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Is it possible to find a two-dimensional �2D� periodic unit cell representative of the dynamic viscous

dissipation properties of a real porous media? This is a challenging question addressed in this paper

through a review of tools and methods of experimental and computational micro�poro�mechanics.

The combination of advanced experimental imaging and numerical homogenization techniques

provides a unique opportunity to understand and assess the limits of two-dimensional models of

microstructures, as a potential basis for the engineering prediction of macroscopic properties of

acoustical materials. This is illustrated for a real sample of open-cell aluminum foam. The

conclusion, based on this analysis, is that the 2D periodic foam model geometry provides a reliable

estimate of the dynamic permeability, except in the low frequency range. This is not surprising

because in the 2D periodic foam model geometry, ligaments are always perpendicular to the flow

direction, thus decreasing artificially the static permeability of the viscous flow. © 2008 American

Institute of Physics. �DOI: 10.1063/1.2829774�

I. INTRODUCTION

The general objective of this work is the determination

of the acoustical macrobehavior at the local scale of real

porous media. In this purpose, one needs first to determine

the local geometry of the media, and second to solve the

partial differential equations governing the propagation phe-

nomena of an acoustic wave such as the frequency dependent

thermal and viscous dissipation effects. The first step is made

feasible by the modern technique of x-ray computed micro-

tomography ��CT�. Various geometrical properties can be

determined on the experimental sample with a view to char-

acterize the representative parameters of its cellular morphol-

ogy and reconstruct the porous medium by means of a three-

dimensional �3D� idealized periodic unit cell �PUC�. This

technique was applied to the characterization of open-cell

aluminum foam samples, and good predictions of the purely

geometrical macroscopic properties were obtained.
1

Simula-

tion results of frequency dependent heat conduction through

3D reconstructed unit cells of an open-cell aluminum foam

under acoustic excitations have also been recently reported.

The random-walker algorithm was applied to the calculation

of the dynamic bulk modulus and compared to laboratory

measurements with good agreements.
2

Several authors have reported analytical, numerical, and

experimental studies of effective viscous dissipation proper-

ties of periodic porous structures in the long wavelength

limit.
3–7

Oscillatory flows have been studied analytically in

straight capillaries and between two parallel plates.
3,4

Ad-

vanced numerical investigations consist in solving the steady

Stokes, unsteady Stokes, and electric boundary value prob-

lems governing viscous dissipation mechanisms in the low

frequency, fully dynamic, and high frequency regimes, re-

spectively. A pioneering work was a finite element approach

for the sinusoidally modulated tube, the fused-spherical-bead

lattice, and the fused diamond lattice by Sheng and Zhou.
5

They computed the dynamic viscous permeability k���, as

well as other asymptotic parameters such as the static vis-

cous permeability k0, the tortuosity ��, and the surface

length parameter � as defined by Johnson et al.
6

Charlaix

et al.
7

reported experimental measurements of the dynamic

viscous permeability performed on capillary tubes and po-

rous media made of fused glass beds and crushed glass of

various sizes. They obtained good agreements with Sheng

and Zhou numerical results. Many theoretical, numerical,

and experimental investigations have been performed to pre-

dict these quantities in periodic structures. Key works in-

clude Refs. 8–14; however, no foam model geometry has

been investigated.

The purpose of this paper is to present a two-

dimensional �2D� PUC, which introduces an underlying

foam structure, but only makes use of purely geometrical

macroscopic parameters deduced from a reconstructed 3D

PUC of a real aluminum foam sample. This allows a direct

assessment of the merit of the 2D model with respect to the

dynamic viscous dissipation properties criteria. Special em-

phasis is put on the limitations of the 2D PUC model and its

rendering in the viscous dissipation properties when com-

pared to those of a real foam sample.

This paper is organized as follows. In Sec. II, the basic

equations used to calculate the various macroscopic param-

eters under consideration and the dynamic viscous perme-

ability are presented. In Sec. III, the numerical values of the

dynamic viscous permeability are compared with the models

of Johnson et al.
6

and Pride et al.
11

for the proposed 2D

periodic foam model geometry. The predictions are com-
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pared to measurements performed at normal incidence in an

impedance tube. Finally, Sec. IV draws the main conclusions

of this work.

