Parallel Algorithm and Hybrid Regularization for Dynamic PET Reconstruction

Abstract : To improve the estimation at the voxel level in dynamic Positron Emission Tomography (PET) imaging, we propose to develop a convex optimization approach based on a recently proposed parallel proximal method (PPXA). This class of algorithms was successfully employed for 2D deconvolution in the presence of Poisson noise and it is extended here to (dynamic) space + time PET image reconstruction. Hybrid regularization defined as a sum of a total variation and a sparsity measure is considered in this paper. The total variation is applied to each temporal-frame and a wavelet regularization is considered for the space+time data. Total variation allows us to smooth the wavelet artifacts introduced when the wavelet regularization is used alone. The proposed algorithm was evaluated on simulated dynamic fluorodeoxyglucose (FDG) brain data and compared with a regularized Expectation Maximization (EM) reconstruction. From the reconstructed dynamic images, parametric maps of the cerebral metabolic rate of glucose (CMRglu) were computed. Our approach shows a better reconstruction at the voxel level.
Type de document :
Communication dans un congrès
IEEE Medical Imaging Conference, Oct 2010, Knoxville, Tennessee, United States. pp.2423--2427, 2010
Liste complète des métadonnées


https://hal-upec-upem.archives-ouvertes.fr/hal-00733493
Contributeur : Caroline Chaux <>
Soumis le : mardi 18 septembre 2012 - 17:19:34
Dernière modification le : jeudi 21 janvier 2016 - 15:20:39
Document(s) archivé(s) le : mercredi 19 décembre 2012 - 03:46:29

Fichier

mic10_5p.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00733493, version 1

Citation

Nelly Pustelnik, Caroline Chaux, Jean-Christophe Pesquet, Claude Comtat. Parallel Algorithm and Hybrid Regularization for Dynamic PET Reconstruction. IEEE Medical Imaging Conference, Oct 2010, Knoxville, Tennessee, United States. pp.2423--2427, 2010. <hal-00733493>

Partager

Métriques

Consultations de
la notice

263

Téléchargements du document

102