J. Aboudi, Finite Strain Micromechanical Modeling of Multiphase Composites, International Journal for Multiscale Computational Engineering, vol.6, issue.5, pp.411-434, 2008.
DOI : 10.1615/IntJMultCompEng.v6.i5.30

S. Ghosh, K. Lee, and P. Raghavan, A multi-level computational model for multi-scale damage analysis in composite and porous materials, International Journal of Solids and Structures, vol.38, issue.14, pp.2335-2385, 2001.
DOI : 10.1016/S0020-7683(00)00167-0

P. Ponte-castañeda and E. Tiberio, Second-order homogenization method in finit elasticity and applications to blackfille elastomers, J. Mech. Phys. Solids, vol.48, pp.6-71389, 2000.

O. Lopez-pamies, Second-Order Estimates for the Macroscopic Response and Loss of Ellipticity in Porous Rubbers at Large Deformations, Journal of Elasticity, vol.21, issue.9, pp.247-287, 2004.
DOI : 10.1007/s10659-005-1405-z

URL : https://hal.archives-ouvertes.fr/hal-00111435

R. Smit, W. Brekelmans, and H. Meijer, Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling, Computer Methods in Applied Mechanics and Engineering, vol.155, issue.1-2, pp.181-192, 1998.
DOI : 10.1016/S0045-7825(97)00139-4

F. Feyel and J. L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Computer Methods in Applied Mechanics and Engineering, vol.183, issue.3-4, pp.309-330, 2000.
DOI : 10.1016/S0045-7825(99)00224-8

K. Terada and N. Kikuchi, A class of general algorithms for multi-scale analyses of heterogeneous media, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.40-41, pp.5427-5464, 2001.
DOI : 10.1016/S0045-7825(01)00179-7

F. Feyel, A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.28-30, pp.3233-3244, 2003.
DOI : 10.1016/S0045-7825(03)00348-7

V. G. Kouznetsova, M. G. Geers, and W. A. Brekelmans, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.48-51, pp.5525-5550, 2004.
DOI : 10.1016/j.cma.2003.12.073

J. Yvonnet and Q. C. He, The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, Journal of Computational Physics, vol.223, issue.1, pp.341-368, 2007.
DOI : 10.1016/j.jcp.2006.09.019

URL : https://hal.archives-ouvertes.fr/hal-00693621

E. Monteiro, J. Yvonnet, and Q. C. He, Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction, Computational Materials Science, vol.42, issue.4, pp.704-712, 2008.
DOI : 10.1016/j.commatsci.2007.11.001

URL : https://hal.archives-ouvertes.fr/hal-00692239

S. Nezamabadi, J. Yvonnet, and H. Zahrouni, A multilevel computational strategy for handling microscopic and macroscopic instabilities, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.27-29, pp.2099-2110, 2009.
DOI : 10.1016/j.cma.2009.02.026

URL : https://hal.archives-ouvertes.fr/hal-00692235

R. W. Ogden, G. Saccomandi, and I. Sgura, Fitting hyperelastic models to experimental data, Computational Mechanics, vol.34, issue.6, pp.484-502, 2004.
DOI : 10.1007/s00466-004-0593-y

N. Takano, M. Zako, and Y. Ohnishi, MACRO-MICRO UNCOUPLED HOMOGENIZATION PROCEDURE FOR MICROSCOPIC NONLINEAR BEHAVIOR ANALYSIS OF COMPOSITES, Journal of the Society of Materials Science, Japan, vol.45, issue.6Appendix, pp.81-86, 1996.
DOI : 10.2472/jsms.45.6Appendix_81

I. Temizer and P. Wriggers, An adaptive method for homogenization in orthotropic nonlinear elasticity, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.35-36, pp.35-363409, 2007.
DOI : 10.1016/j.cma.2007.03.017

J. Yvonnet, D. Gonzalez, and Q. C. He, Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.33-36, pp.2723-2737, 2009.
DOI : 10.1016/j.cma.2009.03.017

URL : https://hal.archives-ouvertes.fr/hal-00692234

J. Yvonnet and Q. C. He, A non-concurrent multiscale method for computing the response of nonlinear elastic heterogeneous structures, European Journal of Computational Mechanics, vol.19, pp.105-116, 2010.

