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Abstract

A square is the concatenation of a nonempty word with itself. A word
has period p if its letters at distance pmatch. The exponent of a nonempty
word is the quotient of its length over its smallest period.

In this article we give a proof of the fact that there exists an infinite bi-
nary word which contains finitely many squares and simultaneously avoids
words of exponent larger than 7/3.

Our infinite word contains 12 squares, which is the smallest possible
number of squares to get the property, and 2 factors of exponent 7/3.
These are the only factors of exponent larger than 2.

The value 7/3 introduces what we call the finite-repetition threshold
of the binary alphabet. We conjecture it is 7/4 for the ternary alphabet,
like its repetitive threshold.

Keywords: combinatorics on words, repetitions, word morphisms.
MSC: 68R15 Combinatorics on words.

1 Introduction

Repetitions in words is a basic question in Theoretical Informatics, certainly
because it is related to many applications although it has first been studied
by Thue at the beginning of the twentieth century [11] with a pure theoretical
objective. Related results apply to the design of efficient string pattern matching
algorithm, to text compression methods and entropy analysis, as well as to the
study of repetitions in biological molecular sequences among others.

The knowledge of the strongest constraints an infinite word can tolerate
help for the design and analysis of efficient algorithms. The optimal bound on
the maximal exponent of factors of the word has been studied by Thue and
many other authors after him. One of the first discoveries was that an infinite
binary word can avoid factors with an exponent larger than 2, called 2+-powers.
This has been extended by Dejean [3] to the ternary alphabet and her famous
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conjecture on the repetitive threshold for larger alphabets has eventually been
proved recently after a series of partial results by different authors (see [9, 2]
and references therein).

Another constraint is considered by Fraenkel and Simpson [4]: their pa-
rameter to the complexity of binary infinite words is the number of squares
occurring in them without any restriction on the number of occurrences. It is
fairly straightforward to check that no infinite binary word can contain less than
three squares and they proved that some of them contain exactly three. Two of
these squares appear in the cubes 000 and 111 so that the maximum exponent
is 3 in their word. In this article we produce an infinite word with few distinct
squares and a smaller maximal exponent.

Fraenkel and Simpson’s proof uses a pair of morphisms, one to get an infinite
word by iteration, the other to produce the final translation on the binary
alphabet. Their result has been proved with different pairs of morphisms by
Rampersad et al. [8] (the first morphism is uniform), by Harju and Nowotka [5]
(the second morphism accepts any infinite square-free word), and by Badkobeh
and Crochemore [1] (the simplest morphisms).

In this article we show that we can combine the two types of constraints for
the binary alphabet: producing an infinite word whose maximal exponent of its
factor is the smallest possible while containing the smallest number of squares.
The maximal exponent is 7/3 and the number of squares is 12 to which can be
added two words of exponent 7/3.

It is known from Karhumäki and Shallit [6] that if an infinite binary word
avoids 7/3-powers it contains an infinite number of squares. Proving that it
contains more than 12 squares is indeed a matter of simple computation.

Shallit [10] has built an infinite binary word avoiding 7/3+-powers and all
squares of period at least 7. His word contains 18 squares.

Our infinite binary word avoids the same powers but contains only 12 squares,
the largest having period 8. As before the proof relies on a pair of morphisms
satisfying suitable properties. Both morphisms are almost uniform (up to one
unit). The first morphism is weakly square-free on a 6-letter alphabet, and the
second does not even correspond to a uniquely-decipherable code but admits
a unique decoding on the words produced by the first. To get the morphisms,
we first examined carefully the structure of long words satisfying the conditions
and obtained by backtracking computation. Then, we inferred the morphisms
from the regularities found in the words.

After introducing the definitions and main results in the next section, we
provide a weakly square-free morphism and the infinite square-free word on 6
letters it generates in Section 3. Section 4 shows how this word is translated into
an infinite binary word satisfying the constraints. In the conclusion we define
the new notion of finite-repetition threshold and state a conjecture on its value
for the 3-letter alphabet.
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2 Repetitions in binary words

A word is a sequence of letters drawn from a finite alphabet. We consider
the binary alphabet B = {0, 1}, the ternary alphabet A3 = {a, b, c}, and the
6-letter alphabet A6 = {a, b, c, d, e, f}.

