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Parallel algorithm and hybrid regularization for

dynamic PET reconstruction
N. Pustelnik, Student Member, IEEE, C. Chaux, Member, IEEE, J.-C. Pesquet, Senior Member, IEEE,

and C. Comtat, Member, IEEE

Abstract—To improve the estimation at the voxel level in
dynamic Positron Emission Tomography (PET) imaging, we
propose to develop a convex optimization approach based on a
recently proposed parallel proximal method (PPXA). This class of
algorithms was successfully employed for 2D deconvolution in the
presence of Poisson noise and it is extended here to (dynamic)
space + time PET image reconstruction. Hybrid regularization
defined as a sum of a total variation and a sparsity measure is
considered in this paper. The total variation is applied to each
temporal-frame and a wavelet regularization is considered for the
space+time data. Total variation allows us to smooth the wavelet
artifacts introduced when the wavelet regularization is used
alone. The proposed algorithm was evaluated on simulated dy-
namic fluorodeoxyglucose (FDG) brain data and compared with
a regularized Expectation Maximization (EM) reconstruction.
From the reconstructed dynamic images, parametric maps of
the cerebral metabolic rate of glucose (CMRglu) were computed.
Our approach shows a better reconstruction at the voxel level.

I. INTRODUCTION

The extraction of physiological parameters at the voxel level

(parametric imaging) is a challenging problem in dynamic PET

imaging (space+time). In [1], [2], [3] the authors demonstrated

the advantage of taking into account time-frame characteristics

during the reconstruction for improving the image quality

and the physiological parameter estimation. More recently,

the space+time information was used by considering wavelet-

frame decomposition [3], [4], [5]. To efficiently deal with such

representations, the criterion to minimize often involves a ℓ1-

norm (regularization term) which leads to a non-differentiable

problem. New convex optimization algorithms (within the

class of proximal methods) have been developed in [6],

[7] aiming at minimizing criteria which are non-necessarily

differentiable. The first application combining wavelet-frame

representations and proximal algorithms in dynamic PET

image reconstruction was suggested by Verhaeghe et al. [3] by

considering Forward-Backward (FB) iterations [6] to minimize

a criterion involving a Gaussian data fidelity term and a

wavelet spline regularization. In [5], the authors performed

Temporal Activity Curves (TAC) denoising in the sinogram

space before reconstruction by using the Douglas-Rachford

(DR) algorithm so as to deal with a Kullback-Leibler diver-

gence as a data fidelity term, which is well-adapted to Poisson
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noise. To perform simultaneously denoising and reconstruction

with wavelet regularization, we previously designed in [8] a

nested iterative algorithm (FB-DR algorithm). This method

allowed us to improve the reconstruction quality, but its two

main drawbacks were (i) a high computational time due to

the required subiteration and (ii) the presence of artifacts

introduced by wavelet regularization. To tackle these problems,

we consider in this paper a more recent algorithm called Par-

allel ProXimal Algorithm (PPXA) [9] which is well-adapted

to dynamic PET due to (i) its parallel structure and (ii) the

possibility of dealing with hybrid regularization such as the

combination of a wavelet-frame penalty and a total variation

measure [10]. This method was presented for image deblurring

applications in the presence of Poisson noise [11] and its

application to dynamic PET is now investigated.

This paper is organised as follows. First, we will present

the considered degradation model and the criterion we aim

at minimizing. Then, convex optimization tools such as the

proximity operator and PPXA will be introduced. The main

technical difficulty in this work consists of computing the

proximity operator of the data fidelity term. A solution to

overcome this difficulty will be proposed. Finally, numerical

experiments will be provided by considering simulated and

real dynamic PET [18F]-FDG exams.

