M. Afonso, J. Bioucas-dias, and M. Figueiredo, « Hybrid synthesis-analysis frame-based regularization : a criterion and an algorithm », Signal processing with adaptive sparse structured representations -SPARS11, pp.27-30, 2011.

M. V. Afonso, J. M. Bioucas-dias, and M. A. Figueiredo, An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems, IEEE Transactions on Image Processing, vol.20, issue.3, pp.3-3, 2011.
DOI : 10.1109/TIP.2010.2076294

H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643354

A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal-recovery problems, Convex Optimization in Signal Processing and Communications, 2009.
DOI : 10.1017/CBO9780511804458.003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Bect, L. Blanc-féraud, G. Aubert, and A. Chambolle, « A ?1-unified variational framework for image restoration, Proc. European Conference on Computer Vision, pp.1-13, 2004.

M. Bertero, P. Boccacci, G. Desidera, and G. Vicidomini, Image deblurring with Poisson data: from cells to galaxies, Inverse Problems, vol.25, issue.12, 2009.
DOI : 10.1088/0266-5611/25/12/123006

D. Böhning and B. G. Lindsay, Monotonicity of quadratic-approximation algorithms, Annals of the Institute of Statistical Mathematics, vol.11, issue.4, pp.641-663, 1988.
DOI : 10.1007/BF00049423

K. Bredies and D. A. Lorenz, Linear Convergence of Iterative Soft-Thresholding, Journal of Fourier Analysis and Applications, vol.157, issue.1, pp.5-5, 2008.
DOI : 10.1007/s00041-008-9041-1

L. M. Briceño-arias and P. L. Combettes, A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality, SIAM Journal on Optimization, vol.21, issue.4, 2011.
DOI : 10.1137/10081602X

J. P. Butler, J. A. Reeds, and S. V. Dawson, Estimating Solutions of First Kind Integral Equations with Nonnegative Constraints and Optimal Smoothing, SIAM Journal on Numerical Analysis, vol.18, issue.3, pp.3-3, 1981.
DOI : 10.1137/0718025

D. Canet, J. Boubel, and E. Canet-soulas, La RMN 2-ième édition : concepts, méthodes et applications, 2002.

L. Chaari, S. Mériaux, S. Badillo, J. Pesquet, and P. Ciuciu, « Multidimensional Wavelet-based Regularized Reconstruction for Parallel Acquisition in neuroimaging, 2011.

L. Chaari, J. Pesquet, A. Benazza-benyahia, and P. Ciuciu, A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging???, Medical Image Analysis, vol.15, issue.2, pp.2-2, 2011.
DOI : 10.1016/j.media.2010.08.001

URL : https://hal.archives-ouvertes.fr/hal-00692260

A. Chambolle, « An algorithm for total variation minimization and applications, J. Math. Imaging Vision, vol.20, pp.1-1, 2004.

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.1-1, 2011.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

P. Charbonnier, L. Blanc-féraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, IEEE Transactions on Image Processing, vol.6, issue.2, pp.298-311, 1997.
DOI : 10.1109/83.551699

C. Chaux, P. L. Combettes, J. Pesquet, and V. R. Wajs, « A variational formulation for framebased inverse problems, Inverse Problems, pp.1495-1518, 2007.

C. Chaux, J. Pesquet, and N. Pustelnik, Nested Iterative Algorithms for Convex Constrained Image Recovery Problems, SIAM Journal on Imaging Sciences, vol.2, issue.2, pp.730-762, 2009.
DOI : 10.1137/080727749

URL : https://hal.archives-ouvertes.fr/hal-00621932

G. H. Chen and R. T. Rockafellar, Convergence Rates in Forward--Backward Splitting, SIAM Journal on Optimization, vol.7, issue.2, pp.421-444, 1997.
DOI : 10.1137/S1052623495290179

G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems, Mathematical Programming, vol.29, issue.1-3, pp.81-101, 1994.
DOI : 10.1007/BF01582566

X. Chen and J. Sun, Global convergence of a two-parameter family of conjugate gradient methods without line search, Journal of Computational and Applied Mathematics, vol.146, issue.1, pp.37-45, 2002.
DOI : 10.1016/S0377-0427(02)00416-8

