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Abstract

Critical kernels constitute a general framework in the cat-
egory of abstract complexes for the study of parallel ho-
motopic thinning in any dimension. In this article, we
present new results linking critical kernels to minimal non-
simple sets (MNS) and P-simple points, which are notions
conceived to study parallel thinning in discrete grids. We
show that these two previously introduced notions can be
retrieved, better understood and enriched in the framework
of critical kernels. In particular, we propose new charac-
terizations which hold in dimensions 2, 3 and 4, and which
lead to efficient algorithms for detecting P-simple points
and minimal non-simple sets.

Key Words: Parallel thinning, topology preservation, criti-
cal kernel, P-simple point, minimal non-simple set, cubical
complex, collapse, simple point, 4D space.

Introduction

Topology-preserving operators, such as homotopic
skeletonization, are used in many applications of image
analysis to transform an object while leaving unchanged its
topological characteristics1. In discrete grids (Z2, Z

3, Z
4),

such a transformation can be defined thanks to the notion
of simple point [22, 11]: intuitively, a point (or pixel in 2D,
voxel in 3D) of an object is called simple if it can be deleted
from this object while preserving topology. See for example
Fig. 1a, where simple points are shown in gray.

The most “natural” way to thin an object consists of re-
moving some of its border points in parallel, in a symmet-
rical manner. However, parallel deletion of simple points
does not, in general, guarantee topology preservation: see
for example Fig. 1a, where removing all simple points
would split the object and merge two components of the

1To be more precise, we say that a transformationΨ “preserves topol-
ogy” if X is homotopy-equivalent toΨ(X) for anyX.

background, and Fig. 1b,c,d,e where all the points are sim-
ple. In fact, such a guarantee is not obvious to obtain, even
for the 2D case (see [10], where fifteen published parallel
thinning algorithms are analyzed, and counter-examples are
shown for five of them). In the 2D case, a popular method
due to A. Rosenfeld [32] consists of dividing each thinning
step into substeps. In each substep, only simple points that
have no neighbor belonging to the object in one of the four
main directions (north, south, east, west) are candidates for
deletion. In addition, two special configurations made of
two adjacent pixels (see Fig. 1c,d) must be preserved, as
well as theirπ/2 rotations. This stategy prevents a whole
object to vanish like in Fig. 1b, or to break like in Fig. 1a.
However, it cannot be straightforwardly extended to 3D. In
this case, the six main directions are north, south, east, west,
up and down. In Fig. 1e, the voxelsx,y are simple vox-
els that have no neighbor belonging to the object in the di-
rection “up”, but if we remove them in parallel, the object
splits.

C. Ronse introduced minimal non-simple sets [31] to
study the conditions under which points may be removed
simultaneously while preserving topology of 2D objects.
This leads to verification methods for the topological sound-
ness of parallel thinning algorithms. Such methods have
been proposed for 2D algorithms by C. Ronse [31] and R.
Hall [14], they have been developed for the 3D case by T.Y.
Kong [23, 17] and C.M. Ma [28], as well as for the 4D case
by C-J. Gau and T.Y. Kong [12, 21]. Works dealing with
4D parallel homotopic thinning are indeed seldom, let us
mention also the recent work of T.Y. Kong [20], and the
work of A. Manzaneraet al. [29]. For the 3D case, one of
the authors [2] introduced the notion of P-simple point as
a verification method but also as a methodology to design
parallel thinning algorithms [3, 8, 26, 27].

Introduced recently by one of the authors, critical ker-
nels [4] constitute a general framework in the category of
abstract complexes for the study of parallel thinning in any
dimension. Thanks to critical kernels, one can easily de-
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Figure 1. (a): The object is the set of all black
and gray pixels. The pixels in gray are sim-
ple, but parallel removal of pixels x,y for ex-
ample would modify a topological character-
istic of the object. North pixels are marked
with the letter “n”. (b,c,d): All pixels are sim-
ple. (e): All voxels are simple, the voxels x
and y are both “up” voxels.

sign parallel thinning algorithms that produce new types of
skeletons, with specific geometrical properties, while guar-
anteeing their topological soundness [5, 6]. A new defini-
tion of a simple point is proposed in [4], based on the col-
lapse operation which is a classical tool in algebraic topol-
ogy and which guarantees topology preservation. Then, the
notions of anessential faceand of acoreof a face are used
to define thecritical kernelK of a complexX. The most
fundamental result proved in [4] is that, if a subsetY of X
containsK , thenX collapses ontoY, henceX andY “have
the same topology”.