A square is a word of the form uu where u is a nonempty (finite) word.
A word has period p if its letters at distance p are equal. The exponent of a
nonempty word is the quotient of its length over its smallest period. Thus, a
square is any word with an even integer exponent.

In this article we consider infinite binary words in which a small number of
squares occur.

The maximal length of a binary word containing less than three square is
finite. It can be checked that it is 18, e.g. 010011000111001101 contains only
00 and 11. But, as recalled above, this length is infinite if 3 squares are allowed
to appear in the word. A simple proof of it relies on two morphisms f and h0

defined as follows. The morphism f is defined from A∗

3 to itself by






f(a) = abc,
f(b) = ac,
f(c) = b.

It is known that the infinite word f = f(a)∞ it generates is square-free (see [7,
Chapter 2]). The morphism h0 is from A∗

3 to B∗ and defined by






h(a) = 01001110001101,
h(b) = 0011,
h(c) = 000111.

Then the result is a consequence of the next statement.

Theorem 1 ([1]) The infinite word h0 = h0(f(a)
∞) contains the 3 squares

00, 11 and 1010 only. The cubes 000 and 111 are the only factors occurring in

h and of exponent larger than 2.

It is impossible to avoid 2+-powers and keep a bounded number of squares.
As proved by Karhumäki and Shallit [6], the exponent has to go up to 7/3 to
allow the property.

In the two following sections we define two morphisms and derive the prop-
erties that we need to prove the next statement.

Theorem 2 There exists an infinite binary word whose factors have an expo-

nent at most 7/3 and that contains 12 squares, the fewest possible.

Our infinite binary word contain the 12 squares 02, 12, (01)2, (10)2, (001)2,
(010)2, (011)2, (100)2, (101)2, (110)2, (01101001)2, (10010110)2, and the two
words 0110110 and 1001001 of exponent 7/3.

Proving that it is impossible to have less than 12 squares in the previous
statement results from the next table. It has been obtained by pruned back-
tracking sequential computation that avoids exhaustive search. It shows the
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maximal length of binary words whose factors have an exponent at most 7/3,
for each number s of squares, 0 ≤ s ≤ 11.

s = 0 1 2 3 4 5 6 7 8 9 10 11
ℓ(s) = 3 5 8 12 14 18 24 30 37 43 83 116

3 A weakly square-free morphism on six letters

In this section we consider a specific morphism used for the proof of Theorem 2.
It is called g and defined from A∗

6 to itself by:







g(a) = abac,
g(b) = babd,
g(c) = eabdf,
g(d) = fbace,
g(e) = bace,
g(f) = abdf.

We prove below that the morphism is weakly square-free in the sense that
g = g∞(a) is an infinite square-free word, that is, all its finite factors have
an exponent smaller than 2. Note that however it is not square-free since for
example g(cf) = eabdfabdf contains the square (abdf)2. This prevents from
using characterisation of square-freeness of the morphism, or equivalently of the
fixed points of the morphism. As far as we know only an ad hoc proof is possible.

The set of codewords g(a)’s (a ∈ A6) is a prefix code and therefore a
uniquely-decipherable code. Note also that any occurrence of abac in g(w),
for w ∈ A∗

6, uniquely corresponds to an occurrence of a in w. The proof below
relies on the fact that not all doublets and triplets (words of length 2 and 3
respectively) occur in g, as the next statements show.

Lemma 1 The set of doublets occurring in g is

D = {ab, ac, ba, bd, cb, ce, da, df, ea, fb}.

Proof. Note that all letters of A6 appear in g. Then doublets ab, ac, ba, bd,
ce, df, ea, fb appear in g because they appear in the images of one letter. The
images of these doublets generate two more doublets, cb and da, whose images
do not create new doublets.

Lemma 2

The set of triplets in g is

T = {aba, abd, acb, ace, bab, bac, bda, bdf, cba, cea, dab, dfb, eab, fba}.

