A. Apostolico and F. P. Preparata, Optimal off-line detection of repetitions in a string, Theoretical Computer Science, vol.22, issue.3, pp.297-315, 1983.
DOI : 10.1016/0304-3975(83)90109-3

P. Baturo, M. Piatkowski, and W. Rytter, The Number of Runs in Sturmian Words, Proc. of CIAA, pp.252-261, 2008.
DOI : 10.1007/978-3-540-70844-5_26

J. Berstel and A. Savelli, Crochemore Factorization of Sturmian and Other Infinite Words, Proc. of MFCS, pp.157-166, 2006.
DOI : 10.1007/11821069_14

URL : https://hal.archives-ouvertes.fr/hal-00620160

G. Chen, S. J. Puglisi, and W. F. Smyth, Fast and Practical Algorithms for Computing All the Runs in a String, Proc. of CPM'07
DOI : 10.1007/978-3-540-73437-6_31

S. Constantinescu and L. Ilie, The Lempel???Ziv Complexity of Fixed Points of Morphisms, SIAM Journal on Discrete Mathematics, vol.21, issue.2, pp.466-481, 2007.
DOI : 10.1137/050646846

M. Crochemore, An optimal algorithm for computing the repetitions in a word, Information Processing Letters, vol.12, issue.5, pp.244-250, 1981.
DOI : 10.1016/0020-0190(81)90024-7

URL : https://hal.archives-ouvertes.fr/hal-00619551

M. Crochemore, Transducers and repetitions, Theoretical Computer Science, vol.45, issue.1, pp.63-86, 1986.
DOI : 10.1016/0304-3975(86)90041-1

URL : https://hal.archives-ouvertes.fr/hal-00619540

M. Crochemore, S. Z. Fazekas, C. Iliopoulos, and I. Jayasekera, Bounds on Powers in Strings, Developments in Language Theory, pp.206-215, 2008.
DOI : 10.1007/978-3-540-85780-8_16

URL : https://hal.archives-ouvertes.fr/hal-00620278

M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings, 2007.
DOI : 10.1017/CBO9780511546853

URL : https://hal.archives-ouvertes.fr/hal-00470109

M. Crochemore and L. Ilie, Analysis of Maximal Repetitions in Strings, Proc. of MFCS'07, pp.465-476, 2007.
DOI : 10.1007/978-3-540-74456-6_42

URL : https://hal.archives-ouvertes.fr/hal-00620132

M. Crochemore and L. Ilie, Maximal repetitions in strings, Journal of Computer and System Sciences, vol.74, issue.5, pp.796-807, 2008.
DOI : 10.1016/j.jcss.2007.09.003

URL : https://hal.archives-ouvertes.fr/hal-00619712

M. Crochemore and L. Ilie, Computing Longest Previous Factor in linear time and applications, Information Processing Letters, vol.106, issue.2, pp.75-80, 2008.
DOI : 10.1016/j.ipl.2007.10.006

URL : https://hal.archives-ouvertes.fr/hal-00619691

M. Crochemore, L. Ilie, and W. F. Smyth, A Simple Algorithm for Computing the Lempel Ziv Factorization, Data Compression Conference (dcc 2008), pp.482-488, 2008.
DOI : 10.1109/DCC.2008.36

URL : https://hal.archives-ouvertes.fr/hal-00620138

M. Crochemore, L. Ilie, and L. Tinta, Towards a Solution to the ???Runs??? Conjecture, Proc. of CPM'08, pp.290-302, 2008.
DOI : 10.1007/978-3-540-69068-9_27

URL : https://hal.archives-ouvertes.fr/hal-00620277

M. Crochemore and D. Perrin, Two-way string-matching, Journal of the ACM, vol.38, issue.3, pp.651-675, 1991.
DOI : 10.1145/116825.116845

URL : https://hal.archives-ouvertes.fr/hal-00619582

M. Crochemore and W. Rytter, Squares, cubes, and time-space efficient string searching, Algorithmica, vol.67, issue.3, pp.405-425, 1995.
DOI : 10.1007/BF01190846

URL : https://hal.archives-ouvertes.fr/hal-00619583

M. Crochemore and W. Rytter, Jewels of stringology, World Scientific, 2003.
DOI : 10.1142/4838

URL : https://hal.archives-ouvertes.fr/hal-00619795

F. Franek, A. Karaman, and W. F. Smyth, Repetitions in Sturmian strings, Theoretical Computer Science, vol.249, issue.2, pp.289-303, 2000.
DOI : 10.1016/S0304-3975(00)00063-3

A. S. Fraenkel and R. J. Simpson, How Many Squares Can a String Contain?, Journal of Combinatorial Theory, Series A, vol.82, issue.1, pp.112-120, 1998.
DOI : 10.1006/jcta.1997.2843

A. S. Fraenkel and R. J. Simpson, The exact number of squares in Fibonacci words, Theoretical Computer Science, vol.218, issue.1, pp.95-106, 1999.
DOI : 10.1016/S0304-3975(98)00252-7

F. Franek and Q. Yang, AN ASYMPTOTIC LOWER BOUND FOR THE MAXIMAL NUMBER OF RUNS IN A STRING, International Journal of Foundations of Computer Science, vol.19, issue.01, pp.195-203, 2008.
DOI : 10.1142/S0129054108005620

F. Franek, W. F. Smyth, and Y. Tang, Computing all repeats using suffix arrays, J. Automata, Languages and Combinatorics, vol.8, issue.4, pp.579-591, 2003.