In this article, we show the equivalence (up to 4D) be-
tween the notion of P-simple point and a notion close to the
one of crucial point, derived from the framework of critical
kernels. This equivalence (Th. 21) leads to the first local

characterization of P-simple points in 4D.
Furthermore, we show the equivalence (up to 4D) be-

tween the notion of MNS and the notion of crucial clique,
also derived from the framework of critical kernels. This
equivalence (Th. 27) leads to the first characterization of
MNS which can be verified by using a polynomial method.
We also retrieve straightforwardly some previously estab-
lished properties of MNSs.

In order to ease the reading, proofs of new properties are
deferred to the Appendix.

1 Cubical Complexes

Abstract complexes have been promoted in particular by
V. Kovalevsky [25] and E. Khalimsky [16] in order to pro-
vide a sound topological basis for image analysis2. In this
framework, we retrieve in particular the main notions and
results of digital topology, such as the notion of simple
point.

Intuitively, a cubical complex may be thought of as a set
of elements having various dimensions (e.g.cubes, squares,
edges, vertices) glued together according to certain rules.
In this section, we recall briefly some basic definitions on
complexes, see also [5, 6]. The way we define cubical com-
plexes is purely discrete, whereas other authors adopt a con-
tinuous framework to define them (seee.g.[15]). We con-
sider heren-dimensional complexes, with 0≤ n≤ 4.

Let Sbe a set. IfT is a subset ofS, we writeT ⊆ S. We
denote by|S| the number of elements ofS.

Let Z be the set of integers. We consider the families
of setsF1

0, F
1
1, such thatF1

0 = {{a} | a∈ Z}, F
1
1 = {{a,a+

1} | a∈ Z}. A subsetf of Z
n, n≥ 2, which is the Cartesian

product of exactlymelements ofF1
1 and(n−m) elements of

F
1
0 is called a face or an m-faceof Z

n, m is the dimension
of f , we write dim( f ) = m.

Observe that any non-empty intersection of faces is a
face. For example, the intersection of two 2-facesA and
B may be either a 2-face (ifA= B), a 1-face, a 0-face, or the
empty set.

(a) (b) (c) (d) (e)

Figure 2. Graphical representations of: (a) a
0-face, (b) a 1-face, (c) a 2-face, (d) a 3-face,
(e) a 4-face.

2An abstract complex is indeed a discrete topological space in the sense
of P.S. Alexandroff [1].
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We denote byFn the set composed of allm-faces ofZn,
with 0≤ m≤ n. An m-face ofZn is called apoint if m= 0,
a (unit) edgeif m = 1, a (unit) squareif m= 2, a (unit)
cubeif m= 3, a (unit) hypercubeif m= 4 (see Fig. 2).

Let f be a face inFn. We set f̂ = {g∈ F
n | g⊆ f} and

f̂ ∗ = f̂ \ { f}. Any g∈ f̂ is a face of f, and anyg∈ f̂ ∗ is a
proper face of f.
If X is a finite set of faces inFn, we writeX− = ∪{ f̂ | f ∈
X}, X− is the closure of X.

A setX of faces inFn is a cell or an m-cellif there exists
anm-face f ∈ X, such thatX = f̂ . The boundary of a cell
f̂ is the setf̂ ∗.

A finite setX of faces inF
n is a (discrete cubical) com-

plex (inF
n) if X = X−. In other words, a complex is a union

of cells. Any subsetY of a complexX, which is also a com-
plex, is a subcomplex of X. In Fig. 3, some complexes are
represented.

Let X ⊆ F
d be a set of faces. A sequenceπ= 〈 f0, . . . , fℓ〉

of faces ofX is a path in X (from f0 to fℓ) if either fi
is included in fi+1 or fi+1 is included in fi , for eachi ∈
{0, . . . , ℓ−1}.

Let X ⊆ F
d. We say thatX is connectedif, for any two

facesf ,g in X, there is a path fromf to g in X; otherwise we
say thatX is disconnected. We say thatY is a (connected)
component of Xif Y 6= /0, Y ⊆ X, Y is connected and ifY is
maximal for these properties (i.e., we haveZ = Y whenever
Y ⊆ Z ⊆ X andZ is connected). Notice that the empty set is
connected but has no connected component.

Let X ⊆ F
n. An m-face f ∈ X is an m-facet of X, or

simplya facet of X, if there is nog∈ X such thatf ∈ ĝ∗.
Let X be a complex inFn, X 6= /0, the number dim(X) =

max{dim( f ) | f is a facet ofX} is the dimension of X. We
say thatX is anm-complex if dim(X) = m.
We say thatX is pure if, for each facetf of X, we have
dim( f ) = dim(X).

In Fig. 3, the complexes (a) and (f) are pure, while
(b,c,d,e) are not.