Proof. Triplets appear in the images of a letter or of a doublet. Triplets found
in images of one letter are: aba, abd, ace, bab, bac, bdf, eab, fba. The images
of doublets occurring in g, in set D of Lemma 1, contain the extra triplets: acb,
bda, cba, cea, dab, dfb.
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Table 1: Gaps of abac: words between consecutive occurrences of abac in g.
They are images of gaps between consecutive occurrences of a.

g(b) = babd 4
g(cb) = eabdfbabd 9
g(bd) = babdfbace 9
g(ce) = eabdfbace 9
g(bdfb) = babdfbaceabdfbabd 17

To prove that the infinite word g is square-free we first show that it contains
no square with less than four occurrences of the word g(a) = abac. Then, we
show it contains no square with at least four occurrences of it. The word abac

is chosen because its occurrences in g correspond to g(a) only, so they are used
to synchronise the parsing of the word according to the codewords g(a)’s.

Lemma 3 No square in g can contain less than four occurrences of abac.

Proof. Assume by contradiction that a square ww in g contains less than four
occurrences of abac. Let x be the shortest word whose image by g contains ww.

Then x is a factor of g that belongs to the set a((A6 \ {a})
∗
a)5. Since two

consecutive occurrences of a in g are separated by a string of length at most 4
(the largest such string is indeed bdfb as a consequence of Lemma 2), the set
is finite.

The square-freeness of all these factors has been checked via an elementary
implementation of the test, which proves the result.

Proposition 1 No square in g can contain at least four occurrences of abac.

Proof. The proof is by contradiction: let k be the maximal integer for which
gk(a) is square-free and let ww be a square occurring in gk+1(a) and containing
at least 4 occurrences of abac. Distinguishing several cases according to the
words between consecutive occurrences of abac (see Table 1), we deduce that
gk(a) is not square-free, the contradiction.

The square ww can be written

v0(abac · · · abac)u1
︸ ︷︷ ︸

v1(abac · · ·abac)u2
︸ ︷︷ ︸

where v0, u1, v1, and u2 contain no occurrence of abac. It occurs in the image
of a factor of g. The central part of w starting and ending with abac is the
image of a unique word U factor of gk(a) due to the code property:

g(U) = v−1
0 wu−1

1 = v−1
1 wu−1

2 .

We split the proof in two parts according to whether abac occurs in u1v1 or
not.
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No abac in u1v1. We consider five cases according to the value of u1v1, the
gap of abac (see Table 1).

1. u1v1 = babd corresponds to g(b) only. If either u1 or v1 is empty, then v0
or u2 is g(b), in either case we get bUbU or UbUb that are squares. Else
v0 has a suffix d so it belongs to g(b), and again bUbU is a square in g.

2. u1v1 = eabdfbabd corresponds to g(cb) only. An occurrence of cb always
belongs to g(ab) therefore U has a prefix abd and a suffix aba, and the
letter after aba is c. If v1 is empty, u2 has a prefix eabdfbabd so it is
g(cb) and again UcbUcb is a square. If v1 is not empty then v0 has a
suffix d, suffix of g(b), therefore bUcbUc is a square.

3. u1v1 = babdfbace corresponds to g(bd). The word abda is a factor of
g(ba) only so U has a prefix aba and a suffix ba. If |u1| = 0, v0 =
babdfbace can only be g(bd) so bdUbdU is a square. Otherwise u2 must
have a prefix b; since U has a suffix ba the next letter after it is either b
or c; as only g(b) is prefixed by b the letter is b so u2 has a prefix or is a
prefix of g(b), and we know that bab is always followed by d thus UbdUbd

is a square.

4. u1v1 = eabdfbace corresponds to g(ce) only. If u1 is empty, v0 is g(ce)
so ceUceU is a square. Otherwise, u2 has a prefix or is a prefix of g(c);
the next letter after g(c) is either b or e; (see Lemma 1); if it is b the
right-most U has a suffix aba but the left-most U has a suffix fba, which
cannot be. Therefore the letter after c is e and UceUce is a square.

5. u1v1 = babdfbaceabdfbabd. If |v1| > 12, v0 has a suffix g(dfb) and the
letter before it is b, so bdfbUbdfbU is a square. If 0 < |v1| ≤ 12, then
|u1| ≥ 5, so u2 has a prefix or is a prefix of g(bd) so the next letter is either
a or f. If it is a the right-most U has a suffix ba but v0 is a suffix of or
has a suffix g(b); the letter before it is either g(c) or g(f); if it is c then U
has a prefix abd and bdfbabd is from the concatenation of g(c) and g(b)
or g(dfb); in either case the left occurrence of U will have ea as a suffix,
a contradiction since fbUbdfbUbd and UbdfbUbdfb are both squares.