II. THEORETICAL BACKGROUND

A. Dynamic viscous dissipation properties

The flow of a viscothermal fluid in a motionless homo-

geneous porous structure can be described as follows.
15

The

angular frequency is � and the time dependence is

exp�−i�t�. The statistical properties of the porous frame can

be defined in homogenization volumes with dimensions

much smaller than the wavelength of the acoustic waves that

propagate in the saturating fluid. The microscopic quantities

that describe the flow �pressure p and velocity v� present

variations at the microscopic scale in the homogenization

volume. To smooth out these variations and leave only the

macroscopic variations, the symbol � �, indicating a fluid

phase average, is introduced. By definition, it relates the

macroscopic variable �a� at r to the microscopic variable a

by

�a��r,t� = �
�s+�f

I�r + x�f�x�a�r + x,t�d3
x , �1�

where I is the characteristic function of the fluid phase �1 in

the fluid � f and 0 in the solid �s�, and f is a filtering smooth

function nonzero only in some �homogenization� region sur-

rounding x=0 and normalized to unity ��s+�f
I�r

+x�f�x�d3
x=1.

At a given frequency, two equivalent relations linking

the gradient of the macroscopic pressure to the macroscopic

velocity are

�0�ij���
��v� j

�t
�r� = − �i�p��r� , �2�

where �0 is the equilibrium density of the fluid, and

��v�i�r� = −
1

	
kij���� j�p��r� , �3�

where � is the porosity and 	 is the viscosity of the fluid.

The symbol � corresponds to � /�r before � � and to � /�x

inside � �. The vector n is the unit outward normal from the

fluid domain. Two second order tensors, the dynamic tortu-

osity �ij��� and the dynamic permeability kij���, are defined

by Eqs. �2� and �3�. They only depend on the frequency and

on the geometry of the porous structure. These two quanti-

ties, previously defined and studied by Johnson et al.
6

char-

acterize the response of the fluid to a spatially constant os-

cillating pressure gradient. When frequency decreases, the

oscillatory flow locally becomes very similar to the static

flow and Eq. �3� becomes �here and in what follows the term

r is omitted�

��v�i = −
1

	
k0ij� j�p� . �4�

This last relation is the Darcy law. A phenomenological ver-

sion of this law corresponds to a work by Darcy,
16

and the

components k0ij define the static viscous permeability tensor.

When � becomes very large, the effect of viscosity becomes

negligible and �ij��� tends to the tortuosity tensor ��ij.

�ij��� and kij��� have been shown to be symmetric.
17

B. Summary of numerical methods

In order to describe the periodic oscillating flow created

in a porous medium by an external unit harmonic pressure

gradient ee−i�t, one has to solve the following set of scaled

equations:

− i�



w = − �� + �w + e in � f , �5�

� · w = 0 in � f , �6�

w = 0 on �� , �7�

where e is a unit vector and 
=	 /�0. The solution to the

problems �5�–�7� is fixed by adding the condition that � is a

spatially stationary or periodic field. This unsteady Stokes

problem is relevant to sound propagation as long as the

wavelength is large enough for the saturating fluid to behave

as an incompressible fluid in volumes of the order of the

homogenization volume �a period in the case of periodic

structure�.
Writing the pressure p in terms of its mean and devia-

toric parts, p= �p�+
, �
�=0, the macroscopic pressure gra-

dient in Eqs. �2� and �3� is related to e in Eq. �5� by

��p� = − 	��p�	e , �8�

the small fluctuation 
 is related to � in Eq. �2� by


�x� = 	��p�	��x� , �9�

and v is related to w by

v = 	��p�/		w�x� . �10�

From Eqs. �8�–�10� and �3�, the viscous permeability com-

ponents are given by

��wi� = kij���e j . �11�

By using three individual solicitation vectors e
i in three per-

pendicular directions, with components e j
i =�ij, Eq. �11� may

be rewritten as

kij��� = ��wi
j� , �12�

where wi
j is solution to

− i�



wi

j = − �i�
j + �wi

j + �ij in � f , �13�

with � j stationary or periodic and w
j verifying the conditions

�6� and �7�. Equation �12� can also take the following forms:

kij��� = ��wl
j�il� = ��wl

j
el

i� = ��w j · e
i� . �14�

At �=0, Eqs. �5�–�7�, with the condition that � is a

stationary field, simply describe the viscous fluid motion in

steady state regime. This is the steady Stokes problem for

periodic structures, where w0 is the scaled static velocity

field in the pore in m2. Thus, it derives from Eq. �14� that the
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components k0ij defining the static viscous permeability in

