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Abstract. In recent years, some Video-Based Rendering methods have

advanced from off-line rendering to on-line rendering. However very few

of them can handle moving cameras while recording. Moving cameras

enable to follow an actor in a scene, come closer to get more details or

just adjust the framing of the cameras. In this paper, we propose a new

Video-Based Rendering method that creates new views of the scene in

live from four moving webcams. These cameras are calibrated in real-

time using multiple markers. Our method fully uses both CPU and GPU

and hence requires only one consumer grade computer.

1 Introduction

Video-Based Rendering (VBR) is an emerging research field that proposes meth-
ods to compute new views of a dynamic scene from video streams. VBR tech-
niques are divided into two families. The first one, called off-line methods, focuses
on the visual quality rather than on the computation time. These methods usu-
ally use a large amount of cameras or high definition devices and sophisticated
algorithms that prevent them from live rendering. First, the video streams are
recorded. Then the recorded data is computed off-line to extract 3d informations.
Finally, the rendering step creates new views of the scene usually in real-time.
This three-step approach (record - compute - render) provides high quality vi-
sual results but the computation time can be long compared to the length of the
input video. The methods from the second family are called on-line methods.
They are fast enough to extract information from the input videos, create and
display a new view several times per second. The rendering is then not only
real-time but also live.

Almost all the VBR techniques use calibrated input cameras and these cal-
ibrated cameras must remain static during the shot sequence. Hence it is im-
possible to follow a moving object with a camera. Using one or more moving
cameras allows to come closer to an actor to get more details. This technique
can also be used to adjust the framing of the cameras. Furthermore, if someone
involuntary moves a camera, calibration update is not required. Hence this tech-
nique provides more flexibility in the device configuration.



In this article, we present a new live VBR method that handles moving cam-
eras. For every new frame, each camera is calibrated using multiple markers laid
on the scene. Contrary to most Augmented Reality applications, the multiple
markers used in our method do not need to be aligned since their respective
position are estimated during the calibration step. Our method uses four input
webcams connected to a single computer. The lens distortion correction and
the new views are computed on the GPU while the video stream acquisition
and the calibration are performed by the CPU. This configuration fully exploits
both CPU and GPU. Our method follows a plane-sweep approach and contrary
to concurrent methods, a background extraction is not required. Therefore this
method is not limited to render a unique object. Our method provides good
quality new views using only one computer while concurrent methods usually
need several computers. According to our knowledge, this is the first live VBR
method that can handle moving cameras.

In the following parts, we propose a survey of previous works on both re-
cent off-line and on-line Video-Based Rendering techniques. Then we explain
the plane sweep algorithm and our contribution. Finally, we detail our imple-
mentation and we discuss experimental results.

2 Video-Based Rendering : Previous work

2.1 Off-lines Video-Based Rendering

The Virtualized Reality presented by Kanade et al. [1] is one of the first methods
dealing with VBR. The proposed device first records the video streams from 51
cameras and then computes frame by frame a depth map and a reconstruction
for every input camera. Finally, the new views are created using the reconstruc-
tion computed from the most appropriate cameras. Considering the amount of
data to compute, the depth map and reconstruction process can take very long.
Therefore this method is hardly compatible with live rendering.

Goldlucke et al. [2] follows the same off-line approach using 100 cameras.
Zitnick et al. [3] also uses this approach but with around ten high definition
cameras. The depth maps are computed using a powerful but time-consuming
segmentation method and the rendering is performed with a layered-image rep-
resentation. This method finally provides high quality new views in real-time.
The Stanford Camera Array presented by Wilburn et al. [4] uses an optical
flow approach and provides real-time rendering from 100 cameras. Franco and
Boyer [5] provide new views from 6 cameras with a Visual Hulls method.

VBR methods designed to handle moving cameras are very rare. Jarusiri-
sawad and Saito [6] propose a projective grid space method that can use uncali-
brated cameras. This method does not use marker but the cameras’ movements
are limited to pure rotation and zooming. This method also need a significant



amount of time to compute a new view and thus is not well suited to real-time
rendering.

All these VBR methods use a three-step approach (record - compute - render)
to create new views. Naturally, they can take advantage of the most powerful
algorithms even if they are time consuming. Furthermore, since most of these
methods use a large amount of information, the computing process becomes very
long, but the visual result is usually excellent.