2 Collapse and simple sets

Intuitively a subcomplex of a complexX is simple if its
removal fromX preserves topology. In this section we recall
a definition of a simple subcomplex based on the operation
of collapse introduced by J.H.C. Whitehead ([33], see also
[13, 9]), which is a discrete analogue of a retraction, that is,
a continuous deformation of an object onto itself.

Let X be a complex inFn and let f ∈ X. If there exists
one faceg∈ f̂ ∗ such thatf is the only face ofX that strictly
includesg, theng is said to befree for Xand the pair( f ,g)
is said to be a free pair for X. Notice that, if( f ,g) is a
free pair, thenf is necessarily a facet ofX and we have
dim(g) = dim( f )−1.

Let X be a complex. If( f ,g) is a free pair forX, then we
say that there is anelementary collapse from X to X\{ f ,g}.
Let X, Y be two complexes. We say thatX collapses onto Y
if Y = X or if there exists acollapse sequence from X to Y,
i.e., a sequence of complexes〈X0, ...,Xℓ〉 such thatX0 = X,
Xℓ = Y, and that there is an elementary collapse fromXi−1

to Xi, for all i = 1, ..., ℓ. If X collapses ontoY andY is a
complex made of a single point, we say thatX is collapsible.

Fig. 3 illustrates a collapse sequence. Observe that, ifX
is a cell of any dimension, thenX is collapsible. It may eas-
ily be seen that the collapse operation preserves the number
of connected components.

(a)

f

(b)

(c) (d)

(e) (f)

Figure 3. (a): A pure 3-complex X in F
3, and

a 3-facet f ∈ X. (f): A complex Y which is the
detachment of f̂ from X. (a-f): A collapse se-
quence from X to Y.

Let X,Y be two complexes. LetZ such thatX ∩Y is a
subcomplex ofZ andZ is a subcomplex ofY, and letf ,g∈
Z\X. The pair( f ,g) is a free pair forX∪Z if and only if
( f ,g) is a free pair forZ. Thus, by induction, we have the
following property.

Proposition 1 ([4]). Let X,Y be two complexes inFn. The
complex X∪Y collapses onto X if and only if Y collapses
onto X∩Y.

The operation of detachment allows us to remove a sub-
set from a complex, while guaranteeing that the result is still
a complex.

Definition 2 ([4]). Let X be a complex inFn and let Y⊆ X.
We set X ⊘ Y = (X \Y)−. The set X ⊘ Y is a complex which
is thedetachmentof Y from X.

In the following, we will be more particularly interested
in the case whereY is a single cell. For example in Fig. 3a,
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we see a complexX containing a 3-cellf̂ , andX ⊘ f̂ is
depicted in Fig. 3f.

Let us now recall here a definition of simplicity [4] based
on the collapse operation, which can be seen as a discrete
counterpart of the one given by T.Y. Kong [18].

Definition 3 ([4]). Let Y⊆ X; we say that Y issimple for
X if X collapses onto X ⊘ Y.

The collapse sequence displayed in Fig. 3 (a-f) shows
that the cellf̂ is simple for the complex depicted in (a).

The notion of attachment, as introduced by T.Y. Kong
[17, 18], leads to a local characterization of simple sets,
which follows easily from Prop. 1.

Let X be a complex inFn and letY be a subcomplex of
X. The attachmentof Y for X is the complex defined by
Att(Y,X) = Y∩ (X ⊘ Y).

Proposition 4 ([4]). Let X be a complex inFn and let Y be
a subcomplex of X. The complex Y is simple for X if and
only if Y collapses onto Att(Y,X).

Let us recall two important properties proved in [11],
which will be used to establish the main results of this pa-
per. In [11], these properties where introduced for proving
new characterizations of 2D, 3D and 4D simple points.

Consider three complexesA,B,C. If A collapses ontoC
andA collapses ontoB, then we know thatA,B andC “have
the same topology”. If in addition we haveC⊆ B⊆ A, it is
tempting to conjecture thatB collapses ontoC. Quite sur-
prisingly this is not always true. Classical counter-examples
to this assertion are Bing’s house and the dunce hat ([7, 34],
see also [11]).

For example, Bing’s house can be obtained by collapse
from a full cuboid (see Fig. 4). Nevertheless, it does not
collapse onto any of its subsets: this object has no free pair.
It is thus a counter-example for the above conjecture, with
A: a cuboid,B: Bing’s house, andC: a point inB. In [11]
we show that a dunce hat can also be realized as a cubical
complex, and that it is also a counter-example for the same
assertion.

In the two-dimensional discrete planeF
2, such counter-

examples cannot be found, consequently the above conjec-
ture is true in this case. In [11] we show that, in the bound-
ary of ann-face with n ≤ 4, there is “not enough room”
to build such counter-examples, and thus we have the two
following properties.