three perpendicular directions, e j
i =�ij, are simply given by

k0ij = ��w0
j · e

i� . �15�

At the opposite frequency range, when � becomes very

large, the viscous boundary layer becomes negligible and the

fluid tends to behave as a perfect one, having no viscosity. In

these conditions, the perfect incompressible fluid formally

behaves according to the electric problem.
8

The components

��ij defining the tortuosity in the same perpendicular direc-

tions, e j
i =�ij, are now given by

15

��ij
−1 = �E j · e

i� , �16�

where ��ij
−1 is the inverse of the tortuosity tensor ��ij, and E

is the scaled electric field that solves the corresponding elec-

trical conduction problem for a porous medium filled with a

conducting fluid and having an insulating solid phase, i.e.,

E = − �� + e in � f , �17�

� · E = 0 in � f , �18�

E · n = 0 on �� , �19�

and � is a spatially stationary or periodic scalar field repre-

senting the deviatoric part of the electric potential.

In the case of periodic porous structures, permeability

and tortuosity tensors reduce to a scalar and only one dy-

namic quantity is finally necessary to represent the viscous

dissipation properties of a given material.
17

An example is

given in what follows where the dynamic viscous permeabil-

ity is computed for a 2D periodic foam model geometry,

which conserves the purely geometrical macroscopic param-

eters found with a 3D �CT analysis.

III. APPLICATION TO AN OPEN-CELL ALUMINUM
FOAM

A. Basic inverse 2D foam model geometry

One approach commonly used to relate the local geom-

etry parameters of the porous material and its physical be-

havior involves the development of microstructural models.

This implies the assumption of unit cell geometries.
18

Fur-

thermore, if the microstructure results from a known mecha-

nism, it is appealing to directly incorporate this knowledge in

the simulation procedure.
19

For instance, foams generally re-

sult from the nucleation, growth, and expansion of gas

bubbles in a melt or reacting liquid system.
20

Scientists and

mathematicians have been contemplating the structure of

soap froth for over a century, often focusing on idealized

systems that are ordered and monodisperse in response to the

Kelvin
21

problem: partitioning 3D space into equal-volume

cells and minimum surface area.
22

Real foams, by contrast,

are disordered, and contain an impressive variety of cell

shapes, even when the bubbles have equal volume.
23

How-

ever, the complications encountered in trying to identify suit-

able unit cells that are representative of complex macrostruc-

tures of real foams generally lead to consider simple

geometries for these unit cells.
24

Zheng and Ashby
25

argued

that the cell geometry best representing isotropic foams, and

at the same time capable of filling space, is a tetrakaidecahe-

dron, also known as the Kelvin cell.
26

This truncated octahe-

dron was considered the best unit cell for partitioning space

into cavities of equal volumes while minimizing the interfa-

cial area until 1993, where Weaire and Phelan discovered a

foam structure containing two different types of cavities of

equal volumes and with a smaller surface area than the

Kelvin foam.
27

But whether it is the best monodisperse foam

still remains an open question.

In this study, it is intended to find a simple equivalent 2D

periodic foam model geometries from 3D microstructural in-

formation provided by �CT analysis. It is thus somewhat

straightforward to consider the honeycomb structure as a

starting 2D idealized PUC, the two-dimensional counterpart

of the Kelvin cell, which has been recently proved to be the

best partition for paving the two-dimensional space into

equal-surface cells and minimum length perimeter.
28

Further-

more, this argument is supported by Fig. 1 showing a cross

section of the studied 92% porosity 40 ppi Duocel open-cell

aluminum foam, where ligaments are clearly organized in a

hexagonal pattern. In addition, there is experimental evi-

dence that the cross-section shape of a foam ligament is

evolving from a circle ��=85% � for low porosity foams to

convex ��
90% �, straight ��=94% �, and concave ��
=98% � triangles for high porosity foams.

29

Following the previous discussion, the simplest model

one can find for the studied aluminum foam may be obtained

by assuming ligaments of circular cross section arranged in

the hexagonal pattern as shown in Fig. 2. In this particular

case, the characteristic dimensions l=2�����1−�� /3�3 /�

884 �m and r= �1−���� /�
161 �m of the hexagonal

porous geometry were found by inversion from the knowl-

edge of �=0.92 and ��
1.85 mm deduced by 3D �CT

analysis;
1

here �� is the thermal characteristic length defined

as the fluid phase volume to wet surface ratio. In generating

this inverse basic model, the aim was to create the simplest

2D foam model geometry which conserves the purely geo-

metrical macroscopic parameters deduced from 3D micro-

structural analysis.