II. PROBLEM

We consider a finite parameterization of the original image

denoted by yt = (yi,t)1≤i≤N which corresponds to the

spatial activity distribution for a time-frame t. These data are

observed through the linear system associated with the matrix

A = (Aj,i)1≤j≤M,1≤i≤N where each element Aj,i represents

the probability for a voxel i to be detected in the tube of

response (TOR) j. Moreover, during the acquisition process,

data are contaminated by Poisson noise. The effect of the noise

is denoted by P . The dynamic PET data zt = (zj,t)1≤j≤M

are related to the original images by the following degradation

model:

(∀t ∈ {1, . . . , T}) zt = P(Ayt) (1)

where T denotes the number of time-frame. The recon-

struction process requires to find the finite parameterization

ŷ = (ŷt)1≤t≤T closest to y = (yt)1≤t≤T from the measured

data z = (zt)1≤t≤T .

In order to perform this task, we consider a variational

formulation where the criterion is made up of a data fidelity

term related to Poisson noise, a hybrid regularization term



(total variation + sparsity term in the wavelet-frame domain)

and a dynamic range constraint.

The most suited data fidelity term in the presence of Poisson

noise is the generalized Kullback-Leibler divergence (related

to the Poisson minus log-likelihood) denoted in the following

by DKL(zt, ·), for zt ∈ R
M . Concerning the regularization

term, the total variation (denoted by tv) is applied to each

time-frame and the wavelet-frame regularization deals simul-

taneously with the whole space+time data. The total variation

allows us to smooth the artifacts introduced by wavelet-frame

regularization (ℓ1-norm). In the following, F ∗ ∈ R
NT×L

denotes a general tight wavelet-frame synthesis operator such

that F ∗ ◦ F = νId for some ν ∈]0,+∞[. Thus, the image ȳ

can be expressed as y = F ∗x = (F ∗
t x)1≤t≤T , where x ∈ R

L

denotes the wavelet-frame coefficients and F ∗
t ∈ R

N×L. The

convex constraint C ⊂ R
NT limits the data value range of

the solution (for example, it may be a positivity constraint).

Below, ιC denotes the indicator function of C such that, for

every y ∈ R
NT , ιC(y) = 0 if y ∈ C and +∞ otherwise.

The resulting minimization problem amounts to finding the

wavelet-frame coefficients such that

x̂ ∈ Argmin
x∈RL

T∑

t=1

(
DKL(zt, AF ∗

t x) + ϑtv(F ∗
t x)

)

+ κ‖x‖1 + ιC(F ∗x). (2)

ϑ > 0 and γ > 0 denote the regularization parameters. They

allow us to adjust the impact of the total variation and sparsity

penalties on the solution. The reconstructed image is ŷ = F ∗x̂.

Due to the definition of each functional, this criterion is convex

but non-differentable. To solve efficiently such a minimization

problem, we will consider recent convex optimization tools.

III. CONVEX OPTIMIZATION

One of the most famous convex optimization algorithm

is the Projection Onto Convex Sets (POCS) algorithm [12]

based on alternated projections. A generalization of projections

was proposed by Moreau in [13], which is known as the

proximity operator. This tool is defined for a convex, lower

semi-continuous and proper function ϕ : R
X → ]−∞,+∞],

at a point v ∈ R
X and it is such that

proxϕ : R
X → R

X : v 7→ arg min
u∈RX

1

2
‖u − v‖

2
+ ϕ(u).

Particularly, if C is a nonempty closed convex set of R
X ,

proxιC
reduces to the projection PC onto C.

In the recent literature, proximal algorithms (that is based

on proximity operators) have been proposed to minimize effi-

ciently non-differentiable convex criteria. One of the most fa-

mous ones is the FB algorithm [14] also known as thresholded

Landweber or iterative soft-thresholding [6] when a ℓ1 + ℓ2
criterion is considered. More generally, the FB algorithm

allows us to minimize a sum of two functions one of which

is Lipschitz differentiable. This framework is however too

restrictive to solve the minimization problem (2) due to the

non-Lipschitz differentiability of DKL [7]. Another proximal

algorithm known as PPXA [9] allows us to relax the Lipschitz

assumption and to solve any minimization problem formulated

as

x̂ ∈ Argmin
x∈RL

Q∑

q=1

fq(x) (3)

where Q ∈ N
∗ and where (fq)1≤q≤Q are convex, lower semi-

continuous and proper functions from R
L to ]−∞,+∞]. The

iterations are recalled in Algorithm 1.