Theorem 5 ([11]). Let f be a d-face with d∈ {2,3,4}, let
A,B be two subcomplexes off̂ ∗ such that B⊆ A, and A is
collapsible. Then, B is collapsible if and only if A collapses
onto B.

Theorem 6([11]). Let f be a d-face with d∈ {2,3,4}, and
let C,D be two subcomplexes off̂ ∗ such that D⊆C, and f̂
collapses onto D. Then,̂f collapses onto C if and only if C

(a)

(b)

Figure 4. (a) Bing’s house with two rooms
(classical representation). The four rectan-
gles in light gray are not part of the house,
thus the lower room can be reached through
the upper chimney, and vice-versa. (b) A 3-
complex made of 24 cubes. The arrows sym-
bolize the order in which 3-collapse opera-
tions can be made in order to “carve” the
lower room of the house. By performing a
symmetrical operation for the upper room,
we obtain a 2-complex (Bing’s house) which
has no free face.

collapses onto D.

It is also proved in [11] that extensions of Th. 5 and Th. 6
to dimension 5 and higher do not hold. This is due to the
possibility to find, in ad-face withd ≥ 5, counter-examples
like Bing’s house or the dunce hat.

Th. 7 and Cor. 8 (see below) constitute a key property3

which will be used to prove Prop. 19, Prop. 25 and Th. 21.

Theorem 7. Let f be a d-face with d∈ {2,3,4}, and let
X,Y be two subcomplexes off̂ ∗ such that X is collapsible
and Y is collapsible. Then, X∪Y is collapsible if and only
if X ∩Y is collapsible.

Cor. 8 generalizes Th. 7 to an arbitrary number of sub-
complexes.

Corollary 8. Let f be a d-face with d∈ {2,3,4}, let ℓ be
an integer strictly greater than1, let X1, . . . ,Xℓ beℓ subcom-
plexes off̂ . The two following assertions are equivalent:
i) For all L ⊆ {1, . . . , ℓ} such that L6= /0, ∪i∈LXi is collapsi-
ble.

3Notice that a similar property holds inR3, in the framework of alge-
braic topology, if we replace the notion of collapsibility onto a point by the
one of contractibility [19, 30].
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ii) For all L ⊆ {1, . . . , ℓ} such that L6= /0, ∩i∈LXi is collapsi-
ble.

3 Critical kernels

Let us briefly recall the framework introduced by one of
the authors (in [4]) for thinning, in parallel, discrete objects
with the warranty that topology is preserved. We focus here
on the two-, three- and four-dimensional cases, but in fact
some of the results in this section are valid for complexes
of arbitrary dimension. This framework is based solely on
three notions: the notion of an essential face which allows
us to define the core of a face, and the notion of a critical
face.

Definition 9 ([4]). Let X be a complex inFn and let f∈ X.
We say that f is anessential face forX if f is precisely the
intersection of all facets of X that contain f . We denote by
Ess(X) the set composed of all essential faces of X. If f is
an essential face for X, we say thatf̂ is anessential cell for
X. If Y is a subcomplex of X and Ess(Y) ⊆ Ess(X), then we
say that Y is anessential subcomplex ofX.

Observe that a facet ofX is necessarily an essential face
for X. Observe also that, ifX and Y are both puren-
complexes, thenY is an essential subcomplex ofX when-
everY is a subcomplex ofX.

Definition 10 ([4]). Let X be a complex inFn and let f∈
Ess(X). Thecore of f̂ for X is the complex Core( f̂ ,X) =
∪{ĝ | g∈ Ess(X)∩ f̂ ∗}.

Definition 11 ([4]). Let X be a complex inFn and let f∈X.
We say that f and̂f are regular forX if f ∈ Ess(X) and if f̂
collapses onto Core( f̂ ,X). We say that f and̂f are critical
for X if f ∈ Ess(X) and if f is not regular for X.
If X be a complex inFn, we set Critic(X) = ∪{ f̂ | f is criti-
cal for X}, we say that Critic(X) is thecritical kernel ofX.
A face f in X is amaximal critical face, or an M-critical
face (forX), if f is a facet of Critic(X).

A B
x

C D
zd

f
E y

w
F

t

u

v

b

c

ge

a

Figure 5. A complex X for the illustration of
the notions of essential face, core, critical
and M-critical face (see text).