Y. Chiang, P. P. Borbat, and J. H. Freed, Maximum entropy: A complement to Tikhonov regularization for determination of pair distance distributions by pulsed ESR, Journal of Magnetic Resonance, vol.177, issue.2, pp.2-2, 2005.
DOI : 10.1016/j.jmr.2005.07.021

E. Chouzenoux, J. Idier, S. Moussaoui, and . Majorize, A Majorize–Minimize Strategy for Subspace Optimization Applied to Image Restoration, IEEE Transactions on Image Processing, vol.20, issue.6, pp.1517-1528, 2011.
DOI : 10.1109/TIP.2010.2103083

E. Chouzenoux, S. Moussaoui, and J. Idier, A Majorize-Minimize line search algorithm for barrier functions, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00362304

E. Chouzenoux, S. Moussaoui, J. Idier, and F. Mariette, « Reconstruction d'un spectre RMN 2D par maximum d'entropie », Actes 22e coll, GRETSI, 2009.

E. Chouzenoux, S. Moussaoui, J. Idier, and F. Mariette, Efficient Maximum Entropy Reconstruction of Nuclear Magnetic Resonance T1-T2 Spectra, IEEE Transactions on Signal Processing, vol.58, issue.12, pp.12-12, 2010.
DOI : 10.1109/TSP.2010.2071870

URL : https://hal.archives-ouvertes.fr/hal-00455477

E. Chouzenoux, J. Pesquet, H. Talbot, and A. Jezierska, « A Memory Gradient Algorithm for l2-l0 Regularization with Applications to Image Restoration, Proc. IEEE ICIP, 2011.

P. L. Combettes, « Iterative construction of the resolvent of a sum of maximal monotone operators, J. Convex Anal, vol.16, issue.4, pp.727-748, 2009.

P. L. Combettes, Ð. D?ungd?ung, and B. C. V?uv?u, Proximity for sums of composite functions, Journal of Mathematical Analysis and Applications, vol.380, issue.2, pp.680-688, 2011.
DOI : 10.1016/j.jmaa.2011.02.079

URL : https://hal.archives-ouvertes.fr/hal-00643804

P. L. Combettes, J. Pesquet, and . Douglas, A Douglas???Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery, IEEE Journal of Selected Topics in Signal Processing, vol.1, issue.4, pp.4-4, 2007.
DOI : 10.1109/JSTSP.2007.910264

URL : https://hal.archives-ouvertes.fr/hal-00621820

P. L. Combettes and J. Pesquet, Proximal Thresholding Algorithm for Minimization over Orthonormal Bases, SIAM Journal on Optimization, vol.18, issue.4, pp.1351-1376, 2007.
DOI : 10.1137/060669498

URL : https://hal.archives-ouvertes.fr/hal-00621819

P. L. Combettes and J. Pesquet, A proximal decomposition method for solving convex variational inverse problems, Inverse Problems, pp.6-6, 2008.
DOI : 10.1088/0266-5611/24/6/065014

URL : https://hal.archives-ouvertes.fr/hal-00692901

P. L. Combettes and V. R. Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale Modeling & Simulation, vol.4, issue.4, pp.1168-1200, 2005.
DOI : 10.1137/050626090

URL : https://hal.archives-ouvertes.fr/hal-00017649

A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint, On iterated-subspace minimization methods for nonlinear optimization, 1994.

I. Daubechies, M. Defrise, D. Mol, and C. , An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.58, issue.11, pp.11-11, 2004.
DOI : 10.1002/cpa.20042

D. Pierro and A. R. , A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography, IEEE Transactions on Medical Imaging, vol.14, issue.1, pp.132-137, 1995.
DOI : 10.1109/42.370409

A. P. Dempster, N. M. Laird, and D. B. Rubin, « Maximum likelihood from incomplete data via the EM algorithm, J. R. Statist. Soc. B, vol.39, pp.1-38, 1977.