An occurrence of abac in u1v1. Then the suffix of u1 is either aba, ab or a
while the respective prefix of v1 is c, ac or bac.

Note that c is followed either by b or e (Lemma 1) and that cb occurs only in
the image of ab. Then if the occurrence of abac is followed by b, the occurrence
of cb in v0 is preceded by aba, and then there is a square starting 1, 2 or 3
positions before the occurrence of ww, which brings us back to the first case.
Therefore, abac is followed by e.

The occurrence of abace comes from g(ac), and by Lemma 2 u1v1 contains
an occurrence of g(bac). So, the occurrence of abace is preceded by d, and
since da occurs only in the image of ba, the occurrence of da in u2 is followed
by bac, which yields a square starting 1, 2 or 3 positions after the occurrence
of ww. Again this takes us back to the first case.
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In all cases we deduce the existence of a square in gk(a), which is a contra-
diction with the definition of k. Therefore there is no square in g containing at
least four occurrences of abac.

The next corollary is a direct consequence of Lemma 3 and Proposition 1.

Corollary 1 The infinite word g is square-free, or equivalently, the morphism

g is weakly square-free.

4 Binary translation

The second part of the proof of Theorem 2 consists in showing that the special
infinite square-free word on 6 letters introduced in the previous section can be
transformed into the desired binary word. This is done with a second morphism
h from A∗

6 to B∗ defined by







h(a) = 10011,
h(b) = 01100,
h(c) = 01001,
h(d) = 10110,
h(e) = 0110,
h(f) = 1001.

Note that the codewords of h do not form a prefix code, nor a suffix code, nor
even a uniquely-decipherable code! We have for example g(ae) = 10011·0110 =
1001 · 10110 = g(fd). However, parsing the word h(y) when y is a factor of g
is unique due to the absence of some doublets and triplets in it (see Lemmas 1
and 2). For example fd does not occur, which induces the unique parsing of
100110110 as 10011 · 0110.

Proposition 2 The infinite word h = h(g∞(a)) contains no factor of expo-

nent larger than 7/3. It contains the 12 squares 0
2, 12, (01)2, (10)2, (001)2,

(010)2, (011)2, (100)2, (101)2, (110)2, (01101001)2, (10010110)2 only. Words

0110110 and 1001001 are the only factors with an exponent larger than 2.

The proof is based on the fact that occurrences of 10011 in h identify oc-
currences of a in g and on the unique parsing mentioned above. It proceeds by
considering several cases according to the gaps between consecutive occurrences
of 10011 (see Table 2), associated with gaps between consecutive occurrences
of a in g, which leads to analyse paths in the graph of Figure 1.

Proof. We show that if h would contain a square not in the list it would come
from a square in g, which cannot be since g is square-free (Corollary 1).

Suppose h contains the square w2. It is a factor of h(gk(a)), for some integer
k and can be written v0(h(a) · · ·h(a))u1

︸ ︷︷ ︸
v1(h(a) · · ·h(a))u2
︸ ︷︷ ︸

. The central part of
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ba cba bda

cea bdfba

Figure 1: Graph showing immediate successors of gaps in the word g: a suffix
of it following an occurrence of a is the label of an infinite path.

Table 2: Gaps between consecutive occurrences of 10011 in h.

h(b) = 01100 5
h(cb) = 0100101100 10
h(bd) = 0110010110 10
h(ce) = 010010110 9
h(bdfb) = 0110010110100101100 19

w is the image of a unique square-free factor U of gk(a) due to the unique
parsing mentioned above:

h(U) = (h(a) · · ·h(a)) = v−1
0 wu−1

1 = v−1
1 wu−1

2 .

We proceed through different cases as in the proof of Proposition 1.

No h(a) in u1v1.

1. u1v1 = 01100 corresponds to h(b) only.

If |v1| > 1, then v0 belongs to h(b), bUbU is a square. Else |u1| ≥ 4 so
u2 belongs to h(b), it cannot belong to h(e) since ae is not a factor of g,
therefore UbUb is a square of g.