Fig. 5, where a complexX is depicted, helps us to illus-
trate these notions. The lettersA,B,C,D,E,F indicate all
the facets (2-faces), the lettersa,b,c,d,e, f ,g indicate some
of the 1-faces, and the letterst,u,v,w,x,y,z some 0-faces.
The essential faces of the complexX form the setEss(X) =
{A,B,C,D,E,F, a,b,c,d,t,x,y,z} (essential 0-faces and 1-
faces are highlighted in the figure). The core ofD̂ for X
is the set{x,c,y,z}, the core ofÊ for X is {y,d,u}. We
can see that a collapse sequence from the cellÊ to {y,d,u}
exists: e.g., 〈Ê, {v, f ,w,g,y,d,u}, {w,g,y,d,u}, {y,d,u}〉.
Thus, the facetE is regular forX. On the other hand, we
can see that no collapse sequence fromD̂ to {x,c,y,z} ex-
ists, since the latter complex is disconnected: the facetD is
critical for X. We will see later that, as a consequence of
Prop. 14, a facet is simple if and only if it is regular. Let
us now consider the case of facesa,b andc, which are not
facets. We haveCore(â,X) = {t}, Core(b̂,X) = {t,x} and
Core(ĉ,X) = {x,y}. Thus,a is regular andb,c are critical
for X. An M-critical face is a face that is critical and not in-
cluded in any other critical face, thus the faceb is M-critical
(as it may be seen that bothB andC are regular), but the face
c is not M-critical, since it is included in the critical faceD.
See also Fig. 6a for an illustration of critical faces in 3D.

The following properties of the core of a cell will be use-
ful in the sequel.

Proposition 12 ([4]). Let X be a complex inFn, and let
f ∈ Ess(X). Let K = {g∈ X | f ⊆ g}, and let Y= X ⊘ K.
We have: Core( f̂ ,X) = Att( f̂ ,Y∪ f̂ ) = f̂ ∩Y.

Corollary 13 ([4]). Let X be a complex inFn, and let f be
a facet of X. We have: Core( f̂ ,X) = Att( f̂ ,X).

As shown below, there is a strong link between the no-
tions of regular and simple face.

Proposition 14 ([4]). Let X be a complex inFn, and let
f ∈ Ess(X). Let K= {g∈ X | f ⊆ g} and Z= [X ⊘ K]∪ f̂ .
The face f is regular for X if and only if̂f is simple for Z.

In particular, wheneverf is a facet,f is regular forX if
and only if f is simple forX (since, in this case, we have
K = { f} and thusZ = X).

The following theorem is the most fundamental result
concerning critical kernels. We will use it in the sequel of
this paper in dimension 4 or less, but notice that the theorem
holds whatever the dimension.

Theorem 15([4]). Let n∈ N, let X be a complex inFn, and
let Y be an essential subcomplex of X.
i) The complex X collapses onto its critical kernel.
ii) If Y contains the critical kernel of X, then X collapses
onto Y .
iii) If Y contains the critical kernel of X, and if Z is an es-
sential subcomplex of X such that Y⊆ Z, then Z collapses
onto Y .
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(a) (b)

(c) (d)

Figure 6. (a): A 3-complex X, made of 12
cubes, and its critical faces (highlighted).
(b): The critical kernel X1 = Critic(X). (c): X2 =
Critic(X1). (d): X3 = Critic(X2) = Critic(X3).

In Fig. 6, we show that the very notion of critical kernel
can be seen as a powerful thinning algorithm, which con-
sists of computing iteratively the critical kernel of the pre-
ceding computation. Furthermore, Th. 15ii tells us that any
essential subcomplexY of X that is “between”X (Fig. 6a)
andX1 (Fig. 6b) is such thatX collapses ontoY. This true,
in particular, of any subcomplexY that is a pure 3-complex
containingX1. This property gives birth to a wide class
of parallel thinning algorithms, where different criterions,
basede.g. on geometrical notions, can be used in order to
choose a particular set as the result of a single thinning step
(see Sec. 4).

4 Crucial kernels

In the image processing literature, a digital image is of-
ten considered as a set of pixels in 2D, voxels in 3D, or
4-xels in 4D. A pixel (resp. voxel, 4-xel) is an elemen-
tary square (resp. cube, hypercube), thus an easy corre-
spondence can be made between this classical view and the
framework of cubical complexes. From now on, we con-
sider only complexes that are unions ofd-cells, i.e., pure
d-complexes.

Notice that, ifX is a pure complex inFd and if f̂ is a
d-cell of X, thenX ⊘ f̂ is a pure complex inFd. There is
indeed an equivalence between the operation on complexes
that consists of removing (by detachment) a simpled-cell,
and the removal of an 8-simple (resp. 26-simple, 80-simple)
point in the framework of 2D (resp. 3D, 4D) digital topol-
ogy (see [17, 18]).

If X is a pured-complex (e.g., a union of voxels inF3),
the critical kernel ofX is not necessarily a pured-complex

(see Fig. 6b). The notion of crucial clique, introduced in [6],
allows us to recover a pured-subcomplexY of an arbitrary
pure d-complexX, under the constraint thatX collapses
ontoY.

