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ABSTRACT

We are interested in image reconstruction when data provided by
several sensors are corrupted with a linear operator and an additive
white Gaussian noise. This problem is addressed by invoking Stein’s
Unbiased Risk Estimate (SURE) techniques. The key advantage of
SURE methods is that they do not require prior knowledge about the
statistics of the unknown image, while yielding an expression of the
Mean Square Error (MSE) only depending on the statistics of the ob-
served data. Hence, they avoid the difficult problem of hyperparam-
eter estimation related to some prior distribution, which traditionally
needs to be addressed in variational or Bayesian approaches. Con-
sequently, a SURE approach can be applied by directly parameter-
izing a wavelet-based estimator and finding the optimal parameters
that minimize the MSE estimate in reconstruction problems. Simu-
lations carried out on parallel Magnetic Resonance Imaging (pMRI)
images show the improved performance of our method with respect
to classical alternatives.

Index Terms— Reconstruction, Stein’s principle, wavelets,
nonlinear estimation, multiple sensors, pMRI.

1. INTRODUCTION

Much attention has been paid to Stein’s principle [1] in the recent
statistical literature in order to derive MSE estimates in statistical
problems involving an additive Gaussian noise. In particular, it was
successfully used in wavelet-based nonlinear denoising [2]. More re-
cently, such an approach was extended to deconvolution problems [3,
4] and it was also employed for Poisson data denoising [5]. The key
advantage of Stein’s principle [6] is that it does not require prior
knowledge about the statistics of the unknown image. Hence, it al-
lows us to circumvent the difficult problem of the estimation of the
hyperparameters of a prior distribution as frequently encountered in
Bayesian approaches.

In this paper, we propose to further extend the scope of Stein-
based approaches by addressing image reconstruction problems.
More precisely, we employ Stein’s principle in order to propose
a wavelet-based estimator relying on Linear Expansion of Thresh-
olds (LET) functions [7, 8]. This enables us to design efficient medi-
cal image reconstruction algorithms whose parameters are optimally
computed to achieve the minimum MSE. The estimator operates in
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the wavelet transform domain and deals with mutiple observations
delivered by several sensors. The interest of this method is demon-
strated in the parallel Magnetic Resonance Imaging (pMRI) context
[9, 10]. Recall that this modality offers a means of significantly
reducing the acquisition time at the expense of a degraded signal-to-
noise ratio. In a recent work by Chaâri et al. [11] a novel method
based on a wavelet-based variational approach was proposed, which
makes use of an iterative optimization algorithm to compute the
Maximum A Posteriori (MAP) estimate. We aim here at proposing
a faster non-iterative method where the estimator parameters are
adjusted automatically. Note also that the proposed approach is very
flexible concerning the wavelet choice and the estimator form.

The remainder of the paper is organized as follows. In Section 2,
we briefly introduce the notation and describe the considered in-
verse problem. Then, Section 3 is devoted to the proposed statistical
method. In particular, we show how to address the complex-valued
nature of the data and build an unbiased quadratic risk estimator, be-
fore discussing the estimator choice. Finally, in Section 4, we illus-
trate the effectiveness of our reconstruction algorithm on a simulated
set of pMRI data.

2. PROBLEM STATEMENT

2.1. Notations

We consider here pMRI images generated by consideringL acquisi-
tion coils and a reduction factorR. Let X × Y be the dimensions
of the full Field Of View (FOV) image, along the respective phase
and and frequency directions. The reduced FOV image size in phase

encoding direction is thus given by∆X =
X

R
. B will denote the set

of spatial indices in the reduced FOV image.