P. P. Eggermont, Maximum Entropy Regularization for Fredholm Integral Equations of the First Kind, SIAM Journal on Mathematical Analysis, vol.24, issue.6, pp.6-6, 1993.
DOI : 10.1137/0524088

A. E. English, K. P. Whittall, M. L. Joy, and R. M. Henkelman, Quantitative Two-Dimensional time Correlation Relaxometry, Magnetic Resonance in Medicine, vol.84, issue.2, pp.425-434, 1991.
DOI : 10.1002/mrm.1910220250

H. Erdogan and J. A. Fessler, Monotonic algorithms for transmission tomography, IEEE Transactions on Medical Imaging, vol.18, issue.9, pp.801-814, 1999.
DOI : 10.1109/42.802758

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

E. Esser, X. Zhang, and T. Chan, A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science, SIAM Journal on Imaging Sciences, vol.3, issue.4, pp.4-4, 2010.
DOI : 10.1137/09076934X

J. A. Fessler and S. D. Booth, « Conjugate-Gradient Preconditiong Methods for Shift-Variant PET Image Reconstruction, IEEE Trans. Image Process, vol.8, pp.5-5, 1999.

J. A. Fessler and H. Erdogan, « A paraboloidal surrogates algorithm for convergent penalizedlikelihood emission image reconstruction, IEEE Nuclear Science Symposium, vol.2, pp.1132-1135, 1998.

A. V. Fiacco and G. P. Mccormick, The Sequential Unconstrained Minimization Technique (SUMT) Without Parameters, Operations Research, vol.15, issue.5, pp.820-827, 1967.
DOI : 10.1287/opre.15.5.820

M. A. Figueiredo and R. D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Transactions on Image Processing, vol.12, issue.8, pp.906-916, 2003.
DOI : 10.1109/TIP.2003.814255

K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith et al., Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, vol.26, issue.4, pp.4-4, 1994.
DOI : 10.1002/hbm.460020402

D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.3, pp.367-383, 1992.
DOI : 10.1109/34.120331

D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Transactions on Image Processing, vol.4, issue.7, pp.932-946, 1995.
DOI : 10.1109/83.392335

A. Gjedde, Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: A re-examination, Brain Research Reviews, vol.4, issue.2, pp.2-2, 1982.
DOI : 10.1016/0165-0173(82)90018-2

P. C. Hansen, Rank-deficient and discrete ill-posed problems : numerical aspects of linear inversion, 1998.
DOI : 10.1137/1.9780898719697

M. D. Hürlimann and L. Venkataramanan, Quantitative Measurement of Two-Dimensional Distribution Functions of Diffusion and Relaxation in Grossly Inhomogeneous Fields, Journal of Magnetic Resonance, vol.157, issue.1, pp.31-42, 2002.
DOI : 10.1006/jmre.2002.2567

J. Idier, Convex half-quadratic criteria and interacting auxiliary variables for image restoration, IEEE Transactions on Image Processing, vol.10, issue.7, pp.1001-1009, 2001.
DOI : 10.1109/83.931094

M. W. Jacobson and J. A. Fessler, An Expanded Theoretical Treatment of Iteration-Dependent Majorize-Minimize Algorithms, IEEE Transactions on Image Processing, vol.16, issue.10, pp.2411-2422, 2007.
DOI : 10.1109/TIP.2007.904387

C. Labat and J. Idier, Convergence of truncated half-quadratic and Newton algorithms, with application to image restoration, 2007.

C. Labat and J. Idier, Convergence of Conjugate Gradient Methods with??a??Closed-Form Stepsize Formula, Journal of Optimization Theory and Applications, vol.21, issue.1, pp.43-60, 2008.
DOI : 10.1007/s10957-007-9306-x

URL : https://hal.archives-ouvertes.fr/hal-00399453

R. Lamanna, On the inversion of multicomponent NMR relaxation and diffusion decays in heterogeneous systems », Concepts Magn, Reson. Part A, vol.26, pp.2-2, 2005.

K. Lange and J. A. Fessler, Globally convergent algorithms for maximum a posteriori transmission tomography, IEEE Transactions on Image Processing, vol.4, issue.10, pp.1430-1438, 1995.
DOI : 10.1109/83.465107

E. D. Laue, J. Skilling, J. Staunton, S. Sibisi, and R. G. Brereton, « Maximum entropy method in nuclear magnetic resonance spectroscopy, J. Magn. Reson, vol.62, pp.3-3, 1985.