2.2 Live Video-Based Rendering

Contrary to off-line methods, live (or on-line) methods are fast enough to ex-
tract informations from the input videos, create and display a new view several
times per second. However powerful algorithms such as global optimization are
not suited for real-time implementation, and thus we can not expect equivalent
accuracy and visual results from both off-line and on-line methods. Furthermore,
only a few VBR methods reach on-line rendering and, according to our knowl-
edge, none of them handles moving cameras. And since live rendering imposes
severe constraints on the choice of the algorithms used, it becomes difficult to
adapt a live method for moving cameras.

Currently, the Visual Hulls algorithm is the most popular live VBR method.
This method first computes a background extraction on every frame such that it
remains only the main “object” of the scene on the input images. The 3d shape
of this object is then approximated by the intersection of the projected silhou-
ettes. Several on-line implementations have been proposed and most of them are
described in [7]. The most significant method is probably the Image-Based Vi-
sual Hulls proposed by Matusik et al. [8]. This method reaches real-time and live
rendering using four cameras connected to a five computer cluster. The easiest
method to implement is very likely the Hardware-Accelerated Visual Hulls pre-
sented by Li et al. [9]. The main drawback of these methods is the impossibility
to handle the background of the scene since only one main “object” can be ren-
dered. Furthermore, the Visual Hulls methods usually require several computers,
which makes their use more difficult. On the other hand, these methods have
the ability to place the input cameras far from each other, for example around
the main object. However this advantage becomes a big constraint for real-time
calibration since few cameras could see common calibration markers.

Yang et al. [10] propose a distributed Light Field using a 64-camera device
based on a client-server scheme. The cameras are controlled by several comput-
ers connected to a main server. Only those image fragments needed to compute
the new view are transferred to the server. This method provides live rendering
but requires at least height computers for 64 cameras and additional hardware.
Technically, this method can probably be adapted to moving cameras but it may
become difficult to move correctly 64 cameras .



Finally, some plane-sweep methods reach on-line rendering. Yang et al. [12] com-
pute new views in live from five cameras using four computers. Geys et al. [13]
combine a plane sweep algorithm with a 3d shape optimization method and
provide live rendering from three cameras and one computer. Since our method
belongs to the latter family, we will expose the basic plane-sweep algorithm
and [12, 13] contribution in the next section. Then we will detail our rendering
method and the camera calibration step.

3 Plane-Sweep algorithm

3.1 Overview

Given a small set of calibrated images from video cameras, we wish to generate a
new view of the scene from a new viewpoint. Considering a scene where objects
are exclusively diffuse, we first place the virtual camera camx and define a near

plane and a far plane such that every object of the scene lies between these two
planes. Then, we divide space between near and far planes in parallel planes
Di in front of camx as shown in Fig. 1.

Fig. 1. Plane-sweep : geometric configuration

Let’s consider a visible object of the scene lying on one of these planes Di at a
point p. Then this point will be seen by every input camera with the same color
(i.e. the object color). Consider now a point p′ that lies on a plane but not on the
surface of a visible object. As illustrated on Fig. 1, this point will probably not



Fig. 2. Left : all input images are projected on the current plane. A score and a color

are computed for every point of this plane. Right : these computed scores and colors

are projected on the virtual camera.

be seen by the input cameras with the same color. Therefore, points on planes
Di whose projection on every input camera provides a similar color potentially
correspond to the surface of an object of the scene.

A usual way to create a new image is to process the planes Di in a back to
front order. For each pixel p of each plane Di, a score and a color are computed
according to the matching of the projected colors (Figure 2). When every pixel
p of a plane is computed, every score and color are projected on the virtual
camera camx. The final image is computed in a z-buffer style : consider a point
p projected on a pixel of the virtual image. This pixel’s color will be updated
only if the score of p is better that the current score. We note that, thanks to
this plane approach, this method is well suited for use on graphic hardware.

3.2 Previous implementation

The plane sweep algorithm was first introduced by Collins [11]. Yang et al. [12]
propose an real-time implementation using register combiners. They first place
the virtual camera camx and choose among the input cameras a reference cam-
era that is closest to camx. For each plane Di, they project the input images,
including the reference image. During the scoring stage, they compute for every
pixel p of Di a score by adding the Sum of Squared Difference (SSD) between
each projected image and the projected reference image. This method provides
real-time and on-line rendering using five cameras and four computers, however
the input cameras have to be close to each other and the navigation of the vir-



tual camera should lie between the viewpoints of the input cameras, otherwise
the reference camera may not be representative of camx. Lastly, there may ap-
pear discontinuities in the computed video when the virtual camera moves and
changes its reference camera.

Geys et al. [13] combined Yang et al. plane-sweep implementation with an
energy minimization method based on a graph cut algorithm to create a 3d
triangle mesh. This method provides real-time and on-line rendering using 3
cameras and only one computer. However this method requires a background
extraction and only compute a 3d mesh for non-background objects.

