Checking of an optimal sound absorbing structure
Camille Perrot, F. Chevillotte, R. Panneton

To cite this version:

HAL Id: hal-00732578
https://hal-upec-upem.archives-ouvertes.fr/hal-00732578
Submitted on 20 Apr 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A variety of performance demands are increasingly being placed on sound absorbing material systems. A bottom-up approach for microstructure optimization of long-wavelength sound absorbing materials was recently presented using hybrid estimates based on direct numerical evaluation of macroscopic parameters and analytical models [1].

Results of this paper tend to demonstrate the existence of a microstructural configuration maximizing the area under the sound absorption spectrum, together with the optimal range of local characteristic lengths. This is a crucial conclusion, notably for foam and fibrous materials manufacturers, which need to be confirmed with a more general formulation proposed by Lafarge (see [2]).

### OBJECTIVE

Improve our general understanding of relationships between microstructure and acoustic macro-behavior of porous media, see Fig. 1.

### RESULTS SUMMARY

- For a given fiber radius, an optimal throat size controlling the sound absorption level can be found, corresponding to an intermediate resistivity.
- Given an optimal throat size, the fiber radius essentially modulates the absorption curve.
- The optimal absorption curve minimizes the viscous characteristic length at constant throat size (design guide).
- Practical investigation charts proposed to indicate local geometry parameters tending to maximize the sound absorption coefficient (validity corroborated by comparison with measured local geometry parameters).

### PERSPECTIVES

- Optimization of real porous materials based on specific industrial fabrication processes
- Use molecular dynamics to tackle physical acoustics of nano-porous materials

### MOTIVATION

Need to increase or adapt the sound absorption spectrum of commonly used sound absorbing materials
- Inefficient materials in the low frequency range
- Need to adapt the absorption spectrum to the emission spectrum

### Numerical Calculations

#### A. Model geometry

- Motionless solid fibers
- \( r \) and \( r \) local characteristic lengths
- Cross-section shape of a foam ligament evolves from a circle to a concave triangle

#### B. Computational method ([4]-[5])

Hybrid estimates based on direct numerical evaluation of macroscopic parameters and analytical models:
- Solve numerically the asymptotic low (steady Stokes) and high (electric frequency viscous) boundary value problem using the FEM
- Compute
  1. the “standard macroscopic parameters”, i.e., the static viscous permeability \( k' \), the viscous characteristic length \( \Lambda \), and the static thermal tortuosity \( \sigma' \), as defined by Johnson et al. [6]
  2. the additional macroscopic parameters, i.e., the static tortuosity \( \sigma_{m} \) and the static thermal permeability \( k_{m} \), as defined by Lafarge, by appropriate volume averaging of the corresponding asymptotic velocity fields
- Derive the frequency-dependent viscous and thermal response functions such as the effective density \( \rho_{e} \) and bulk modulus \( K_{b} \) using analytical models of (3.1) Johnson et al. [6] and Allard and co-workers [7], and (3.2) Lafarge (refined model) [2].

#### Concluding Remarks

The optimal microstructural configuration is correctly estimated from a simplified model with only 3% of uncertainty on the global performances. However, for very diluted (large porosities) porous structures, the simplified model underestimates significantly the material performances with uncertainties reaching up to 30%.

Moreover, in this limit, where the best absorbing structure may lie, the physics have to be reconsidered (because both the nonslip conditions for velocity and temperature loose their physical justifications).

More sophisticated computational methods such as molecular dynamics will be considered to tackle physical acoustics of nano-porous materials as a future work.

---

References: