ouvertes.fr/hal-00684487

J. Wang and N. Zabaras, A Bayesian inference approach to the inverse heat conduction problem, International Journal of Heat and Mass Transfer, vol.47, issue.17-18, pp.17-18, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.02.028

A. Webb, Statistical pattern recognition, 2002.

N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solution of stochastic inverse problems using a sparse grid collocation approach, Journal of Computational Physics, vol.227, issue.9, pp.4697-4735, 2008.
DOI : 10.1016/j.jcp.2008.01.019