4 Our scoring method

The score computation is a crucial step in the plane sweep algorithm. Both vi-
sual results and speedy computation depend on it. Previous methods computes
scores by comparing input images with a/the reference image. Our method
aims to avoid the use of such reference image that is usually not representative
of the virtual view. We also try to use every input image together rather than
to compute images by pair. However, since the scoring stage is performed by the
graphic hardware, only simple instructions are supported.

An appropriate solution is then to use variance and average tools. Consider a
point p lying on a plane Di. The projection of p on each input image j provides
a color cj . We propose to set the score as the variance computed from every
cj and the final color as the average color of the cj . If every input colors cj

match together, this method will provide a small variance which corresponds
to a high score. Furthermore, the average color will be highly representative of
the cj . If the input colors cj mismatch, the provided score will be low since the
computed variance will be high. In the latter case, the average color will not
be representative of the input colors cj but since the score is low, this color
will very likely not be selected for the virtual image computation. Finally, our
plane-sweep implementation can be explained as follows :

◦ reset the scores of the virtual camera
◦ for each plane Di from far to near

• for each point (fragment) p of Di

→ project p on the n input images.
cj is the color obtained from this projection on the jth input image

→ compute the average and the variance of {cj}j=1...n

→ set the color and the score of p to the computed average and variance
• project Di’s scores and colors on the virtual camera
• for each pixel q of the virtual camera

→ if the projected score is better than the previous ones
then update the score and the color of q

◦ display the computed image



This method does not require any reference image and all input images are used
together to compute the new view. The visual quality of the computed image
is then noticeably increased. Moreover, this method avoids discontinuities that
could appear in the virtual video when the virtual camera moves and changes
its reference camera. Finally, this method handles dynamic backgrounds.

5 On-line calibration from multiple markers

Like most VBR techniques, our method requires calibrated cameras. Further-
more, since the cameras are allowed to move, the calibration parameters must
be updated for every frame. The calibration should be accurate but also real-time
for multiple cameras. To satisfy this constraints, we opted for a marker-based
approach. The markers we used are 2D patterns drawn in black squares. They
are detected and identified by ARtoolkit [14], a very popular tool for simple
on-line Augmented Reality applications. Using only one marker is usually not
enough to calibrate a camera efficiently. Indeed, the marker detection may not
be accurate or the marker may not be detected (detection failure or occlusion).
Multiple markers reduce the detection failure problem and provide better results.

In most of the multiple markers applications, the markers are aligned and
their respective position must be known. To decrease the constraints on the
markers layout, some methods like [15] or [16] use multiple markers with arbi-
trary 3d positions. In our case, the cameras view-point can change every time,
then it seems to be easier to increase the number of markers seen by a camera if
they are close to each other. Thus a coplanar layout is well suited for our VBR
method. In the following part, we present a method using multiple markers with
arbitrary position and size. In this method, ARtoolkit is used only to provide
markers’ position in the image coordinates, but not for calibration.

First, the cameras internal parameters, should be preliminary computed.
Then, the full calibration part can begin. The user sets some markers in a pla-
nar configuration. They can have different sizes and any layout is satisfactory.
A reference marker should be chosen to be the origin of the scene referential.
Then one of the input camera takes a picture containing all the markers so the
geometrical relationship between the markers could be estimated. Indeed, a ho-
mography H between this picture and the reference marker is computed (see
figure 3). Applying H on the pixel coordinate of every detected marker will pro-
vide its position in the scene referential.

Then, every moving camera can be calibrated in real-time. At least one marker
should appear in an image to compute a calibration matrix. First, every detected
marker is computed independently. A projection matrix is estimated by Zhang
method [17] using correspondences between the marker pixel coordinates and its
position in the scene referential previously computed. Then the final projection
matrix is set as the average projection matrix computed from every marker.



Fig. 3. Estimation of the relationship between every marker by homography.

Thus in this method, both rotation and translation are handled. To make the
use of our VBR method easy, we propose to define the far plane as the plane
containing the markers.

6 Implementation

We implemented this method in C++ with OpenGL. The video streams ac-
quisition is performed using Video for Linux. During the calibration step, we
use ARtoolkit [14] only for the marker detection. The full calibration is then
computed as explained in section 5. The plane that contains all the markers
is assimilated to the far plane. Thus the user just have to define the depth of
the scene. Nevertheless, these two planes can also be set automatically using a
precise stereo method as described in [13]. Naturally, the calibration parameters
can be locked and unlocked during the shooting. Thus, even if all the markers are
occluded, the camera calibration remains correct, but in that case, the cameras
have to remain static during this time interval.

