
HAL Id: hal-00742047
https://hal.science/hal-00742047

Submitted on 13 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting powers and periods in a string from its runs
structure

Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub
Radoszewski, Wojciech Rytter, Tomasz Walen

To cite this version:
Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, et
al.. Extracting powers and periods in a string from its runs structure. SPIRE, 2010, Los Cabos,
Mexico. pp.258-269, �10.1007/978-3-642-16321-0_27�. �hal-00742047�

https://hal.science/hal-00742047
https://hal.archives-ouvertes.fr

Extracting Powers and Periods in a String

from its Runs Structure

Maxime Crochemore1,3, Costas Iliopoulos1,4, Marcin Kubica2,
Jakub Radoszewski2⋆, Wojciech Rytter2,5, and Tomasz Waleń2

1 King’s College London, London WC2R 2LS, UK
maxime.crochemore@kcl.ac.uk, csi@dcs.kcl.ac.uk

2 Dept. of Mathematics, Computer Science and Mechanics,
University of Warsaw, Warsaw, Poland

[kubica,jrad,rytter,walen]@mimuw.edu.pl
3 Université Paris-Est, France

4 Digital Ecosystems & Business Intelligence Institute,
Curtin University of Technology, Perth WA 6845, Australia

5 Dept. of Math. and Informatics,
Copernicus University, Toruń, Poland

Abstract. A breakthrough in the field of text algorithms was the dis-
covery of the fact that the maximal number of runs in a string of length
n is O(n) and that they can all be computed in O(n) time. We study
some applications of this result. New simpler O(n) time algorithms are
presented for a few classical string problems: computing all distinct kth
string powers for a given k, in particular squares for k = 2, and finding
all local periods in a given string of length n. Additionally, we present
an efficient algorithm for testing primitivity of factors of a string and
computing their primitive roots. Applications of runs, despite their im-
portance, are underrepresented in existing literature (approximately one
page in the paper of Kolpakov & Kucherov, 1999). In this paper we at-
tempt to fill in this gap. We use Lyndon words and introduce the Lyndon
structure of runs as a useful tool when computing powers. In problems re-
lated to periods we use some versions of the Manhattan skyline problem.

1 Introduction

The structure of all runs in a string provides succinct and very useful informa-
tion about periodic properties of the string. Several basic applications of this
structure were given in [13]. We present some other algorithmic applications of
runs and simplify already known algorithms.

First we consider the problem of computing all distinct kth powers in a
string of length n, for a given k. It is a known fact that the number of distinct
squares (k = 2) does not exceed 2n [8, 11, 12] and for cubes (k = 3) there is
a 0.8n bound [14], which implies same bound for any value k ≥ 4. Gusfield &

⋆ Corresponding author. Some parts of this paper were written during the correspond-
ing author’s Erasmus exchange at King’s College London

Stoye [10] present an O(n) time algorithm for computing all the distinct squares.
Unfortunately, this algorithm is complicated and uses suffix trees which are a
rather heavyweight data structure and add a logarithmic factor depending on
the size of alphabet in most implementations. We present a much simpler O(n)
time algorithm which computes all distinct kth powers in a string of length n
using suffix arrays instead of suffix trees.

Another application of the runs structure is the computation of local periods
which are related to the critical factorizations of a string [5]. The known O(n)
time algorithm by Duval et al. [6] employs several different techniques modified
in a non-trivial way. We present an equally efficient but simpler algorithm using
the solution of the Manhattan Skyline Problem.

Finally, we consider factor-primitivity queries, which consist in checking, for
any factor of a given word, whether it is primitive and what is its primitive root.
This problem has potential applications in data compression, in particular, in
run-length encoding and its derivatives. We provide a solution to this problem
with O(n logǫ n) preprocessing time, for any ǫ > 0, and O(log n) query time.