B. Liu, L. Ying, M. Steckner, X. Jun, and J. Sheng, REGULARIZED SENSE RECONSTRUCTION USING ITERATIVELY REFINED TOTAL VARIATION METHOD, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.121-124, 2007.
DOI : 10.1109/ISBI.2007.356803

F. Mariette, Relaxation RMN et IRM??: un couplage indispensable pour l'??tude des produits alimentaires, Comptes Rendus Chimie, vol.7, issue.3-4, pp.221-232, 2004.
DOI : 10.1016/j.crci.2003.11.004

F. Mariette, J. P. Guillement, C. Tellier, and P. Marchal, « Continuous relaxation time distribution decomposition by MEM », Signal Treat. and Signal Anal, NMR, pp.218-234, 1996.

A. Miele and J. W. Cantrell, Study on a memory gradient method for the minimization of functions, Journal of Optimization Theory and Applications, vol.3, issue.6, pp.459-470, 1969.
DOI : 10.1007/BF00929359

A. Mohammad-djafari and G. Demoment, « Utilisation de l'Entropie dans les problèmes de restauration et de reconstruction d'images, IEEE Trans. Signal Process, vol.5, issue.4, pp.235-248, 1988.

J. J. Moreau, « Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci, vol.255, pp.2897-2899, 1962.

W. Murray and M. H. Wright, Line Search Procedures for the Logarithmic Barrier Function, SIAM Journal on Optimization, vol.4, issue.2, pp.229-246, 1994.
DOI : 10.1137/0804013

G. Narkiss and M. Zibulevsky, Sequential Subspace Optimization Method for Large-Scale Unconstrained Problems, 2005.

S. G. Nash, A survey of truncated-Newton methods, Journal of Computational and Applied Mathematics, vol.124, issue.1-2, pp.45-59, 2000.
DOI : 10.1016/S0377-0427(00)00426-X

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation., Proceedings of the National Academy of Sciences of the United States of America, pp.9868-9872, 1990.
DOI : 10.1073/pnas.87.24.9868

J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, 1970.
DOI : 10.1137/1.9780898719468

C. S. Patlak, R. G. Blasberg, and J. D. Fenstermacher, Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data, Journal of Cerebral Blood Flow & Metabolism, vol.84, issue.1, pp.1-1, 1983.
DOI : 10.1111/j.1471-4159.1977.tb10649.x

J. Pesquet and N. Pustelnik, « A parallel inertial proximal optimization method, 2010.

C. Pichon, E. Thiébaut, and . Non, Parametric recontruction of distribution functions from observed galactic discs, Month. Not. Roy. Astr. Soc, vol.301, pp.2-2, 1998.

P. Pinel, B. Thirion, S. Mériaux, A. Jobert, J. Serres et al., Fast reproducible identification and large-scale databasing of individual functional cognitive networks, BMC Neuroscience, vol.8, issue.1, pp.1-1, 2007.
DOI : 10.1186/1471-2202-8-91

URL : https://hal.archives-ouvertes.fr/hal-00784462

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes : The Art of Scientific Computing, 1992.

N. Pustelnik, C. Chaux, and J. Pesquet, Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization, IEEE Transactions on Image Processing, vol.20, issue.9, pp.2450-2462, 2011.
DOI : 10.1109/TIP.2011.2128335

URL : https://hal.archives-ouvertes.fr/hal-00826121

N. Pustelnik, C. Chaux, J. Pesquet, F. C. Sureau, and E. Dusch, Adapted Convex Optimization Algorithm for Wavelet-Based Dynamic PET Reconstruction », International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D), pp.5-10, 2009.