2. u1v1 = 0110010110 corresponds to h(bd).

v0 (h(a) · · ·h(a))
︸ ︷︷ ︸

h(bd) (h(a) · · ·h(a))
︸ ︷︷ ︸

u2

the word abda is a factor of g(ba) only, so U has a prefix abac and a suffix
ba (Note that U cannot be aba since ababdaba is not a factor of g).

v0 (h(abac) · · ·h(ba))
︸ ︷︷ ︸

h(bd) (h(abac) · · ·h(ba))
︸ ︷︷ ︸

u2

8



If u2 comes from or has a prefix h(b) then the letter after bab is always
d so we have the square UbdUbd. Then u2 is a prefix of or has a prefix
h(c), the longest common prefix (LCP) of h(c) and h(b) is 01, so v0 has
a suffix 10010110, which is a suffix of h(bd) or h(ce). If v0 comes from
h(bd) then we have the square bdUbdU . So v0 is a suffix of h(ce)

h(ce) (h(abac) · · ·h(ba))
︸ ︷︷ ︸

h(bd) (h(abac) · · ·h(ba))
︸ ︷︷ ︸

h(c).

cea ba

cba

bda baX

bdfba

bdaX

cea

ba XX

bdfba...

cea XX

bda ba

cba

bda baXX

bdfba

bdaXX

cea

ba X

bdfba...

cea X

The sign XX shows that the particular branch of the trie terminates be-
cause either a square occurs or the sequence is not a factor of g. The sign
X on the other hand represents the termination of a particular branch as
a consequence of the discontinuation of the corresponding branch in the
other trie. If we continue these tries we will have:

ce abac babd fbace abdf babd abac eabdf bace abac babd abac eabdf . . .ba
︸ ︷︷ ︸

bd abac babd fbace abdf babd abac eabdf bace abac babd abac eabdf . . .ba
︸ ︷︷ ︸

c

which is the image of

eabdf bace abac . . .abac
︸ ︷︷ ︸

babd fbace abac . . .abac
︸ ︷︷ ︸

e

itself image of
ce a . . .a

︸ ︷︷ ︸
bd a . . .a

︸ ︷︷ ︸
c

so we have the same situation as at the starting point; but U is shorter in
this case, therefore if we continue this process we should have

ce abac babd fbace abdf babd abac babd fbace abdf bace a

but abdf bace is the image of fe that is not in D (Lemma 1).
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3. u1v1 = 0100101100 corresponds to h(cb).

The word acba is a factor of g(ab) only, so U has a prefix abd and a suffix
aba:

v0 (h(abd) . . . h(aba))
︸ ︷︷ ︸

h(cb) (h(abd) . . . h(aba))
︸ ︷︷ ︸

u2

The word u2 comes from or has a prefix h(c). If the letter after it is b, we
have the square UcbUcb.

Otherwise u2 comes from or has a prefix h(ce). If v0 comes from or has a
suffix h(b) then we have the square bUcbUc.

Therefore the letter before U is e preceded by c, i.e. the string before the
left U is ce:

h(ce) (h(abd) . . . h(aba))
︸ ︷︷ ︸

h(cb) (h(abd) . . . h(aba))
︸ ︷︷ ︸

h(ce).

cea bdfba

bda X

cea

ba

cba

bda...

bdfbaX

ceaX

bdfbaXX

cba bdfba

bda XX

cea

ba

cba

bda...

bdfbaXX

ceaXX

bdfbaX

Now we have the same situation as in the previous case

h(g(ce)) (h(g(abac)) . . . h(g(ba)))
︸ ︷︷ ︸

h(g(bd)) (h(g(abac)) . . . h(g(ba)))
︸ ︷︷ ︸

h(g(c)).

4. u1v1 = 010010110 corresponds to h(ce) only.

Before c is always ba (Lemma 2) and after e is ab (Lemma 2), so ab is a
prefix of U and ba is a suffix of U :

v0 (h(ab) . . . h(ba))
︸ ︷︷ ︸

h(ce) (h(ab) . . . h(ba))
︸ ︷︷ ︸

u2.

(i): u2 belongs to h(cb) since we cannot have UceUce and the letter after
c is b or e (Lemma 1):

v0 (h(ab) . . . h(ba))
︸ ︷︷ ︸

h(ce) (h(ab) . . . h(ba))
︸ ︷︷ ︸

h(cb)
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The letter before bacb is a so:

v0 (h(ab) . . . h(aba))
︸ ︷︷ ︸

h(ce) (h(ab) . . . h(aba))
︸ ︷︷ ︸

h(cb).