Definition 16 ([6]). Let X be a pure d-complex inFd, and
let f be an M-critical face for X. The set K of all the facets
of X that contain f is called acrucial clique (forX). More
precisely, K is thecrucial clique induced byf .

(a) (b) (c)

(d) (e) (f)

Figure 7. Crucial cliques in F
3 (represented

in light gray): (a) induced by an M-critical
0-face; (b,c) induced by an M-critical 1-face;
(d,e,f) induced by an M-critical 2-face. The
considered M-critical faces are in dark gray,
the core of these M-critical faces (when non-
empty) is represented in black.

Some 3D crucial cliques are illustrated in Fig. 7. Ob-
serve that Fig. 7e depicts precisely the configuration of vox-
els x,y in Fig. 1e. It may be easily seen that, informally
speaking, a thinning step that preserves all non-simple vox-
els and at least one voxel in each crucial clique, preserves
topology.

The following parallel thinning scheme takes as input an
“object” X that is a pured-complex, and a setK, calledcon-
straint set, composed of facets ofX that must be preserved
during the thinning.
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Scheme 1:CrucialThinning

Data : d ∈ {2,3,4}, a pured-complexX in F
d,

a setK of facets ofX
Result : X
repeat1

D := set of facets ofX that are critical forX or that2

are inK;
T := set of facets ofX that belong to a crucial3

clique included inX \D;
X := [D∪T]−;4

until stability ;5

For each single step of Scheme 1, it may easily be seen
that any critical face ofX, if not contained inK or in a
critical facet ofX, is contained inT. Thus, by Th. 15, we
deduce that the setX at stepi collapses onto the setX at
stepi +1, and that Scheme 1 preserves topology.

Scheme 1 is very general, since any setK may be used
to constrain the thinning. Below, we give three examples of
thinning methods based on this scheme, which illustrate the
versatility of the critical kernels framework. Other exam-
ples may be found in [5, 6].

Example 1: symmetrical thinning without constraint
set.

In Fig. 8 and Fig. 9, we illustrate the steps of Scheme 1
with no constraint (K = /0). The original objects are the
same as in Fig. 1a and Fig. 1e respectively. In Fig. 8, three
steps are needed to reach stability, and in Fig. 9 only two
steps are necessary.
Such minimal skeletons may be used in some applications
where we are not interested to keep the branches of a skele-
ton.

Example 2: symmetrical thinning with medial axis.

A ball B is maximalfor an objectX if B is included inX
and is not strictly included in any other ball included inX.
The set of all the centers of its maximal balls is often called
themedial axisof the object.
In Fig. 10, we show an example of curvilinear skeleton in
2D and surface skeleton in 3D, obtained by the above paral-
lel thinning scheme. The constraint set K is the medial axis
based on the Manhattan distance in the 2D case, and the
subset of the medial axis representing the locus of centers
of maximal balls with radius greater than a chosen threshold
(3) in the 3D case.

Example 3: thinning with directional strategy.

We have seen in the introduction that the directional
strategy for parallel thinning, proposed by Rosenfeld in
2D [32], cannot be straightforwardly extended to the 3D
case. In fact, the question of knowing whether this strategy

Figure 8. Illustration of Scheme 1 in 2D, K = /0.

Figure 9. Illustration of Scheme 1 in 3D, K = /0.

has a “natural extension” to 3D was cited among three open
questions relative to digital topology by Kong, Litherland
and Rosenfeld in [24] (question 547). We show here that
the critical kernels framework indeed offers a direct way to
extend the directional strategy to dimensions higher than 2.
A slight variant of Scheme 1 consists of computing the set
K dynamically, at each iteration, from the current state of
the setX.
To implement in 3D the directional method, let us take as
constraintK the set of all points that are not “up” voxels, let-
ting as candidates for deletion only those voxels that have
no neighbor belonging to the object in the “up” direction:
see the result in Fig. 11b. Repeating this procedure with
down, north, south, east, and west voxels achieves one step
of directional thinning, as illustrated in Fig. 11. Notice that
no “special configuration” (like the ones of Fig. 1c,d) need
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Figure 10. A 2D curvilinar skeleton (top),
and a 3D surface skeleton (bottom), obtained
thanks to the CrucialThinning scheme.

to be introduced, in 2D as in 3D. Such configurations are in-
deed crucial cliques, thus Scheme 1 automatically preserves
them. Notice also that similar extensions may be done in di-
mensions higher than 3.

In addition to these three examples, let us notice that by
way of such constraint sets, some geometric conditions such
as curve end or surface border detection may also be intro-
duced [5, 6], both with the symmetrical and with the direc-
tional strategy. Let us mention that for the 3D case, a more
powerful thinning scheme has been proposed in [5], based
on a variant of the notion of crucial clique.