Algorithm 1 General form of PPXA

1) Set γ ∈ ]0,+∞[.
2) For every q ∈ {1, . . . , Q}, set (ωq)1≤q≤Q ∈]0, 1]Q such

that
∑Q

q=1 ωq = 1.

3) Set (uq,0)1≤q≤Q ∈ (RL)Q and x0 =
∑Q

q=1 ωquq,0.

4) For n = 0, 1, . . .

4a) For q = 1, . . . , Q
⌊ pq,n = proxγfq

uq,n

4b) pn =
∑Q

q=1 ωqpq,n

4c) Set λn ∈ ]0, 2[
4d) For q = 1, . . . , Q

⌊ uq,n+1 = uq,n + λn (2 pn − xn − pq,n)
4e) xn+1 = xn + λn (pn − xn)

The convergence of the sequence (xn)n∈N generated by

Algorithm 1 to a solution x̂ of (3) is established under the

following assumption.

Assumption III.1

(i) lim‖x‖→+∞ f1(x) + · · · + fQ(x) = +∞.

(ii)
⋂Q

q=1 rint dom fq 6= ∅.1

(iii)
∑

n∈N
λn (2 − λn) = +∞.

The main difficulty of this algorithm lies in Step 4a) which

requires to compute the proximity operator of each function fq.

Fortunately, for a large class of functions, this operator takes a

closed form [14]. For example, the ℓ1-norm proximity operator

corresponds to a soft-thresholding. The way to proceed with

tv is detailed in [9]: it results that tv can be split in a sum

of four functions, denoted by (tvi)1≤i≤4 when Haar filters

are considered. However, a remaining difficulty in using this

algorithm for dynamic PET reconstruction is to obtain an

explicit form at Step 4a) for DKL(zt, A·).
Subsequently, we assume that for every r ∈ {1, . . . , R},

Ir is a partition of {1, . . . ,M} in nonempty sets. Addi-

tionally, we can write DKL(zt, ·) as a sum of M functions

Ψj,t : R → ]−∞,+∞] operating on each j-th component zj,t

of zt. By regrouping the terms in this sum such that j ∈ Ir (for

every r ∈ {1, . . . , R}, Ψ
(r)
t

(
(zj,t)j∈Ir

)
=

∑
j∈Ir

Ψj,t(zj,t)),
DKL(zt, A.) can be decomposed as a sum of R functions in-

volving reduced-size linear operators A(r) = (Aj,i)j∈Ir,1≤i≤N

containing non-overlapping and thus orthogonal rows of A.

For every r ∈ {1, . . . , R}, Ir denotes a set of TOR involving

distinct pixels. The resulting PPXA iterations are detailed in

Algorithm 2.

1Let ϕ : R
X → ]−∞, +∞] be a convex, l.s.c. and proper function.

dom ϕ = {u ∈ R
X | ϕ(u) < +∞} and the interior of C ⊂ R

X relative to
its affine hull is the set denoted by rint C.



Algorithm 2 PPXA for dynamic PET reconstruction

1) Set γ ∈ ]0,+∞[.
2) Set ω1 = . . . = ωR = 1

4R
, ωR+1 = . . . = ωR+4 = 1

16
and ωR+5 = ωR+6 = 1

4 .

3) Set, for every q ∈ {1, . . . , R + 6}, uq,0 = F z

and x0 =
∑R+6

q=1 ωquq,0.

4) For n = 0, 1, . . .