B. Numerical computations

Numerical computations were performed on the smallest

periodic rectangles RH and RV of the 2D periodic foam

FIG. 1. Virtual slice of a 10 mm in diameter 40 ppi aluminum foam sample

obtained by x-ray axial microtomography �Ref. 1�.
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model geometry depicted in Fig. 2. Using a finite element

commercial code,
30

macroscopic parameters �, ��, �, k0,

��, and �0 were computed. The results are listed in Table I.

The open porosity � was computed from the volume of the

mesh, and the thermal characteristic length �� was obtained

by the volume to wet surface ratio of the mesh. The static

viscous permeability k0 and the static viscous tortuosity �0

were computed from the steady Stokes problem using Eq.

�15�, and by means of

�0 = �w0
2�/�w0�2. �20�

An equivalent result has been obtained by Norris
31

on the

basis of homogenization theory, and it has been formally

expressed by Lafarge in this way by using ideas borrowed

from macroscopic electrodynamics.
15,32

No-slip boundary

conditions at the pore walls and periodicity of w0 and �0

were prescribed. Additional Neumann boundary conditions

are set in the remaining lateral borders due to the symmetries

of the problems. The high frequency viscous tortuosity ��

and the viscous characteristic length � were computed using

Eq. �16� and the definition of Johnson et al.,
6

2/� = �
��

E
2dS/�

�

E
2dV , �21�

which introduced this length-scale parameter � as the

weighted pore volume ��p� to pore surface ��s� ratio. Neu-

mann boundary conditions on the fluid-solid interface and

periodicity on the inlet-outlet surfaces were used for �. Neu-

mann boundary conditions are set in the remaining lateral

borders. The symmetry property of the viscous permeability

tensor
17

is used to evaluate the uncertainty on macroscopic

parameters. The relative differences found for the horizontal

and vertical directions are less than 0.07% and the nondiago-

nal terms are actually numerically equal to zero.

The full unsteady Stokes problem was solved using the

same finite element code. No-slip boundary conditions at the

pore walls and periodicity of w��� and � were prescribed.

The number of elements and their distribution in the fluid

phase regions of RH and RV were varied, with attention paid

especially to the throat and the near-wall areas, to examine

the accuracy and convergence of the scaled velocity field

solutions. A total of 5�104 elements were used to guarantee

the variation of the solutions to within a fraction of a percent

when the distribution and number of elements were varied.

Figure 3 gives an idea of the mesh used at the highest value

of the frequency. The mesh corresponding to the PUC do-

main is plotted together with a closeup of the interface. The

present work considered quadratic Lagrange elements. Once

the scaled velocity fields are known, the dynamic viscous

permeability is computed according to Eq. �14�. Results are

presented in Fig. 4, where k��� is plotted. Once again, the

symmetry property of the viscous permeability tensor
17

is

used to evaluate the uncertainty on k���. The relative differ-

ences found for the horizontal and vertical directions are less

than 5�10−6 and the nondiagonal terms are also numerically

equal to zero. In Fig. 4, the frequency dependence of the

calculated k��� is also compared to the generic asymptotic

dependences given by the models of Johnson et al.
6 �JKD�

and Pride et al.
11 �PMG�. The authors

6,11
suggest the follow-

ing expressions for the dynamic viscous permeability:

k��� =
i	�

������0

, �22�

and

���� = ���1 +
1

i�
f���
 , �23�

where � is a dimensionless viscous angular frequency given

by

FIG. 2. Basic 2D periodic foam model geometry.

TABLE I. Comparison between computed and measured macroscopic pa-

rameters.