2.2. Observation model

At each positionx ∈ B we observe anL-dimensional data vector
d(x) = [d1(x), . . . , dL(x)]⊤, which is obtained by applying an
L × R sensitivity matrixS(x) given by

S(x) =

2
64

S1(x1, x2) . . . S1(x1, x2 + (R − 1)∆X)
... · · ·

...
SL(x1, x2) . . . SL(x1, x2 + (R − 1)∆X)

3
75 ,

to anR-dimensional vector of pixel values in the original (unknown)
imageρ(x) = [ρ(x1, x2), ρ(x1, x2 + ∆X), . . . , ρ(x1, x2 + (R −



1)∆X)]⊤ and by adding a complex Gaussian circular noise vector
corrupting samples from all coils:n(x) = [n1(x), . . . , nL(x)]⊤.
Hereρ(x) is anR-dimensional random field which is assumed to be
independent ofn(x). The between-coil noise covariance matrix is
given by Cov{n(x),n(x′)} = Ψδ(x − x

′), ∀(x,x′) ∈ B
2. The

resulting model is consequently described by the following linear
model:

d(x) = S(x)ρ(x) + n(x), ∀x ∈ B. (1)

The objective of this work is to recoverρ from d knowingS.

3. PROPOSED METHOD

3.1. Complex nature of the data

In MRI, the acquired data are complex-valued even if the magnitude
is only considered for visualization purpose. Let·R and ·I be the
subscripts indicating the real and imaginary parts (namely,ℜ{·} and
ℑ{·}) of the data. The observed data can thus be expressed by

»
dR(x)
dI(x)

–
=

»
SR(x) −SI(x)
SI(x) SR(x)

– »
ρR(x)
ρI(x)

–
+

»
nR(x)
nI(x)

–

so that Model (1) can be reexpressed under the form

dC(x) = SC(x)ρC(x) + nC(x), ∀x ∈ B, (2)

where the involved vectors and matrices are real-valued. Assuming
that we are able to compute the pseudo-inverseS

†
C(x) of SC(x)

defined by

S
†
C(x) =

“
SC(x)⊤SC(x)

”−1

SC(x)⊤, (3)

it follows that eρC(x) = ρC(x) + enC(x) where

eρC(x) = S
†
C(x)dC(x) and enC(x) = S

†
C(x)nC(x).

Furthermore, the following relations regarding the second-order
statistics of the random fieldenC(x) will be useful for the quadratic
risk computation:

Cov{enC(x), enC(x)} = S
†
C(x)ΨC

`
S
†
C(x)

´⊤
(4)

Cov{enC(x),nC(x)} = S
†
C(x)ΨC . (5)

where Cov{nC(x),nC(x′)} = ΨCδ(x − x
′), ∀(x,x′) ∈ B

2.

3.2. Derivation of the SURELET estimator

For everyx ∈ B andk ∈ {1, . . . , K}, let ϕk(x) ∈ R
2L be an

analysis vector and leteϕk(x) ∈ R
2R be a synthesis vector. In the

case of a decomposition onto a basis of the FOV image,K = XY
and the need of2K functions stems from the fact that the real and
imaginary parts of the data are considered. We choose an estimator
of the form

∀k ∈ {1, . . . , 2K}, bρk = θk(wk) (6)

wherewk =
P

x∈B
ϕk(x)⊤dC(x) andθk : R → R is some dif-

ferentiable estimating function (the choice of this function will be
discussed in Section 3.4). Then the estimator ofρC(x) is given by

bρC(x) =
2KX

k=1

bρk eϕk(x) (7)

The objective now is to compute the estimator parameters that mini-
mize the quadratic risk.

3.3. Unbiased risk estimate

The risk corresponding to a MSE estimation is defined as:∀x ∈ B,

E
˘
‖bρC(x) − ρC(x)‖2¯

= E
˘
‖bρC(x) − eρC(x) + enC(x)‖2¯

= E
˘
‖bρC(x) − eρC(x)‖2¯

+ 2E
n

bρC(x)⊤enC(x)
o

− 2E
n

eρC(x)⊤enC(x)
o

+ E
˘
‖enC(x)‖2¯

. (8)

Here, we focus on the second term which, by using (7), reads:

E
n

bρC(x)⊤enC(x)
o

=

2KX

k=1

eϕk(x)⊤E{bρkenC(x)}.