2 Preliminaries

Let u be a word of length n, u = u[1 . . n], over a bounded alphabet Σ. We say
that an integer p is the (shortest) period of u[1 . . n] (notation: p = per(u)) if p is
the smallest positive integer such that u[i] = u[i + p] holds for all 1 ≤ i ≤ n− p.

b a a b a b a a b a b b

Fig. 1. The structure of runs in the word baababaababb. The word contains 3 runs
with period 1, 2 runs with period 2, 1 run with period 3 and 1 run with period 5

A run v (a maximal repetition) in the word u is an interval [i . . j] such
that the shortest period p = per(v) of the associated factor u[i . . j] satisfies
2p ≤ j − i + 1, and the interval cannot be extended to the left nor to the
right without violating the above property, that is, u[i − 1] 6= u[i + p − 1] and
u[j−p+1] 6= u[j +1], provided that the respective letters exist. Denote by R(u)
the set of all runs in u, each represented as a triple (i, j, p). It is known that
|R(u)| = O(n) [4] and all elements of R(u) can be computed in O(n) time [13]
(a more practical algorithm for computing all runs is given in [2]).

If wk = u (k is a positive integer) then we say that u is the kth power of
the word w. A square (cube) is the 2nd (3rd) power of a nonempty word. The
primitive root of a word u, denoted root(u), is the shortest word w such that

2

wk = u for some positive integer k. We call a word u primitive if root(u) = u,
otherwise it is called non-primitive.

Let us recall two useful data structures in string processing.

Suffix Arrays. The suffix array of the word u consists in three tables: SUF,
LCP and RANK. The SUF array stores the list of positions in u sorted according
to the increasing lexicographic order of suffixes starting at these positions, i.e.:

u[SUF[1] . . n] < u[SUF[2] . . n] < . . . < u[SUF[n] . . n].

Thus, indices of SUF are ranks of the respective suffixes in the increasing lexi-
cographic order. The LCP array is also indexed by the ranks of the suffixes, and
stores the lengths of the longest common prefixes of consecutive suffixes in SUF.
Denote by lcp(i, j) the length of the longest common prefix between u[i . . n] and
u[j . . n] (for 1 ≤ i, j ≤ n). Then, we set LCP[1] = −1 and, for 1 < r ≤ n, we
have:

LCP[r] = lcp(SUF[r − 1],SUF[r]).

Finally the RANK table is an inverse of the SUF array:

SUF[RANK[i]] = i for i = 1, 2, . . . , n.

All tables comprising the suffix array can be constructed in O(n) time [3].

Range Minimum Queries. Define the range minimum query data structure
(RMQ, in short) as follows. Assume that we are given an array A[1 . . n] of
integers. This array is preprocessed to answer the following form of queries: for
an interval [a . . b] (for 1 ≤ a ≤ b ≤ n), find the minimum value A[k] for a ≤ k ≤ b.

The best known RMQ data structures have O(n) preprocessing time and
O(1) query time, using only O(n) bits of space [7, 15]. The RMQ data structure
on the LCP array enables the computation of longest common extensions, i.e.,
longest common prefixes between any two suffixes of a string in O(1) time, with
O(n) time preprocessing.

3 Lyndon Representations of Runs

Let u be a word of length n. By rot(u, c) let us denote a cyclic rotation of the
word u obtained by moving (c mod n) first letters of u to its end. We say that the
words u and rot(u, c) are cyclically equivalent. A word that is both primitive and
lexicographically minimal in the class of its cyclic rotations is called a Lyndon
word. We define the Lyndon root of a word u, lroot(u), as the (only) Lyndon word
cyclically equivalent to root(u). We define the Lyndon root of a run v = (i, j, p)
in u, lroot(v), as lroot(u[i . . i + p− 1]), note that this notion is slightly different
from the corresponding notion for words.

Denote by u(a) a prefix of the word u of length a and by u(a) a suffix of u
of length a. Each run v can be uniquely represented (Lyndon representation) in
the following form:

v
.
= λ(a) · λm · λ(b) (1)

3

where λ = lroot(v) and 0 ≤ a, b < per(v), see Fig. 2. We say that v is a λ-run.
We will divide all runs of R(u) into maximal groups of λ-runs.