4a) For t = 1, . . . , T

For r = 1, . . . , R
⌊ pr,t,n = prox γ

ωq
Ψ

(r)
t ◦A(r)◦F∗

t

(
ur,n

)

pR+1,t,n = prox γ
ωR+1

tv1◦F∗

t

(
uR+1,n

)

pR+2,t,n = prox γ
ωR+2

tv2◦F∗

t

(
uR+2,n

)

pR+3,t,n = prox γ
ωR+3

tv3◦F∗

t

(
uR+3,n

)

pR+4,t,n = prox γ
ωR+4

tv4◦F∗

t

(
uR+4,n

)

pR+5,n = prox γ
ωR+5

‖·‖1
uR+5,n

pR+6,n = proxιC◦F∗

(
uR+6,n

)

4b) pn =
∑R+6

q=1 ωqpq,n

4c) Set λn ∈ ]0, 2[
4d) For q = 1, . . . , Q

⌊ uq,n+1 = uq,n + λn (2 pn − xn − pq,n)
4e) xn+1 = xn + λn (pn − xn)

IV. MATERIALS AND METHODS

A. Simulated data

The method was evaluated on simulated 2D+time data,

using one slice of the Zubal brain phantom [15]. A two

compartment model with k4 = 0 was used to simulate

a dynamic [18F]-FDG brain study, with 16 time frames

with a duration varying between 30 seconds for the first

time-frames to 5 minutes for the last ones. Moreover, small

local variations of Ki were created in the cortex and putamen

(see Figure 2, top-left). 288 (radial) × 144 (angles) sinograms

with a radial sampling of 2.247 mm were simulated by

analytically projecting the phantom and adding Poisson noise.

Attenuation, random and scattered coincidences were not

simulated in this example. The number of events varies from

48 for the first time-frame to 26804 for the last time-frame.

The PPXA algorithm is implemented in parallel with the

OpenMP library and run over 400 iterations of 10s each. The

relaxation parameter is here equal to λn ≡ 1 and the step-

size is γ = 6.105. The system matrix is split in R = 432
subsets and the function number is Q = R + 6. The chosen

separable orthonormal wavelets correspond to symmlet filters

of length 6 over 3 resolution levels of spatial decomposition.

PPXA 1 refers to our approach without temporal regulariza-

tion and PPXA 2 considers a two-level decomposition with

Daubechies-6 wavelets on the interval for temporal decompo-

sition [16]. The latter choice is motived by the small number

of time-frames and aims at avoiding boundary effects. The

constraint on the data range is C = [0, 105]NT Bq/cc and the

chosen regularization parameters are κ = 0.1 and ϑ = 10−5.

A limited value of the parameter ϑ was chosen so as to

avoid “cartoon effects”. The proposed solution without/with

temporal regularization in PPXA 1/PPXA 2 is compared with

EM-ML and EM-ML with post-smoothing (Sieves). SIEVES 1

denotes a Gaussian filtering optimized to yield the minimum

MSE and SIEVES 2 uses a Gaussian kernel leading to a similar

noise level than our approach. For EM-ML and SIEVES 1/2,

the iteration number is 250. A full width at half maximum

(FWHM) of 12 mm x 12 mm (resp. 14 mm x 14 mm) is used

for SIEVES 1 (resp. SIEVES 2).

B. Pre-clinical data

We also processed real data resulting from a [18F]-FDG

exam on the ecat HR+ scanner (Siemens medical solutions,

Knoxville, TN, USA). 284 MBq were injected to a 4.5 kg

baboon. The injection was done under camera. A dynamic

acquisition was performed with septa extended. The prompt

and delayed coincidences were registered separately in 16

frames with a duration varying from 1.5 minutes to 4 minutes.

The global exam duration was 54 minutes. Transmission was

realized before injection by a rotative source of germanium 57.

We reconstructed prompt data by considering three different

approaches: filtered backprojection (FBP), EM-ML recon-

struction with Gaussian (12 mm x12 mm FWHM) post-

filtering (Sieves) and our approach (PPXA). During the re-

construction process, attenuation effects, normalization effects,

and random coincidences have been taken into account. How-

ever, scattered coincidences have not been considered (this

choice is justified by the septa extended). The system matrix

used for SIEVES and PPXA does not model resolution (PSF)

effects.

V. RESULTS

A. Simulated data

Figures 1 and 2 display the reconstruction results for differ-

ent temporal-frames (t = 4: 1.5-2 min and t = 7: 8-13 min).

During first frames when the noise level is particularly high,

PPXA 2 restores quite well the brain activity even if artifacts

can be observed (for example in the thalamus area).