NOTE: U is not aba since abaceabacb is not a factor of gk(a).

Now abace is a prefix of the image of ac so U has a prefix abdf and the
word before it is either ce or b; the first choice gives the square ceUceU
and the second choice:

h(b) (h(abdf) . . . h(aba))
︸ ︷︷ ︸

h(ce) (h(abdf) . . . h(aba))
︸ ︷︷ ︸

h(cb).

ba bdfba

bda XX

cea

ba

cba

bda ba

cbaX

cea

baXX

bdfba...bdfbaXX

ceaXX

bdfbaX

cea bdfba

bda X

cea

ba

cba

bda ba

cbaXX

cea

baX

bdfba...bdfbaX

ceaX

bdfbaXX

Now if we continue the above tries we get:

b abd fbace abac babd abac eabdf babd abac babd fbace abdf ba . . .ba
︸ ︷︷ ︸

ce abdf bace abac babd abac eabdf babd abac babd fbace abdf ba . . .ba
︸ ︷︷ ︸

cb

which is the image of

bd abac babd fbace abdf . . .ba
︸ ︷︷ ︸

ce abac babd fbace abdf . . .ba
︸ ︷︷ ︸

b.

This is the same situation as the next case and we will see that after going
one step back it brings us back to this case again. Now we are exactly in
the same situation as at the beginning except that the length of the word
X = abdf . . . a is shorter than U . Repeating this process enough times we
should see that the word

babd fbace abac babd abac eabdf bace abac babd aba

11



which is the image of bdabaceaba, is not a factor of gk(a).

(ii): u2 belongs to h(b) (the LCP of h(c) and h(b) is 01) so v0 must have
a suffix 0010110, which belongs to h(bd) because if it belongs to h(ce)
then ceUceU is a square.

h(bd) (h(ab) . . . h(ba))
︸ ︷︷ ︸

h(ce) (h(ab) . . . h(ba))
︸ ︷︷ ︸

h(b).

bda ba

cba

bda baXX

bdfba

bdaX

cea...

cea

baX

bdfbaXX

cea ba

cba

bda baX

bdfba

bdaXX

cea...

cea

baXX

bdfbaXX

Continuing this trie we have

bd abac babd fbace a . . .ba
︸ ︷︷ ︸

ce abac babd fbace a . . .ba
︸ ︷︷ ︸

bd.

This is factor of g(b abdf . . .a
︸ ︷︷ ︸

ce abdf . . .a
︸ ︷︷ ︸

cb) which is the previous case.

5. u1v1 = 0110010110100101100 corresponds to h(bdfb) only. This case is
dealt with the same method.

u0 (h(a) . . . h(a))
︸ ︷︷ ︸

h(bdfb) (h(a) . . . h(a))
︸ ︷︷ ︸

u2.

If u2 belongs to h(c), the LCP of h(c) and h(b) is 01 so u0 must have a suf-
fix 10010110100101100, therefore u0 belongs to h(bdfb). But bdfbUbdfbU
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is a square and a factor of gk(a); a contradiction, so u2 belongs to or has
a prefix h(b). We have two choices here.

(i): the next word after the right occurrence of U is ba. The LCP of h(bd)
and h(ba) is 10, u0 has suffix of 110100101100, so it either belongs to
h(dfb) or h(acb). The first case gives that dbfUbdbfUb is a square and
a factor of gk(a), a contradiction. So u0 belongs to h(acb):

h(acb) (h(abda) . . . h(a))
︸ ︷︷ ︸

h(bdf b) (h(abda) . . . h(a))
︸ ︷︷ ︸

h(ba).

Prefixes and suffixes of U are determined only by looking at D and T .

cba bda ba

cba XX

cea

baX

bdfba

bdaX

cea...

bdfba bda ba

cba X

cea

baX

bdfba

bdaXX

cea...

We have:

abac babd abac eabdf bace . . .abac
︸ ︷︷ ︸

babd fbace

abdf babd abac eabdf bace . . .abac
︸ ︷︷ ︸

babd fbace abac

which is the image of

ab ace . . .a
︸ ︷︷ ︸

bdfbace . . .a
︸ ︷︷ ︸

bda.