Our method is specially well-suited to be used with webcams. However this
kind of cameras are usually subject to lens distortion. Since the markers used
for the calibration step can appear every where in the input images and not only
in the central part, lens distortion correction is indispensable. In our method,
we only focused on the radial distortion correction [18]. Our experiments shows
that this correction can not be done by CPU in real-time. Indeed, the CPU is
already fully exploited by the video stream acquisition, the markers detection,
the camera calibration and others tasks related to the plane sweep algorithm.
Hence the correction is performed by the GPU using fragment shaders. This step
is done off-screen in one pass for each input image using Frame Buffer Objects.
Implementation indications can be found on [19]. Skipping the radial distortion
correction will have repercussion on both the calibration accuracy and the score
computation. Then the visual result will be a bit decreased.

Concerning the new view computation, the user should define the number k

of planes Di used for the rendering. The new view computation requires k passes.



Fig. 4. Images computed in live from four cameras.

Each plane Di is drawn as multi-textured GL QUADS. Multi-texturing provides an
access to every texture simultaneously during the scoring stage. The scores are
computed thanks to fragment shaders using the algorithm discribed in section 4.
The scores are stored in the gl FragDepth and the colors in the gl FragColor.
Then we let OpenGL select the best scores with the z-test and update the color
in the frame buffer.

To summarize, the CPU performs the video stream acquisition, the camera
calibration and the virtual camera control. The GPU corrects the lens distortion
and creates the new view. This configuration fully uses the capability of both
CPU and GPU. We tried other configurations but the result was not real-time.

7 Results

We tested our method with an Intel Core2 1.86 GHz with a GeForce 7900 GTX.
The video acquisition is performed by four usb Logitech fusion webcams and
reaches 15 frames per second with a 320×240 resolution.

The computation time to create a new view is linearly dependent on the number
of planes used, on the number of input images, and on the resolution of the



virtual view. The number of planes required depends on the scene. In our tests,
the experimentations showed that under 10 planes, the visual result became
unsatisfying and over 60 planes, the visual results are not improved. Since the
bottleneck of our method is the video stream acquisition, we used 60 planes in
our experiments. Finally, we set the virtual image resolution to 320×240. With
this configuration, our method reaches 15 frames per second.

A normal base-line configuration for our system is a roughly 30◦ angle between
the extreme cameras and the center of the scene. The cameras do not have to be
aligned. Figure 4 shows nine views corresponding to an interpolation between
the four cameras. Figure 5 depicts a virtual view taken at mid-distance between
two adjacent cameras with the same camera configuration used in Figure 4. The
middle image corresponds to the real image and the right image is the difference
between the virtual and the real image. Despite some mismatching in objects’
borders, our method provides good accuracy.

Whatever the markers layout are, our real-time calibration method provides
accurate calibration for our plane sweep method as long as every input camera
can detect at least one or two markers. Thanks to this method, the cameras
can move in the scene without any repercussion on the visual result. Figure 6
shows two images created during the same sequence where cameras have been
moved. The markers can have different size but all of them should be detected
and identified in a single image during the first calibration step.

In our tests, the bottle neck of the method is the webcam acquisition frame-rate
but some others webcams provides higher frame rates. Our application speed
would then be limited by the plane-sweep method, and especially by the virtual
view resolution.

Fig. 5. Left : new view created at mid-distance between two adjacent cameras, Middle :

real image, Right : difference between the real image and the computed view.



Currently, four webcams is our upper limit for real-time new view computation.
Using more cameras would increase the visual result quality and more powerful
GPU would probably help to increase the number of cameras, but the real-time
video-stream acquisition would become a problem. Our experiments also show
that using only three cameras slightly decreases the visual result and restricts
the cameras configuration to smaller base-lines.

Fig. 6. During the same video sequence, the input cameras can be moved.

8 Conclusion

In this article we present a live Video-Based Rendering method that handles
moving cameras and requires only a consumer grade computer. The new view
is computed from four input images and our method follows a plane sweep ap-
proach. Both the CPU and the GPU are fully exploited. The input cameras are
calibrated using multiple markers. These markers must be coplanar but their
disposition and their size do not have to be known in advance such the user can
choose the most adequate configuration. Our method reaches live rendering with
four webcams. These cameras can be moved to follow an actor or to focus on a
specific part of the scene.

Our implementation shows that it is possible to combine live Video-Based
Rendering with moving cameras using markers. Concerning future works, we
intend to enhance our method using real-time calibration without markers.
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