It should be noted that in 2D and 3D, the methodology
based on crucial cliques does not need to handle the struc-
ture of abstract complexes. In fact, we showed in [6] that
2D crucial cliques may be characterized through a set of
patterns defined in the classical square grid, as in most pa-

u u
u u u

u uu
uu

dd
d

d d
d

d

n n n n

s s
s

Figure 11. Directional thinning. Voxels
marked u,d,n,s are respectively up, down,
north and south voxels.

pers related to parallel thinning.
Now, let us state two properties of crucial cliques which

are essential for the proof of one of our main results
(Th. 27).

Proposition 17. Let X be a pure d-complex inFd, with d∈
{2,3,4}, let f be an M-critical face of X, let K be the crucial
clique induced by f , and let k be any facet of K. Let K′ be
such that K′ ⊆ K \ {k} and K′ 6= K \ {k}.
Then, k is a simple face of the complex X⊘ K′.

Proposition 18. Let X be a pure d-complex inFd, with d∈
{2,3,4}, let f be an M-critical face of X, let K be the crucial
clique induced by f , and let k be any facet of K.
Then, k is not a simple face of the complex[X ⊘ K]∪ k̂.

Prop. 19, below, plays a role in the proofs of Prop. 25
(hence also Th. 27) and Th. 20.

Proposition 19. Let X be a pure d-complex inFd, with d∈
{2,3,4}, let K be a set of facets of X, let k∈ K, such that
k is not simple for[X ⊘ K]∪ k̂ and k is simple for[X ⊘ K′]
whenever K′ ⊆ K \ {k} and K′ 6= K \ {k}. Then,∩{h∈ K}
is a face.

Some crucial cliques have a particularly simple structure:
those which are reduced to a small connected component,
where each element is adjacent to each other (like those
in Fig. 7a,b,d). We show that those are precisely the cru-
cial cliques that are induced by an M-critical face having an
empty core.

Theorem 20. Let X be a pure d-complex inFd, with d∈
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{2,3,4}, let K be a crucial clique for X induced by an M-
critical face f . Then, K− is a connected component of X if
and only if Core( f̂ ,X) = /0.

5 P-simple points

In the framework of digital topology, one of the authors
introduced the notion of P-simple point [3]. P-simple points
can be used as a verification method, but also as a method-
ology to design parallel thinning algorithms [3, 8, 26, 27].

We show in this section that there exists an equivalence
between the notion of P-simple points and a notion derived
from the one of crucial clique. This equivalence has been
stated for the 2D case in [6], here we show that it extends
up to 4D.

First, we recall the definition of P-simple points. In this
definition, the setC is a set of points that are “candidates for
deletion”.

Let X be a pured-complex inF
n, and letC be a set of

facets ofX. A facetk∈C is said to beP-simple for〈X,C〉 if
k is simple for all complexesX ⊘ T, such thatT ⊆C\ {k}.

For example, consider Fig. 1a and Fig. 1b, and assume
in each case thatC is the set of all simple facets (in gray).
Then, no facet in Fig. 1b is P-simple, and all simple facets
in Fig. 1a, except the ones that are delineated in bold, are
P-simple for〈X,C〉.

The following parallel thinning scheme based on P-
simple points takes as input, as CrucialThinning (see
Sec. 4), an “object”X which is a pured-complex, and a
setK, called constraint set, composed of facets ofX that
must be preserved during the thinning.

Scheme 2:PSimpleThinning

Data : d ∈ {2,3,4}, a pured-complexX in F
d,

a setK of facets ofX
Result : X
repeat1

U := set of facets ofX that are simple forX;2

V := set of facets ofX that are P-simple for3

〈X,U \K〉;
X := X ⊘ V;4

until stability ;5

For the 3D case, a local characterization that leads to
a linear algorithm for testing P-simplicity has been proved
in [3]. Until now, such a characterization was not available
in 4D.

The following equivalence leads, in particular, to a lo-
cal characterization and to the first algorithm for testing P-
simplicity in 4D.

Theorem 21. Let X be a pure d-complex inFd, with d∈
{2,3,4}, let C be a set of facets of X, let D= X ⊘ C. Let

k∈C, the facet k is P-simple for〈X,C〉 if and only if k does
not contain any face f that is critical for X, and such that
all the facets of X containing f are in C.

Thus, any facet that is P-simple for〈X,C〉 is not crucial
for 〈X,D〉. The converse is not true. For example inF

2, if
we consider a setX that consists of a two-pixels width rib-
bon (see Fig. 1b), and if we denote byC the set of all facets
of X, it may be seen that the four pixels at the extremities of
the ribbon are not crucial for〈X,D〉, but also not P-simple
for 〈X,C〉.