Now this is the next case so if we go back enough steps we should see that
the length of U decreases and at the end we get

ac babd abac eabdf babd abac eaba

but this is not a factor of gk(a), a contradiction.

(ii): the word after U is bd. Now here the only possible letter after abd is a
since if it is f it is a prefix of fb so we have UbdfbUbdfb, a contradiction.
As the LCP of h(bdfb) and h(bda) is 01100101101001 u0 must have a
suffix 01100 so it can belong to h(ab) or h(acb).

13



(I):
h(ab) (h(a) . . . h(a))

︸ ︷︷ ︸
h(bdfb) (h(a) . . . h(a))

︸ ︷︷ ︸
h(bda).

Only using D, T and the Figure 1 we can continue building U ,

h(ab) (h(ace) . . . h(ba))
︸ ︷︷ ︸

h(bdfb) (h(acea) . . . h(ba))
︸ ︷︷ ︸

h(bda).

Continuing further we get:

h(abac eabdf babd abac . . . abac
︸ ︷︷ ︸

babd fbace abdf babd abac . . .abac
︸ ︷︷ ︸

babda).

This is the image of

h(g(acb a . . .a
︸ ︷︷ ︸

bdfb a . . .a
︸ ︷︷ ︸

ba))

and we are back to the case above.

(II):
h(acb) (h(a) . . . h(a))

︸ ︷︷ ︸
h(bdfb) (h(a) . . . h(a))

︸ ︷︷ ︸
h(bda).

Using the same method we build the word U :

ac b abd . . .ba
︸ ︷︷ ︸

bd fbace . . .ba
︸ ︷︷ ︸

bd a.

Here we cannot go further as U cannot have abd nor ace as prefixes at
the same time.

An occurrence of h(a) in u1v1. Looking at Figure 1, the image of the
concatenation of two connected nodes (distance 1 arrow) are the possibilities
for u1v1h(a), but note that the second period of the square must start within
h(a), starting point of the arrow, otherwise it is one of the cases above. If the
lengths of both nodes are larger than 2 then by unique parsing we are bound to
have a square in gk(a) and get a contradiction. So we have to consider only the
four cases where one of the nodes is ba:

1. u1v1 = h(bacb) = 01100100110100101100, so u2 must have a prefix h(b)
and u0 a suffix of h(cb), before cb is always a, so acbUbacbUb is a square
in gk(a).

2. u1v1 = h(bace) = 0110010011010010110, so u2 must have a prefix h(b)
and u0 a suffix h(ce), before ce is always a, so aceUbaceUb is a square in
gk(a).

3. u1v1 = h(ceab) = 0100101101001101100, so u2 must have a prefix of
h(ce) and u0 a suffix of h(b), after ce is always a, so bUceabUcea is a
square in gk(a).

14



4. u1v1 = h(bdab) = 01100101101001101100, so using tries as before shows
that after enough backward iteration we should have

fbace abdf babd abac babd abac eabdf babd abac babd

which contains a square.

In all cases the conclusion is that we get a square in gk(a), a contradiction
with the definition of k. This completes the proof of Proposition 2.

Theorem 2 follows immediately from Proposition 2.

5 Conclusion

The constraint on the number of squares imposed on binary words slightly differs
from the constraint considered by Shallit [10]. The squares occurring in his word
have period smaller than 7. Our word contains less squares but their maximal
period is 8.

Looking at repetitions in words on larger alphabets, the subject introduces a
new type of threshold, that we call the finite-repetitions threshold (FRt). For the
alphabet of a letters, FRt(a) is defined as the smallest rational number for which
there exists an infinite word avoiding FRt(a)+-powers and containing a finite
number of r-powers, where r is Dejean’s repetitive threshold. Karhumäki and
Shallit results as well as ours show that FRt(2) = 7/3. Our result additionally
proves that the associated minimal number of squares is 12.

Computation shows that the maximal length of (7/4)+-free ternary word
with only one 7/4-repetition is 102. This leads us state the following conjecture,
which has been tested up to length 20000.

Conjecture 1 The finite-repetitions threshold of 3-letter alphabet is 7

4
and the

associated number of 7

4
-powers is 2.

Values for larger alphabets remain to be explored.
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