λ = lroot(v) λ λ λ(b)λ(a)

m occurrences

suf (v)

Fig. 2. A graphical view of the Lyndon representation of a run v = λ(a)
· λm

· λ(b)

For a run v = (i, j, p), define suf (v), suf (v) ≥ i, as the smallest index for
which:

u[suf (v) . . suf (v) + p− 1] = lroot(v),

see Fig. 2. This parameter, together with the period per(v), provides a unique
characterization of the Lyndon root of the run. Additionally define rank(v) =
RANK[suf (v)].

Lemma 1. The values of suf (v) and rank(v) for any run v in a word u of length
n can be computed in O(1) time assuming O(n) time preprocessing.

Proof. Let v = (i, j, p). The value of rank(v) can be computed using RMQ on
the interval I = [i . . i+p−1] of the table RANK. Indeed, the prefixes of length p
of the suffixes {u[d . . n] : d ∈ I} are exactly all cyclic rotations of lroot(v). Recall
that RMQ for an array of length n can be implemented with O(n) preprocessing
time and O(1) query time. Finally, suf (v) = SUF[rank(v)]. ⊓⊔

Theorem 1. The set R(u) of all runs within u can be decomposed into pairwise
disjoint classes R1,R2, . . . ,Rt corresponding to runs with equal Lyndon roots in
O(n) time, where n = |u|.

Proof. We start the proof of the theorem with the following claim.

Claim 2 The equality of Lyndon roots of runs (represented as pairs of the form
(per(v), rank(v))) in u can be tested in O(1) time with O(n) preprocessing time.
Moreover, if L = v1, v2, . . . , va is a list of all runs in u with period p sorted in
ascending order of the values of parameter rank, then all runs in u with the same
Lyndon root λ, |λ| = p, form a sublist of L composed of a number of consecutive
elements.

Proof. The Lyndon roots of two runs v1 and v2 are equal if and only if per(v1) =
per(v2) and the longest common prefix of suffixes at positions suf (v1) and suf (v2)

4

is at least per(v1). Recall that longest common prefixes of arbitrary suffixes can
be computed using RMQ on the LCP array, which proves the first part.

As for the second part of the claim, assume that for three runs v1, v2 and v3

we have per(v1) = per(v2) = per(v3) = p, rank(v1) < rank(v2) < rank(v3) and
lroot(v1) = lroot(v3). Then

lcp(suf (v1), suf (v3)) ≥ p,

however due to the rank inequalities we have

lcp(suf (v1), suf (v3)) = min(lcp(suf (v1), suf (v2)), lcp(suf (v2), suf (v3))).

Therefore
lcp(suf (v1), suf (v2)) ≥ p

and consequently lroot(v1) = lroot(v2) = lroot(v3). ⊓⊔

Using Claim 2, the requested decomposition of R(u) can be obtained in O(n)
time in the following three steps, recall that |R(u)| = O(n).

1. Compute the values of suf (v) and rank(v) for all runs in R(u) — O(n) time
in total due to Lemma 1.

2. Represent all runs v in u as pairs (per(v), rank(v)), sort all such pairs lexi-
cographically — O(n) time using radix sort.

3. Group runs with equal Lyndon roots — due to Claim 2 the groups consist in
consecutive runs in the sorted order of pairs, and equality of Lyndon roots
of runs can be tested in O(1) time with O(n) time preprocessing, what gives
O(n) time complexity of this step. ⊓⊔

Define the compact Lyndon representation of a run v = (i, j, p) as a tuple:

v ⊜ (i, j, p, a,m, b, ℓ) (2)

where ℓ is the length of v and a, m, b are defined as in the (ordinary) Lyndon
representation (1). Due to the following lemma, the compact Lyndon represen-
tations of runs can be computed efficiently:

Lemma 3. The compact Lyndon representation of runs (represented as (i, j, p))
in a word u of length n can be computed in O(1) time with O(n) time prepro-
cessing.

