R. J. Asaro and D. M. Barnett, The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion, Journal of the Mechanics and Physics of Solids, vol.23, issue.1, pp.77-83, 1975.
DOI : 10.1016/0022-5096(75)90012-5

B. Benedikt, M. Lewis, and P. Rangaswamy, On elastic interactions between spherical inclusions by the equivalent inclusion method, Computational Materials Science, vol.37, issue.3, pp.380-392, 2006.
DOI : 10.1016/j.commatsci.2005.10.002

A. Bona, I. Bucataru, and M. A. Slawinski, Coordinate-free Characterization of the Symmetry Classes of Elasticity Tensors, Journal of Elasticity, vol.25, issue.4,5, pp.109-132, 2007.
DOI : 10.1007/s10659-007-9099-z

P. Chadwick, M. Vianello, and S. C. Cowin, A new proof that the number of linear elastic symmetries is eight, Journal of the Mechanics and Physics of Solids, vol.49, issue.11, pp.2471-2492, 2001.
DOI : 10.1016/S0022-5096(01)00064-3

J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.1226, pp.376-396, 1957.
DOI : 10.1098/rspa.1957.0133

J. D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. Roy. Soc. London A, pp.561-569, 1959.

J. D. Eshelby, Progress in solid mechanics, Journal of the Mechanics and Physics of Solids, vol.9, issue.1, 1960.
DOI : 10.1016/0022-5096(61)90040-0

S. Forte and M. Vianello, Symmetry classes for elasticity tensors, Journal of Elasticity, vol.31, issue.2, pp.81-108, 1996.
DOI : 10.1007/BF00042505

R. Furuhashi and T. Mura, On the equivalent inclusion method and impotent eigenstrains, Journal of Elasticity, vol.23, issue.3, pp.263-270, 1979.
DOI : 10.1007/BF00041098

M. E. Gurtin, The Linear Theory of Elasticity, Handbuch der Physik, 1972.

Y. Hou, D. Piero, and G. , On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor, J. Elast, vol.25, pp.203-246, 1991.

A. E. Love, A Treatise on the Mathematical Theory of Elasticity, Fourth Edition, 1927.

R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, vol.16, issue.1, pp.51-78, 1964.
DOI : 10.1007/BF00248490

R. D. Mindlin and N. N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, vol.4, issue.1, pp.109-124, 1968.
DOI : 10.1016/0020-7683(68)90036-X

V. Monchiet and G. Bonnet, Inversion of higher order isotropic tensors with minor symmetries and solution of higher order heterogeneity problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.11, issue.1226, pp.314-332, 2011.
DOI : 10.1098/rspa.1957.0133

URL : https://hal.archives-ouvertes.fr/hal-00687817

V. Monchiet and G. Bonnet, On the inversion of non symmetric sixth-order isotropic tensors and conditions of positiveness of third-order tensor valued quadratic functions, Mechanics Research Communications, vol.38, issue.4, pp.326-329, 2011.
DOI : 10.1016/j.mechrescom.2011.03.006

URL : https://hal.archives-ouvertes.fr/hal-00687815

Z. A. Moschovidis, Two ellipsoidal inhomogeneities and related problems treated by the equivalent inclusion method, 1975.

Z. A. Moschovidis and T. Mura, Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method, Journal of Applied Mechanics, vol.42, issue.4, pp.847-852, 1975.
DOI : 10.1115/1.3423718

T. Mura, Micromechanics of Defects in Solids, Dordrecht: Martinus Nijhoff, 1987.

Y. Nyashin, V. Lokhov, and F. Ziegler, Decomposition method in linear elastic problems with eigenstrain, ZAMM, vol.23, issue.1, pp.557-570, 2005.
DOI : 10.1002/zamm.200510202

J. F. Nye, Physical properties of crystals, 1985.

G. P. Sendeckyj, Ellipsoidal Inhomogeneity Problem, 1967.

H. M. Shodja and A. S. Sarvestani, Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method, Journal of Applied Mechanics, vol.68, issue.1, pp.3-10, 2001.
DOI : 10.1115/1.1346680

H. M. Shodja, I. Z. Rad, and R. Soheilifard, Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method, Journal of the Mechanics and Physics of Solids, vol.51, issue.5, pp.945-960, 2003.
DOI : 10.1016/S0022-5096(02)00106-0

H. M. Shodja and B. Shokrolahi-zadeh, Ellipsoidal Domains: Piecewise Nonuniform and Impotent Eigenstrain Fields, Journal of Elasticity, vol.300, issue.1, pp.1-18, 2007.
DOI : 10.1007/s10659-006-9077-x

A. S. Suiker and C. S. Chang, Application of higher-order tensor theory for formulating enhanced continuum models, Acta Mechanica, vol.33, issue.1-4, pp.223-234, 2000.
DOI : 10.1007/BF01190020

S. Sutcliffe, Spectral Decomposition of the Elasticity Tensor, Journal of Applied Mechanics, vol.59, issue.4, pp.762-773, 1992.
DOI : 10.1115/1.2894040

R. N. Thurston, Waves in Solids, Mechanics of Solids IV volume Via/4 of Handbuch der Physik, pp.109-308, 1974.
DOI : 10.1007/978-3-642-69571-1_2

R. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, vol.38, issue.1, pp.385-414, 1962.
DOI : 10.1007/BF00253945

URL : https://hal.archives-ouvertes.fr/hal-00852443

L. J. Walpole, Elastic behavior of composite materials : theoretical foundations Advances in App, Mech, vol.21, pp.169-243, 1981.

L. J. Walpole, Fourth-rank tensors of the thirthy-two crystal classes: multiplication table, Proc. R. Soc. Lond. A, pp.149-179, 1984.