]. G. Badkobeh and M. Crochemore, An infinite binary word containing only three distinct squares, 2010.

J. D. Currie and N. Rampersad, A proof of Dejean???s conjecture, Mathematics of Computation, vol.80, issue.274, pp.1063-1070, 2011.
DOI : 10.1090/S0025-5718-2010-02407-X

F. Dejean, Sur un th??or??me de Thue, Journal of Combinatorial Theory, Series A, vol.13, issue.1, pp.90-99, 1972.
DOI : 10.1016/0097-3165(72)90011-8

URL : http://doi.org/10.1016/0097-3165(72)90011-8

A. S. Fraenkel and J. Simpson, How many squares must a binary sequence contain? Electr, J. Comb, vol.2, 1995.

T. Harju and D. Nowotka, Binary words with few squares, Bulletin of the EATCS, vol.89, pp.164-166, 2006.

J. Karhumäki and J. Shallit, Polynomial versus exponential growth in repetition-free binary words, Journal of Combinatorial Theory, Series A, vol.105, issue.2, pp.335-347, 2004.
DOI : 10.1016/j.jcta.2003.12.004

N. Rampersad, J. Shallit, and M. W. Wang, Avoiding large squares in infinite binary words, Theoretical Computer Science, vol.339, issue.1, pp.19-34, 2005.
DOI : 10.1016/j.tcs.2005.01.005

M. Rao, Last cases of Dejean???s conjecture, Theoretical Computer Science, vol.412, issue.27, pp.3010-3018, 2011.
DOI : 10.1016/j.tcs.2010.06.020

J. Shallit, SIMULTANEOUS AVOIDANCE OF LARGE SQUARES AND FRACTIONAL POWERS IN INFINITE BINARY WORDS, International Journal of Foundations of Computer Science, vol.15, issue.02, pp.317-327, 2004.
DOI : 10.1142/S0129054104002443

]. A. Thue and . Uber-unendliche-zeichenreihen, Norske vid, Selsk. Skr. I. Mat. Nat. Kl. Christiana, vol.7, issue.11, pp.1-22, 1906.