Proof. For a run v = (i, j, p) of length ℓ = j− i + 1, knowing the value of suf (v)
the compact Lyndon representation of v can be computed using the following
additional formulas:

a = suf (v)− i, m = ⌊(ℓ− a)/p⌋ , b = ℓ− a−mp.

Hence, the statement is a consequence of Lemma 1. ⊓⊔

5

4 Inferring Powers from Runs

Denote by #powers(u, k) the total number of distinct kth powers in a string u.
In this section we present an algorithm for efficiently computing this function
as well as reporting the corresponding powers. By reporting we mean returning
the vector POWERS such that, for each i, POWERS [i] is the set of periods of
all kth powers which have the last occurrence starting at position i. These sets
have cardinality at most two [8, 11, 12].

Each kth power wk (for k ≥ 2) occurring in u corresponds to a run v con-
taining this occurrence for which per(v) = |root(w)|, we say that wk is induced
by the run. If lroot(w) = λ then we call wk λ-compatible. Note that two runs
may induce the same power only if their Lyndon roots are equal.

For a λ-run v define maxpower(v) as the maximal natural β such that some
cyclic rotation of λkβ is induced by v.

Observation 4 If v is a run of length ℓ with period p then maxpower(v) =
⌊ℓ/(kp)⌋.

The following lemma shows a correspondence between Lyndon representation
of a run and the set of induced distinct kth powers.

Lemma 5. Let v be a λ-run with period p and let β = maxpower(v). Then all
powers induced by v are:

– all cyclic rotations of λkα for α < β
– cyclic rotations rot(λkβ , c) for c ∈ I(v), where I(v) ⊆ [0 . . p) is a union of

at most two intervals.

Proof. Let v
.
= λ(a) · λm · λ(b) be a run of length ℓ with period p.

Note that for a given α the run v induces all cyclic rotations rot(λkα, c) for
c ∈ [p − a, p − a + ℓ − kp · α]. In particular, for α < β, we obtain all distinct
cyclic rotations, since ℓ− kp · α ≥ p. For α = β, the aforementioned interval for
the value of c must be treated modulo p and forms either a single subinterval of
[0 . . p) or a sum of at most two intervals I(v). For α > β, no cyclic rotation of
the word λkα is present in v, since |λkα| > |v|. ⊓⊔

Let maxruns(u, λ) be the set of λ-runs of u with maximal value of maxpower(v).
Denote by #powersλ(u, k) the number of λ-compatible k-powers in u. The fol-
lowing lemma is a consequence of Lemma 5.

Lemma 6. For a word u let β(λ) = max{maxpower(v) : v ∈ λ-runs(u)}.
Then

#powersλ(u, k) = (β(λ)− 1) · |λ|+

∣

∣

∣

∣

∣

∣

⋃

v∈maxruns(u,λ)

I(v)

∣

∣

∣

∣

∣

∣

,

#powers(u, k) =
∑

λ

#powersλ(u, k).

6

c c a b b c c c c a b b c c c c a b b c c c c a b b c c c c a b

λ λ λ λ

rot(λ2, 5)

Fig. 3. The run λ(2)λ4λ(2) with the Lyndon root λ = abbcccc induces all possible
distinct squares cyclically equivalent to λ2 and 5 squares cyclically equivalent to λ4,
that is, maxpower(v) = 2 and I(v) = [0 . . 2] ∪ [5 . . 6]

Theorem 2. For a given word u of length n, the value #powers(u, k) can be
computed and all distinct kth powers in u can be reported in O(n) time.