Table I compares the normalized MSE for different areas of

interest such as the cortex, the thalamus and the striatum. It

can be observed that PPXA 2 leads to the smallest normalized

MSE for the first frames and equivalent normalized MSE for

the last ones.

Figures 3, 4, and 5 represent Temporal Activity Curves for

individual pixels in different area of interest. This allows us

to evaluate the impact of the spatio-temporal reconstruction

and the good results obtained with PPXA 2.

Using Pmod software (PMOD Technologies Ltd, Zürich, CH),

parametric images of CMRglu were computed from the EM-

ML, Sieves, and PPXA reconstructions. The results are shown

in Figure 6. The differences between the CMRglu images is

not as much important as the TAC results or the reconstructed

images. This is mainly due to the Patlak model which essen-

tially uses the last frames for CMRglu computation, which are

less sensitive to noise.



Original EM-ML

SIEVES 1 SIEVES 2

PPXA 1 PPXA 2

Fig. 1. Reconstructed images (in Bq/cc) for t = 4.

Original EM-ML

SIEVES 1 SIEVES 2

PPXA 1 PPXA 2

Fig. 2. Reconstructed images (in Bq/cc) for t = 7.

Cortex

EM-ML SIEVES 1 SIEVES 2 PPXA 1 PPXA 2

t = 4 22.4 0.52 0.33 0.19 0.12

t = 7 3.49 0.13 0.13 0.14 0.12

t = 14 2.54 0.16 0.17 0.18 0.16

Thalamus

EM-ML SIEVES 1 SIEVES 2 PPXA 1 PPXA 2

t = 4 16.7 0.43 0.30 0.14 0.11

t = 7 3.44 0.11 0.11 0.12 0.09

t = 14 2.21 0.11 0.12 0.14 0.10

Striatum

EM-ML SIEVES 1 SIEVES 2 PPXA 1 PPXA 2

t = 4 18.6 0.39 0.22 0.11 0.08

t = 7 3.05 0.10 0.10 0.10 0.10

t = 14 2.23 0.10 0.10 0.10 0.10

TABLE I
MSE FOR DIFFERENT AREAS.
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Fig. 3. TAC in the thalamus.
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Fig. 4. TAC in the cortex.
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Fig. 5. TAC in the striatum.



Original EM-ML

SIEVES 1 SIEVES 2

PPXA 1 PPXA 2

Fig. 6. CMRglu computed from the Original, EM-ML, Sieves, and PPXA
reconstructed images (in mol/min/100 g).

B. Pre-clinical data

Figure 7 shows the reconstructed images obtained with the

different reconstruction methods for temporal-frames t = 4
(4-6 min), t = 7 (14-18 min), and t = 14 (42-46 min).

These results illustrate the good behaviour and the quantitative

correctness of the proposed method on real data.

VI. CONCLUSION

We have presented a convex optimization approach to deal

with spatio-temporal PET reconstruction. The minimized crite-

rion is composed with different terms: generalized Kullback-

Leibler divergence (minus Poisson log-likelihood) term, ℓ1-

norm for wavelet-based regularization, total variation and dy-

namic range constraint. To minimize efficiently this criterion,

we employed PPXA which is a recent algorithm belonging

to the class of proximal methods. The convergence of this

algorithm is guaranteed and it is implementable in parallel.

The effectiveness of the proposed approach was demonstrated

on simulated and real pre-clinical data.
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Soc. Math. France, vol. 93, pp. 273–299, 1965.
[14] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A variational

formulation for frame-based inverse problems,” Inverse Probl., vol. 23,
no. 4, pp. 1495–1518, June 2007.

[15] I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B.
Hoffer, “Computerized three-dimensional segmented human anatomy,”
Medical Physics, vol. 21, no. 1, pp. 299–302, 1994.

[16] A. Cohen, I. Daubechies, and P. Vial, “Wavelets on interval and fast
wavelet transforms,” Appl. and Comp. Harmonic Analysis, vol. 1, no. 1,
pp. 54–81, 1993.