In addition, applying the analysis vectorsϕk(x) to dC(x) yields
coefficientswk which can be decomposed aswk = uk + nk, where

uk =
X

x∈B

ϕk(x)⊤SC(x)ρC(x)

nk =
X

x∈B

ϕk(x)⊤nC(x),

so thatbρk can be rewritten as

bρk = θk(wk) = θk(uk + nk). (9)

Then, by applying Stein’s principle [1], it follows that:

E{bρkenC(x)} = E
˘
θ
′
k(wk)

¯
E{nkenC(x)}. (10)

After some tedious calculations, it follows that the quadratic risk
estimate reads:

E
˘
‖bρC(x) − ρC(x)‖2¯

= E
˘
‖bρC(x) − eρC(x)‖2¯

+ 2
2KX

k=1

E
˘
θ
′
k(wk)

¯
eϕk(x)⊤S

†
C(x)ΨCϕk(x)

− tr
“
S
†
C(x)ΨC

`
S
†
C(x)

´⊤”
.

An unbiased estimate of the resulting global MSE is:

bE(bρC − ρC) = bE(bρC − eρC) + ∆ (11)

where

bE(bρC − eρC) =
1

XY

X

x∈B

‖bρC(x) − eρC(x)‖2

and ∆ =
2

XY

2KX

k=1

θ
′
k(wk)

X

x∈B

eϕk(x)⊤S
†
C(x)ΨCϕk(x)

−
1

XY

X

x∈B

tr
“
S
†
C(x)ΨC

`
S
†
C(x)

´⊤”
.

Note that the risk estimate is expressed in terms of observed data
only. Now, the next step consists of specifying the form of the es-
timating functionsθk in order to find the parameters that minimize
the global error measurebE(·).



3.4. Estimating function choice

Assume that the coefficients(wk)1≤k≤2K are classified according
to M ∈ N

∗ distinct nonempty index subsets (e.g. wavelet subbands)
Km, m ∈ {1, . . . , M}. For everym ∈ {1, . . . , M} andk ∈ Km,
we choose subband-dependent estimating functions of the form:

θk(wk) =

ImX

i=1

am,i fm,i(wk) (12)

where(am,i)1≤i≤Im
are scalar real-valued weighting factors and,

for everyi ∈ {1, . . . , Im}, fm,i : R → R is a differentiable func-
tion. These functions are the Linear Expension of Thresholds (LET)
estimating functions introduced in [7, 8] and correspond to a linear
combination ofIm ∈ N

∗ given univariate functionsfm,i applied to
wk (note that we use the same estimating function for a givenKm).

3.5. Computation of(am,i)1≤i≤Im
parameters

As mentioned earlier, we want to compute the parameters(am,i)1≤i≤Im

that minimize the quadratic risk in (11). It can be shown that
this amounts to solving the following set of linear equations:
∀m ∈ {1, . . . , M}, ∀i ∈ Im,

MX

n=1

InX

j=1

an,j

X

x∈B

βm,i(x)⊤βn,j(x)

=
X

x∈B

βm,i(x)⊤ eρC(x)

−
X

k∈Km

f
′
m,i(wk)

X

x∈B

eϕk(x)⊤S
†
C(x)ΨCϕk(x)

whereβm,i(x) =
P

k∈Km

fm,i(wk) eϕk(x).

4. SIMULATION RESULTS

4.1. Context

In our experiments, the families of analysis/synthesis functions are
chosen such that

ϕk(x) = SC(x)
“
SC(x)⊤SC(x) + λI

”−1

| {z }
G(x)

ψk(x)

eϕk(x) = eψk(x)

whereλ > 0, I is the identity matrix and the components of vector
ψk(x) (resp. eψk(x)) are obtained from shifted versions of a 2D
separable wavelet analysis function (resp. synthesis function). A
scheme summarizing the proposed reconstruction approach is given
in Fig. 1.