Proof. The value #powers(u, k) can be computed using the formulas from Lemma
6, assuming that we have the decomposition of R(u) from Theorem 1 and the
compact Lyndon representations of all runs, which are necessary to compute the
values of β(λ) and I(v) (see the formulas in Lemma 5). The only difficulty is
to find the size of the union of the sets I(v) for a given group of λ-runs Ry in
O(|Ry|) time. Note that this can be performed in a simple way if the sets to be
unionned form a list of intervals sorted in non-decreasing order (intervals treated
as pairs). Due to Lemma 5, each set I(v) can be divided into a constant number
of intervals. Finally, all intervals across all the groups Ry can be sorted using
radix sort in O(n) time.

The algorithm reporting all powers is a natural extension of the algorithm
computing #powers(u, k) using the exact formulas from Lemma 5, we omit the
technical description of the algorithm in this version of the paper. ⊓⊔

Denote by #occ-powers(u, k) the total number of occurrences of kth powers in a
string u. We end this section presenting a formula for #occ-powers(u, k) which
can be evaluated in a straightforward manner to obtain an O(n) time algorithm,
where n = |u|. Note that the value of the formula can be Θ(n2).

Theorem 3.

#occ-powers(u, k) =
∑

(i,j,p)∈R(u)

c(i, j, p) · (j − i + 2− kp/2)− c(i, j, p)2 · kp/2

where

c(i, j, p) =

⌊

j − i + 2

kp

⌋

. (3)

The proof of the theorem will be included in the full version of the paper.

7

5 Computation of Local Periods

By P = {p1, p2, . . . , pn−1} we denote the set of inter-positions that are located
between pairs of consecutive letters of u[1 . . n]. We say that a square ww is
centered at inter-position pi of u if both of the following conditions hold, for
x = u[1 . . i] and y = u[i + 1 . . n]:

– w is a suffix of x or x is a suffix of w
– w is a prefix of y or y is a prefix of w.

We define the local period at inter-position pi (notation: localper[i]) as |w|, where
ww is the shortest square centered at this inter-position, see also Fig. 4. Clearly,
for any pi there are three possible cases:

a b a a b a b a a b a a b a b a a b a b a

a run

2 3 1 5 2 2 8 1 3 3 1 13 2 2 5 1 5 2 2 2

Fig. 4. A Fibonacci string with local periods at all its inter-positions. Local period at
inter-position p9 of the string is 3, since the smallest period q of a run which completely
covers the factor of the string corresponding to the interval [9− q + 1 . . 9 + q] equals 3

Case A: |w| ≤ min(|x|, |y|), i.e., ww is an internal square of u.

Case B: min(|x|, |y|) < |w| ≤ max(|x|, |y|), i.e., ww is a left-external square (if
|w| > |x|) or a right-external square (if |w| > |y|).

Case C: max(|x|, |y|) < |w|, i.e., ww is a both-sides-external square.

We handle Cases A-C separately. In Case A we use the structure of runs in u
and perform a reduction to the Manhattan Skyline Problem. In Cases B and
C we use the border array from the Morris-Pratt algorithm, which is a simple
alternative to a modified Boyer-Moore shift function used for this purpose in [6].

Case A: internal local periods. The problem of the internal local periods
can be reduced in O(n) time to the (restricted min-version) of the following
problem:

Restricted Manhattan Skyline Problem

Input:

given a set S of O(n) subintervals of [1 . . n− 1] with natural heights of size
O(n);

Output:

the table f [t] = min{height([i . . j]) : t ∈ [i . . j], [i . . j] ∈ S}, t ∈ [1 . . n−1].

8

Indeed, note that any internal local period corresponds to a primitively rooted
square in u, induced by one of the runs of u, see also Fig. 4. Each run v = (a, b, q)
in u induces such squares with root q at inter-positions pa+q−1, pa+q, . . . , pb−q.
Thus for each inter-position pi we need to find the shortest period of a run (i.e.,
height of an interval from the Manhattan Skyline Problem) inducing a square
at this inter-position.

The following two lemmas show how to utilize the described reduction to
construct a linear time algorithm for computing internal local periods.