J. Yvonnet, E. Monteiro, and Q. C. He, Computational homogenization of hyperelastic heterogeneous structures: a nonconcurrent approach

S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Applied Mechanics Reviews, vol.55, issue.4, 2002.
DOI : 10.1115/1.1483342

P. S. Koutsourelakis and G. Deodatis, Simulation of Binary Random Fields with Applications to Two-Phase Random Media, Journal of Engineering Mechanics, vol.131, issue.4, pp.397-412, 2005.
DOI : 10.1061/(ASCE)0733-9399(2005)131:4(397)

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, The Journal of the Acoustical Society of America, vol.109, issue.5, pp.1979-1996, 2001.
DOI : 10.1121/1.1360716

URL : https://hal.archives-ouvertes.fr/hal-00686287

C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, vol.23, issue.2-3, pp.307-323, 2008.
DOI : 10.1016/j.probengmech.2007.12.019

URL : https://hal.archives-ouvertes.fr/hal-00685154

J. Guilleminot, A. Noshadravan, C. Soize, and R. G. Ghanem, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.17-20, pp.1637-1648, 2011.
DOI : 10.1016/j.cma.2011.01.016

URL : https://hal.archives-ouvertes.fr/hal-00684305

M. Jardak and R. G. Ghanem, Spectral stochastic homogenization of divergence-type PDEs, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.6-8, pp.6-8429, 2004.
DOI : 10.1016/j.cma.2003.05.001

F. Xu and X. , A multiscale stochastic finite element method on elliptic problems involving uncertainties, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.25-28, pp.2723-2736, 2007.
DOI : 10.1016/j.cma.2007.02.002

M. Tootkaboni and L. Graham-brady, A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties, International Journal for Numerical Methods in Engineering, vol.196, issue.2, pp.59-90, 2010.
DOI : 10.1002/nme.2829

P. D. Spanos and A. Kontsos, A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites, Probabilistic Engineering Mechanics, vol.23, issue.4, pp.456-470, 2008.
DOI : 10.1016/j.probengmech.2007.09.002

B. Hiriyur, H. Waisman, and G. Deodatis, Uncertainty quantificatio in homogenization of heterogeneous microstructures modeled by XFEM, Int. J. Numer. Meth. Engng, 2011.

D. Jeulin, Random texture models for material structures, Statistics and Computing, vol.10, issue.2, pp.121-132, 2000.
DOI : 10.1023/A:1008942325749

D. Jeulin, MODELLING RANDOM MEDIA, Image Analysis & Stereology, vol.21, issue.4, pp.31-40, 2002.
DOI : 10.5566/ias.v21.pS31-S40

M. Grigoriu, Level-cut inhomogeneous filtered Poisson field for two-phase microstructures, International Journal for Numerical Methods in Engineering, vol.94, issue.6, pp.215-228, 2009.
DOI : 10.1002/nme.2340

S. Rahman, A random field model for generating synthetic microstructures of functionally graded materials, International Journal for Numerical Methods in Engineering, vol.55, issue.2, pp.972-993, 2008.
DOI : 10.1002/nme.2340

M. Lò-eve, Probability Theory. I, fourth edition, Graduate Texts in Mathematics, vol.45, 1977.

A. B. Tran, J. Yvonnet, C. Toulemonde, and J. Sanahuia, A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM, International Journal for Numerical Methods in Engineering, vol.72, issue.1, pp.1436-1459, 2011.
DOI : 10.1002/nme.3025

URL : https://hal.archives-ouvertes.fr/hal-00692223

H. A. Kiers, Towards a standardized notation and terminology in multiway analysis, Journal of Chemometrics, vol.56, issue.3, pp.105-122, 2000.
DOI : 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I

J. D. Carol and J. J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of ???Eckart-Young??? decomposition, Psychometrika, vol.12, issue.3, pp.283-319, 1970.
DOI : 10.1007/BF02310791

T. Zhang and G. H. Golub, Rank-One Approximation to High Order Tensors, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.2, pp.534-550, 2001.
DOI : 10.1137/S0895479899352045

R. K. Beatson, On the Convergence of Some Cubic Spline Interpolation Schemes, SIAM Journal on Numerical Analysis, vol.23, issue.4, pp.903-912, 1986.
DOI : 10.1137/0723058