P. Baturo, M. Piatkowski, and W. Rytter, The Number of Runs in Sturmian Words, CIAA, pp.252-261, 2008.
DOI : 10.1007/978-3-540-70844-5_26

J. Berstel and J. Karhumäki, COMBINATORICS ON WORDS ??? A TUTORIAL, Bulletin of the EATCS, vol.79, pp.178-228, 2003.
DOI : 10.1142/9789812562494_0059

URL : https://hal.archives-ouvertes.fr/hal-00619480

M. Crochemore and L. Ilie, Analysis of Maximal Repetitions in Strings, MFCS, pp.465-476, 2007.
DOI : 10.1007/978-3-540-74456-6_42

URL : https://hal.archives-ouvertes.fr/hal-00620132

M. Crochemore and L. Ilie, Maximal repetitions in strings, Journal of Computer and System Sciences, vol.74, issue.5, pp.796-807, 2008.
DOI : 10.1016/j.jcss.2007.09.003

URL : https://hal.archives-ouvertes.fr/hal-00619712

M. Crochemore, L. Ilie, and W. Rytter, Repetitions in strings: Algorithms and combinatorics, Theoretical Computer Science, vol.410, issue.50, pp.5227-5235, 2009.
DOI : 10.1016/j.tcs.2009.08.024

URL : https://hal.archives-ouvertes.fr/hal-00741884

M. Crochemore, L. Ilie, and L. Tinta, Towards a Solution to the ???Runs??? Conjecture, Lecture Notes in Computer Science, vol.5029, pp.290-302, 2008.
DOI : 10.1007/978-3-540-69068-9_27

URL : https://hal.archives-ouvertes.fr/hal-00620277

M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter et al., On the Maximal Number of Cubic Runs in a String
DOI : 10.1007/978-3-642-13089-2_19

M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient string searching, Algorithmica, vol.67, issue.3, pp.405-425, 1995.
DOI : 10.1007/BF01190846

URL : https://hal.archives-ouvertes.fr/hal-00619583

F. Franek and Q. Yang, AN ASYMPTOTIC LOWER BOUND FOR THE MAXIMAL NUMBER OF RUNS IN A STRING, International Journal of Foundations of Computer Science, vol.19, issue.01, pp.195-203, 2008.
DOI : 10.1142/S0129054108005620

M. Giraud, Not So Many Runs in Strings, Lecture Notes in Computer Science, vol.5196, pp.232-239, 2008.
DOI : 10.1007/978-3-540-88282-4_22

URL : https://hal.archives-ouvertes.fr/inria-00271630

R. M. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear time, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), pp.596-604, 1999.
DOI : 10.1109/SFFCS.1999.814634

URL : https://hal.archives-ouvertes.fr/inria-00098853

M. Kubica, J. Radoszewski, W. Rytter, and T. Walen, On the Maximal Number of Cubic Subwords in a String, Lecture Notes in Computer Science, vol.5874, pp.345-355, 2009.
DOI : 10.1007/978-3-642-10217-2_34

K. Kusano, W. Matsubara, A. Ishino, H. Bannai, and A. Shinohara, New lower bounds for the maximum number of runs in a string, p.1214, 2008.

M. Lothaire, Combinatorics on Words, 1983.
DOI : 10.1017/CBO9780511566097

URL : https://hal.archives-ouvertes.fr/hal-00620607

F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO - Theoretical Informatics and Applications, vol.26, issue.3, pp.199-204, 1992.
DOI : 10.1051/ita/1992260301991

S. J. Puglisi, J. Simpson, and W. F. Smyth, How many runs can a string contain? Theor, Comput. Sci, vol.401, issue.1-3, pp.165-171, 2008.

W. Rytter, The Number of Runs in a String: Improved Analysis of the Linear Upper Bound, STACS, pp.184-195, 2006.
DOI : 10.1007/11672142_14

W. Rytter, The structure of subword graphs and suffix trees of Fibonacci words, Theoretical Computer Science, vol.363, issue.2, pp.211-223, 2006.
DOI : 10.1016/j.tcs.2006.07.025

W. Rytter, The number of runs in a string, Information and Computation, vol.205, issue.9, pp.1459-1469, 2007.
DOI : 10.1016/j.ic.2007.01.007

URL : https://hal.archives-ouvertes.fr/hal-00742037

J. Simpson, Modified Padovan words and the maximum number of runs in a word, Australasian J. of Comb, vol.46, pp.129-145, 2010.