Macroscopic parameters Computations Measurements

� �-� 0.92 0.91�0.01
a

�� �mm� 1.85 2.01�0.43
b

� �mm� 1.00 0.99�0.06
b

k0 ��10−8 m2� 4.83 10.39�1.23
c

�� �-� 1.08 1.07�0.01
b

�0 �-� 1.30 ¯

a
Reference 36.

b
Reference 33.

c
Reference 37.
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� =
�




k0��

�
, �24�

and with the following shape function:

f��� = 1 − P + P�1 +
M

2P2
i� , �25�

where the dimensionless shape factors have been introduced,

M =
8k0��

�2�
, �26�

P =
M

4���0/��� − 1�
. �27�

It can be seen that for P=1, the PMG model reduces to the

JKD model. As expected, PMG model is correcting JKD

model to obtain the proper low frequency asymptotic behav-

ior of the calculated k��� imaginary part by the introduction

of �0. As an illustration, we show, respectively, in Fig. 5 the

horizontal components of the steady Stokes and unsteady

Stokes at 400 Hz, and the electric scaled patterns obtained

for excitation along the horizontal direction of the periodic

geometry. As previously noticed by several authors, such as

Martys and Garboczi,
9

due to the nonslip condition, the fluid

flow paths are clearly more concentrated that do the electric-

current paths arising when effects of fluid viscosity are mini-

mal. As frequency increases, the scaled patterns tend to be

more and more homogeneous with decreasing stagnant areas.

C. Experimental results

We report here experimental measurements of dynamic

tortuosity and macroscopic parameters, performed on the

studied Duocel 40 ppi open-cell aluminum foam sample. The

measurement of ��, �, and �� is based on an inversion

technique.
33

The inversion principle consists in minimizing

differences between measured and estimated impedances.

Measured impedance is based on a standard test method de-

scribed in ASTM E1050-86 for impedance and absorption of

FIG. 3. �Color online� PUC meshed domain �left� and closeup of the interface �right�.

FIG. 4. Dynamic viscous permeability of the basic 2D

periodic foam model geometry: numerical results and

comparison with the models of Johnson

et al. �JKD� �Ref. 6� and Pride et al. �PMG� �Ref. 11�.
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acoustical materials using a tube, two microphones, and a

digital frequency analysis system. Estimated impedance is

deduced from dynamic viscous and thermal dissipation prop-

erties taken into account through the models of Johnson

et al.
6

and Champoux and Allard,
34

respectively. Estimated

impedance is derived from the least mean square fit of a

function of the triplet ���, �, �
�

� on the frequency range of

interest, while satisfying physical restrictions on these pa-

rameters. Furthermore, it is worth noting that, considering

the large cell size of the studied sample, transition frequen-

cies of the medium are very low, on the order of a few tenths

of hertz. This means that, for this specific material, the in-

version has been realized on the high frequency regime of

the porous medium. As a consequence, the thermal charac-

teristic length �� determined by this inversion technique is

the same as the one which would have been found if

Lafarge
35

model had been implemented.

Measured macroscopic parameters are also listed in

Table I. The porosity � is measured according to the so

called missing mass method
36

based on mass measurement

differences of the porous bulk in air and vacuum, using a

vacuum air pump allowing to pump out air from a tank down

to an absolute pressure of 0.2 psi and a balance of readability

of 0.001 g. The experimental value of the static permeability

k0 is obtained by means of accurate measurements of differ-

ential pressures across serial mounted calibrated and un-

known flow resistances, with a controlled steady and nonpul-

sating laminar volumetric air flow as described by Stinson

and Daigle.
37

Measured macroscopic parameter values are

comparable to those obtained with numerical computations

performed on the basic 2D periodic foam model geometry,

except for the static permeability k0 �resistivity �=	 /k0�
which is underestimated �overestimated� by the 2D foam

model by a factor of 2. This can be explained by the dimen-

sionality of the model. In our 2D model, ligaments are al-

ways perpendicular to the flow direction, whereas in a three-

dimensional space, ligaments of the real open-cell foam

sample also adopt other spatial orientations, that is, increas-

ing �decreasing� the permeability �resistivity� of the real me-

dium. This result is in accordance with other literature data

reported for fibrous media made from circular cross-section

fibers having porosities greater than 90%. For a flow parallel

to the fiber direction, permeability k0� is approximately equal

to twice the reported values k0� for a flow perpendicular to

the fiber direction, k0� 
2�k0� �see, for example, Refs. 38

and 39�. This property can eventually be used to correct the

found prediction with a 2D model. In our case, because of

the large cell size, the order of magnitude of the measured

resistivity is so low �
177 N m−4 s� that an error made on its

estimation, with a factor approximately equal to two

�
381 N m−4 s�, will have small influence on the resulting

dynamic dissipation properties such as k��� or ����.
Next, the dynamic viscous permeability of the 2D peri-