Concerning the estimating functions, we chooseIm = 2. fm,1

is the identity function and

∀ρ ∈ R, fm,2(ρ) =

„
1 − exp

“
−

ρ8

(ωσm)8

”«
ρ

whereω ∈]0,∞[ andσm is the standard deviation of(nk)k∈Km
.

These LET estimating functions were introduced in [7].
We compare our results with SENSE reconstruction [9], which

is based on a weighted least-squares estimator:

bρSENSE(x) =
“`

S
∗(x)

´⊤
Ψ

−1
S(x)

”†`
S
∗(x)

´⊤
Ψ

−1
d(x).
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estimation operator
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⊤

Fig. 1. Flowchart of the proposed reconstruction method.

4.2. Numerical results

To assess the performance of the proposed method, we simulated
synthetic data from a full FOV reference image displayed in Fig. 2(a)
according to model (1). Note that the dynamic range of the absolute
value of the pixels is large.

The number of antennas is here equal toL = 8 and the reduc-
tion factor isR = 4. The covariance matrix of the noiseψ is chosen
to be diagonal (no between coil correlation) and all the diagonal en-
tries are chosen equal toσ2 (homoscedasticity). Next, we compared
our results with those provided by the classical SENSE reconstruc-
tion. Here, an orthonormal wavelet analysis (symlets of length 8)
is performed on4 resolution levels. The regularization parameterλ
was chosen empirically. Typical values around0.001 were observed
to provide accurate and reliable results. The performance was mea-
sured in terms of Peak Signal-to-Noise Ratio (PSNR) as reported in
Table 1. In short, our method enables a significant gain in PSNR
values with respect to the SENSE approach.

Table 1. PSNR values for reconstructed images (in dB).
Method Real Part Imag. Part Magn.

σ2 = 5 106

SENSE 36.29 35.48 38.75
λ = 10−3 38.28 36.77 40.43

Proposed λ = 10−4 38.30 36.79 40.46
λ = 10−5 38.30 36.79 40.46

σ2 = 12.5 105

SENSE 42.94 42.40 45.58
Proposed λ = 10−4 43.57 42.74 46.35

σ2 = 2 107

SENSE 30.00 28.57 32.03
Proposed λ = 10−4 33.72 31.69 34.92

Interestingly, the larger the noise, the stronger the PSNR im-
provements we observed in favour of the proposed approach. For vi-
sualization purposes, the reconstructed images by SENSE and Stein-
Let methods are shown in Fig. 2(b)-(c) whenσ2 = 5 106. The
main differences can be observed in the center of the images where
more residual noise is found for SENSE reconstruction. Note that
the Stein-LET reconstruction in Fig. 2(c) is achieved in about 15 s.
on a Xeon(R) CPU X5450@3.00GHz.



(a) (b) (c)

(d) (e) (f)

Fig. 2. (a): Magnitude of the reference image: range in [0,91496].(b)-(c): Magnitude of the restored images by SENSE and the proposed
Stein-LET approach, respectively.(d)-(f): zoomed versions of images(a)-(c) on the central part of the brain to illustrate the noise reduction
using the Stein-LET estimator.

5. CONCLUSION

We proposed a new reconstruction method based on Stein’s principle
and LET functions which was applied to pMRI. In this context, our
approach provides more accurate results than the classical SENSE
alternative. In our approach, most of the parameters are set in an
unsupervised manner. In addition, the computational complexity is
quite reasonable. In the future, we plan to validate this restoration
method in a more realistic context i.e. without knowing the amount
of noise and using an unperfectly known sensitivity matrix. Fur-
thermore, we will consider 3D decomposition to extend the present
contribution and enable the reconstruction of all slices simultane-
ously. It would be also interesting to apply this approach to other
reconstruction strategies [12, 13].
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