Lemma 7. Assume initially X = ∅ and all considered intervals [i . . j] are from
the universe [1 . .m]. Then the sequence of O(m) pairs of operations:

{ list-all-elements([i . . j] \X); X ← X ∪ [i . . j]; } (4)

can be implemented in O(m) time.

Proof. The implementation uses a restricted version of the find/union data struc-
ture, in which we are allowed to union only adjacent subintervals. Thus the
structure of union operations forms a static tree (here it is a path graph) and
therefore O(m) find/union operations can be performed in O(m) time [9].

In the algorithm the universe [1 . .m+1] (extended to the right by a sentinel)
is partitioned into maximal segments of elements of X followed by a single ele-
ment which is not in X: all elements in such a segment form a single find/union
component which stores the index of its rightmost position. The operations (4)
are implemented by traversing the components intersecting the interval [i . . j],
reporting their rightmost elements and unionning them one by one. ⊓⊔

Lemma 8. The internal local periods can be computed in linear time.

Proof. We showed that the problem can be reduced to the restricted Manhattan
Skyline Problem. This problem can be solved in O(n) time as follows.

Sort intervals from S according to their heights (in increasing order);
Initialize X = ∅;
for each interval [i . . j] ∈ S (in the sorted order) do

for each t ∈ list-all-elements([i . . j] \X) do

f [t]← height([i . . j]);
X ← X ∪ [i . . j];

According to Lemma 7, the set operations in the above pseudocode can be
implemented in linear time. This completes the proof. ⊓⊔

Case B: one-side-external local periods. Recall that a word that is both a
prefix and a suffix of a word u is called a border of the word u; a border of u is
called proper if it is shorter than u. Denote by border[i], for i = 1, 2, . . . , n, the
length of the longest proper border of u[1 . . i]. Recall that the border array can
be computed in O(n) time, as in the Morris-Pratt algorithm [5].

9

The following lemma shows how the border array can be used to compute
left-external local periods, the case of right-external local periods is symmetric
and can be treated similarly by considering the reversed word u. The proof of
the lemma will be present in the full version of the paper.

Lemma 9.

(a) If the local period at inter-position pi is left-external (and not right external)
then there exists j > i such that border[j] = i and localper[i] = j − i.

(b) If border[j] = i for any j = 2, 3, . . . , n and i > 0 then localper[i] ≤ j − i.

Due to Lemma 9, the localper array can be updated in O(n) time by considering
all left-external local periods corresponding to the values border[j] for all j =
1, 2, . . . , n.

Case C: both-sides-external local periods. Consider a both-sides-external
local period at inter-position pi of u. If b is the longest overlap between u[i+1 . . n]
and u[1 . . i], i.e., the longest suffix of the former word which is also a prefix of
the latter word, then localper[i] = n− b, see Fig. 5. Note that b is the length of
the longest border of u which is not longer than min(i, n− i).

1 i n

ww

b b

w

i n

1 i

b

b

Fig. 5. The correspondence between both-sides-external local periods and borders

Recall that the lengths of all proper borders of u are iterations of the form
border(j)[n]. This concludes an O(n) time algorithm which updates the localper

array obtained after the previous cases considering all both-sides-external local
periods, filling the array from its middle to its sides.

Combining the solutions to Cases A-C, we obtain the following result.

Theorem 4. All local periods of a string u of length n can be computed in O(n)
time (in a simple way) using the runs structure of u and the border array.

10

6 Factor-Primitivity Queries

For a given string u of length n, we define a factor-primitivity query as follows:
for the indices a, b, 1 ≤ a ≤ b < n, check whether the factor u[a . . b] is primitive,
and if not, find the length of its primitive root. Let us introduce a notion relating
runs with factor-primitivity queries. We say that a run (i, j, p) completely covers
an occurrence of a factor u[a . . b] in u if i ≤ a, b ≤ j.

Lemma 10. Let p be the minimum period of a run completely covering an oc-
currence of a factor w in a string u (or p =∞ if no such run exists). If p < |w|
and p | |w| then |root(w)| = p; otherwise w is primitive.