Z. Galil and J. Seiferas, Time-space-optimal string matching, Journal of Computer and System Sciences, vol.26, issue.3, pp.280-294, 1983.
DOI : 10.1016/0022-0000(83)90002-8

URL : http://doi.org/10.1016/0022-0000(83)90002-8

L. Gasieniec, W. Plandowski, and W. Rytter, Constant-space string matching with smaller number of comparisons: sequential sampling, Proc. of CPM'95, pp.78-89, 1995.
DOI : 10.1007/3-540-60044-2_36

M. Giraud, Not So Many Runs in Strings, Proc. of LATA'08, pp.245-252, 2008.
DOI : 10.1007/978-3-540-88282-4_22

URL : https://hal.archives-ouvertes.fr/inria-00271630

D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology, 1997.
DOI : 10.1017/CBO9780511574931

D. Gusfield and J. Stoye, Linear time algorithms for finding and representing all the tandem repeats in a string, Journal of Computer and System Sciences, vol.69, issue.4, pp.525-546, 2004.
DOI : 10.1016/j.jcss.2004.03.004

L. Ilie, A simple proof that a word of length n has at most <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:math> distinct squares, Journal of Combinatorial Theory, Series A, vol.112, issue.1, pp.163-164, 2005.
DOI : 10.1016/j.jcta.2005.01.006

L. Ilie, A note on the number of squares in a word, Theoretical Computer Science, vol.380, issue.3, pp.373-376, 2007.
DOI : 10.1016/j.tcs.2007.03.025

C. Iliopoulos, D. Moore, and W. F. Smyth, A characterization of the squares in a Fibonacci string, Theoretical Computer Science, vol.172, issue.1-2, pp.281-291, 1997.
DOI : 10.1016/S0304-3975(96)00141-7

J. Karhumäki, On strongly cube-free ??-words generated by binary morphisms, Fundamentals of computation theory, pp.182-189, 1981.
DOI : 10.1007/3-540-10854-8_19

R. Kolpakov and G. Kucherov, Finding maximal repetitions in a string in linear time, 40th Symposium on Foundations of Computer Science, pp.596-604, 1999.

M. Lothaire, Algebraic Combinatorics on words, 2002.
DOI : 10.1017/CBO9781107326019

URL : https://hal.archives-ouvertes.fr/hal-00620608

M. Lothaire, Applied Combinatorics on words, 2005.
DOI : 10.1017/CBO9781107341005

URL : https://hal.archives-ouvertes.fr/hal-00620607

M. Macdonald and C. M. Ambrose, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes, Cell, vol.72, issue.6, pp.971-983, 1993.
DOI : 10.1016/0092-8674(93)90585-E

M. G. Main, Detecting leftmost maximal periodicities, Discrete Applied Mathematics, vol.25, issue.1-2, pp.145-153, 1989.
DOI : 10.1016/0166-218X(89)90051-6

URL : http://doi.org/10.1016/0166-218x(89)90051-6

M. G. Main and R. J. Lorentz, An O(n log n) algorithm for finding all repetitions in a string, Journal of Algorithms, vol.5, issue.3, pp.422-432, 1984.
DOI : 10.1016/0196-6774(84)90021-X

W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and A. Shinohara, New Lower Bounds for the Maximum Number of Runs in a string, Prague Stringology Conference, pp.140-144, 2008.

F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO - Theoretical Informatics and Applications, vol.26, issue.3, pp.199-204, 1992.
DOI : 10.1051/ita/1992260301991

S. J. Puglisi, J. Simpson, and B. Smyth, How many runs can a string contain? Theor, Comput. Sci, vol.401, issue.1-3, pp.165-171, 2008.

W. Rytter, The structure of subword graphs and suffix trees of Fibonacci words, Theoretical Computer Science, vol.363, issue.2, pp.211-223, 2006.
DOI : 10.1016/j.tcs.2006.07.025

W. Rytter, The Number of Runs in a String: Improved Analysis of the Linear Upper Bound, Proc. of the 23rd STACS, pp.184-195, 2006.
DOI : 10.1007/11672142_14

W. Rytter, The number of runs in a string, Information and Computation, vol.205, issue.9, pp.1459-1469, 2007.
DOI : 10.1016/j.ic.2007.01.007

URL : https://hal.archives-ouvertes.fr/hal-00742037

W. F. Smyth, Repetitive perhaps, but certainly not boring, Theoretical Computer Science, vol.249, issue.2, pp.343-355, 2000.
DOI : 10.1016/S0304-3975(00)00067-0

URL : http://doi.org/10.1016/s0304-3975(00)00067-0

W. F. Smyth, Computing patterns in strings, Kra. Vidensk. Selsk. Skrifter. I. Mat.- Nat. Kl, 1906.

I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes, 1994.