M. Rivera and J. Marroquin, Efficient half-quadratic regularization with granularity control, Image and Vision Computing, vol.21, issue.4, pp.345-357, 2003.
DOI : 10.1016/S0262-8856(03)00005-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.1-1, 1992.
DOI : 10.1016/0167-2789(92)90242-F

S. Setzer, G. Steidl, and T. Teuber, Deblurring Poissonian images by split Bregman techniques, Journal of Visual Communication and Image Representation, vol.21, issue.3, pp.3-3, 2010.
DOI : 10.1016/j.jvcir.2009.10.006

J. Skilling and R. K. Bryan, Maximum entropy image reconstruction: general algorithm, Monthly Notices of the Royal Astronomical Society, vol.211, issue.1, pp.111-124, 1984.
DOI : 10.1093/mnras/211.1.111

Y. Q. Song, L. Venkataramanan, M. D. Hürlimann, M. Flaum, P. Frulla et al., T1???T2 Correlation Spectra Obtained Using a Fast Two-Dimensional Laplace Inversion, Journal of Magnetic Resonance, vol.154, issue.2, pp.261-268, 2002.
DOI : 10.1006/jmre.2001.2474

S. Sotthivirat and J. A. Fessler, Image recovery using partitioned-separable paraboloidal surrogate coordinate ascent algorithms, IEEE Transactions on Image Processing, vol.11, issue.3, pp.306-317, 2002.
DOI : 10.1109/83.988963

J. Starck, F. Murtagh, and M. J. Fadili, Sparse Image and Signal Processing : Wavelets, Curvelets, Morphological Diversity, 2010.
DOI : 10.1017/CBO9780511730344

URL : https://hal.archives-ouvertes.fr/hal-01132685

E. Sternin, Use of Inverse Theory Algorithms in the Analysis of Biomembrane NMR Data, Membrane Lipids, pp.103-125, 2008.

J. Sun and J. Zhang, « Global Convergence of Conjugate Gradient Methods without Line Search, Annals of Operations Research, vol.103, issue.1/4, pp.161-173, 2001.
DOI : 10.1023/A:1012903105391

F. C. Sureau, J. Pesquet, C. Chaux, N. Pustelnik, A. J. Reader et al., Temporal wavelet denoising of PET sinograms and images, 2008 IEEE Nuclear Science Symposium Conference Record, 2008.
DOI : 10.1109/NSSMIC.2008.4774269

B. F. Svaiter, On Weak Convergence of the Douglas???Rachford Method, Weak convergence on Douglas-Rachford method, pp.280-287, 2011.
DOI : 10.1137/100788100

A. Tikhonov, « Tikhonov Regularization of incorrectly posed problems, Soviet Mathematics Doklady, vol.4, pp.1624-1627, 1963.

P. Valk, D. L. Bailey, D. W. Townsend, and M. N. Maisey, Positron Emission Tomography. Basic science and clinical pratice, 2004.

C. F. Van-loan, The ubiquitous Kronecker product, Journal of Computational and Applied Mathematics, vol.123, issue.1-2, pp.85-100, 2000.
DOI : 10.1016/S0377-0427(00)00393-9

L. Venkataramanan, Y. Song, and M. D. Hürlimann, Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions, IEEE Transactions on Signal Processing, vol.50, issue.5, pp.5-5, 2002.
DOI : 10.1109/78.995059

J. Verhaeghe, D. Van-de-ville, I. Khalidov, Y. D-'asseler, I. Lemahieu et al., Dynamic PET Reconstruction Using Wavelet Regularization With Adapted Basis Functions, Dynamic PET Reconstruction Using Wavelet Regularization with Adapted Basis Functions, pp.943-959, 2008.
DOI : 10.1109/TMI.2008.923698

URL : http://infoscience.epfl.ch/record/130357

M. H. Wright, Why a Pure Primal Newton Barrier Step May be Infeasible, SIAM Journal on Optimization, vol.5, issue.1, pp.1-12, 1995.
DOI : 10.1137/0805001

Y. Yuan, Subspace Techniques for Nonlinear Optimization, Series on Concrete and Applicable Mathematics, pp.206-218, 2007.
DOI : 10.1142/9789812709356_0012

J. Zheng, S. S. Saquib, K. Sauer, and C. A. Bouman, A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization, SIAM Journal on Optimization, vol.14, issue.4, pp.1043-1056, 2004.
DOI : 10.1137/S1052623403428208