odic foam model geometry is determined. From the previ-

ously computed macroscopic parameters, Fig. 6 shows the

JKD and PMG dynamic permeabilities k��� compared to

impedance tube measurements. The dynamic permeability

measurements were obtained using a 44.4 mm impedance

tube with the two-cavity technique,
40

where the frequency

dependant surface impedance and propagation constant

�from which all the pertaining dynamic macroscopic quanti-

ties can be obtained—see, for example, Lafarge et al.
35

for

the detailed relationships� of the material are calculated from

a set of distinct acoustic impedances derived by measure-

ments taken at the surface of the porous material and

achieved by simply changing the air space depth behind the

porous material. There is good agreement between measured

and modeled dynamic permeabilities, especially at higher

FIG. 5. Scaled fields evolution with frequency.
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frequencies. One can note that the numerical computations

predict a transition frequency around 40 Hz. This very low

transition frequency is due to large cell size of the foam.

Using the experimental setup, it was not possible to measure

the low frequency behavior �need to increase significantly

the intermicrophonic distance in order to keep the proper

sensitivity on the wavelength around the transition and in the

low frequency regimes�; however, the experimental results in

the measurable frequency range �400–2500 Hz� are in good

accordance with the predicted asymptotic inertial regime.

IV. DISCUSSION AND SUMMARY

The utility of using 2D periodic model geometry to pre-

dict the dynamic viscous dissipation properties of real porous

materials is unquestionable, as numerical simulations are

usually easier and faster to make, as long as microstructural

information or purely geometric macroscopic parameters can

be readily determined on the real samples. For open-cell

foams, the microstructural information is analyzed to gener-

ate a three-dimensional periodic unit cell, so that purely geo-

metrical macroscopic parameters ��, ��� are determined, and

a basic periodic foam model geometry built by inversion.

The question that this paper has focused on is the limit

of relating dynamic viscous dissipation properties of porous

media and simplified 2D periodic model geometry. The prin-

cipal contribution of the present work is that all relevant

quantities have been computed on a basic periodic foam

model geometry, from the basis of a real open-cell aluminum

foam sample analyzed by x-ray microtomography. The ob-

tained results tend to demonstrate the important effect that

the dimensionality of the geometrical model has on the static

viscous permeability of the porous structure. The 2D peri-

odic foam model geometry considered in this paper forces

the foam ligaments to be perpendicular to the flow direction,

so that the permeability is artificially decreased. However, in

real foam structures, with various ligament orientations, the

ligaments will tend to adopt various spatial orientations, less

resistive than if they were all perpendicular to the flow di-

rection.

In summary, for a 2D periodic open-cell foam model

geometry, the dynamic viscous permeability k��� and four

asymptotic macroscopic parameters �k0, �0, �, ��� were

computed. It was shown that a relatively good estimate of

these quantities can be obtained from a basic 2D geometrical

model, except in the low frequency range, where the low

dimensionality of the model is leading to overestimated val-

ues of the permeability. However, the knowledge of this

property could be used to correct this behavior in order to

give reasonably good predictions for the dynamic viscous

dissipation properties of an open-cell foam. More generally,

this result tends to promote the idea of a three-dimensional

implementation for the computation of the dynamic viscous

dissipation properties. Nevertheless, the presented experi-

ments have been done for a relatively narrow range of varia-

tion of the dynamic tortuosity. Future experiments will in-

clude the investigation of smaller cell sizes porous media on

the order of �0.1 mm for which the transition frequencies

will be easily measurable with a classical impedance tube or

the use of a long tube �a rolled pipe of more than 50 m �Ref.

41��. This method can also be used as a bottom-up approach

for microstructure optimization of 2D sound absorbing ma-

terials.
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FIG. 6. �Color online� Dynamic per-

meability: comparison between mea-

surements performed on a real open-

cell aluminum foam sample and

microstructural predictions based on

an idealized 2D foam geometry with

the models of Johnson et al. �JKD�
�Ref. 6� and Pride et al. �PMG� �Ref.

11�. Error bars represent the standard

deviations of the measurements under

1000 Hz for different real samples of

the same foam. The increasing uncer-

tainty is due to the decreasing sensitiv-

ity on the phase measurement for

longer wavelengths.
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