Proof. Assume first that q
def
= |root(w)| < |w|. Then also per(w) = q, see [5].

Hence, w is completely covered by a run with period q and, obviously, by no run
with period smaller than q.

On the other hand, if |root(w)| = |w| then any run completely covering w
and having period p satisfies p = |w| or p ∤ |w|. This concludes the proof. ⊓⊔

The conclusion of Lemma 10 can again be interpreted using the notion of Man-
hattan skyline, see Fig. 6.

i j

Fig. 6. The buildings in the skyline correspond to runs in a string u and their heights
correspond to their periods. When checking primitivity of a factor w = u[i . . j] we look
for the lowest building such that w is completely “under its roof”

In our algorithm we utilize yet another interpretation of the problem. To each
run (i, j, p) in a word u (|u| = n) we assign a point (i, j) in the 2-dimensional

plane, and define the value of this point as f((i, j))
def
= p. Denote the set of all

such points by V . By Lemma 10, to find the primitive root of any factor u[a . . b]
of u, it suffices to compute the value

min{f((i, j)) : 1 ≤ i ≤ a, b ≤ j ≤ n, (i, j) ∈ V }.

This is exactly a 2D range search for minimum query, which can be answered
in the RAM model in: O(log1+ǫ m) query time with O(m) preprocessing time,
O(log m log log m) query time with O(m log log m) preprocessing time, or
O(log m) query time with O(m logǫ m) preprocessing time, where m = |V | =
|R(u)| and ǫ is an arbitrary positive real [1]. Thus we obtain the next result.

11

Theorem 5. For a given string u of length n, using the runs structure of u we
can answer factor-primitivity queries in O(n logǫ n) preprocessing time, for any
ǫ > 0, and O(log n) query time.

References

1. B. Chazelle. A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput., 17(3):427–462, 1988.

2. G. Chen, S. J. Puglisi, and W. F. Smyth. Fast and practical algorithms for com-
puting all the runs in a string. In B. Ma and K. Zhang, editors, CPM, volume 4580
of Lecture Notes in Computer Science, pages 307–315. Springer, 2007.

3. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, 2007.

4. M. Crochemore, L. Ilie, and W. Rytter. Repetitions in strings: Algorithms and
combinatorics. Theor. Comput. Sci., 410(50):5227–5235, 2009.

5. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2003.
6. J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and A. Lefebvre. Linear-time

computation of local periods. Theor. Comput. Sci., 326(1-3):229–240, 2004.
7. J. Fischer and V. Heun. A new succinct representation of RMQ-information and

improvements in the enhanced suffix array. In B. Chen, M. Paterson, and G. Zhang,
editors, ESCAPE, volume 4614 of Lecture Notes in Computer Science, pages 459–
470. Springer, 2007.

8. A. S. Fraenkel and J. Simpson. How many squares can a string contain? J. of
Combinatorial Theory Series A, 82:112–120, 1998.

9. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of
disjoint set union. Proceedings of the 15th Annual ACM Symposium on Theory of
Computing (STOC), pages 246–251, 1983.

10. D. Gusfield and J. Stoye. Linear time algorithms for finding and representing all
the tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, 2004.

11. L. Ilie. A simple proof that a word of length n has at most 2n distinct squares. J.
of Combinatorial Theory Series A, 112:163–164, 2005.

12. L. Ilie. A note on the number of squares in a word. Theoretical Computer Science,
380:373–376, 2007.

13. R. M. Kolpakov and G. Kucherov. On maximal repetitions in words. J. of Discr.
Alg., 1:159–186, 1999.

14. M. Kubica, J. Radoszewski, W. Rytter, and T. Walen. On the maximal number
of cubic subwords in a string. In J. Fiala, J. Kratochv́ıl, and M. Miller, edi-
tors, IWOCA, volume 5874 of Lecture Notes in Computer Science, pages 345–355.
Springer, 2009.

15. K. Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007.

12