Indeed, it is possible to remove more facets with a thin-
ning scheme that deletes simple facets that are not crucial
than with one that deletes P-simple facets. In other words,
the scheme CrucialThinning is more powerful than PSim-
pleThinning. To illustrate this, consider again the example
of Fig. 1b, with no constraint set (K = /0). One step of Cru-
cialThinning deletes four pixels, and three steps reduces the
ribbon to just two pixels, while PSimpleThinning leaves this
object unchanged.

Let X be a pured-complex inF
d, and letY be a pure

d-subcomplex ofX. We say thatY is a crucial retraction
of X if Y contains all the critical facets ofX, and at least
one facet of each crucial clique forX. By Th. 15, if Y is
a crucial retraction ofX thenX collapses ontoY. In fact,
despite the appearance, it is possible to check only with the
notion of P-simple points whether the result of one step of
a given algorithm is a crucial retraction or not. Since every
critical face is included in an M-critical face, by Th. 21, we
have the following.

Proposition 22. Let X be a pure d-complex inFd, with d∈
{2,3,4}, let T be a set of facets of X. Let U be the set of all
facets of X that are not in T. The complex T− is a crucial
retraction of X if and only if each element of U is P-simple
for 〈X,U〉.

6 Minimal non-simple sets

In the preceding section, we saw that critical kernels,
which are settled in the framework of abstract complexes,
allow us to retrieve the notion of P-simple point proposed
in the context of digital topology. Now, we show that the
notion of minimal non-simple set can also be retrieved in
the framework of critical kernels.

C. Ronse introduced in [31] the minimal non-simple sets
(MNS) to propose some conditions under which simple
points can be removed in parallel while preserving topol-
ogy. This leads to verification methods for the topological
soundness of 2D thinning algorithms [31, 14], 3D thinning
algorithms [23, 17, 28], the 4D case has even been consid-
ered in [12, 19, 21].

The main result of this section (Th. 27) proves the equiv-
alence between MNS and crucial cliques in dimensions 2, 3
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and 4. This equivalence leads to the first characterization of
MNS which can be verified using a polynomial method. In
contrast, the very definition of a MNS (see below), as well
as the characterization of Th. 23, involves the examination
of all subsets of a given candidate set,e.g., a subset of a
2×2×2×2 block in 4D.

Let X be a pured-complex inF
d, with d ∈ {2,3,4}. A

sequence〈k0, . . . ,kℓ〉 of facets ofX is said to be asimple
sequence for Xif k0 is simple forX, and if, for anyi ∈
{1, . . . , ℓ}, ki is simple forX ⊘ {k j | 0≤ j < i}. Let K be a
set of facets ofX. The setK is said to beF-simple(where
“F” stands for facet) forX if K is empty, or if the elements
of K can be ordered as a simple sequence forX. The set
K is minimal non-simple for Xif it is not F-simple forX
and if all its proper subsets are F-simple. The following
characterization will be used in the sequel.

Theorem 23(adapted from Gau and Kong [12], theorem 3).
Let X be a pure d-complex inFd, with d∈ {2,3,4}, and let
K be a set of facets of X. Then K is a minimal non-simple
set for X if and only if the two following conditions hold:
i) Each k of K is non-simple for[X ⊘ K]∪ k̂.
ii) Each k of K is simple for[X ⊘ K′] whenever K′ ⊆ K \{k}
and K′ 6= K \ {k}.

For example, it may be seen that the set{x,y} in Fig. 1a,
the set{x,y} in Fig. 1e, as well as the sets displayed in Fig. 7
in light gray, are indeed minimal non-simple sets.

From Th. 23 and Prop. 19, we can directly retrieve a re-
sult previously established by Gau and Kong.

Theorem 24 (adapted from Gau and Kong [12], theorem
5). Let X be a pure4-complex inF

4 (resp. 3-complex in
F

3,2−complexinF2) and let K be a set of facets of X. If K
is a minimal non-simple set for X, then K is a non-empty
subset of some2×2×2×2 block of sixteen4-faces (resp.
2×2×2block of eight3-faces,2×2 block of four2-faces).

Prop. 25 and Prop. 26 are steps for the proof of the main
result of this section, Th. 27.

Proposition 25. Let X be a pure d-complex inFd, with d∈
{2,3,4}, let K be a minimal non-simple set for X, and let
f be the intersection of all the elements of K. Then, f is a
critical face for X.

Proposition 26. Let X be a pure d-complex inFd, with d∈
{2,3,4}, let K be a minimal non-simple set for X, and let
f be the intersection of all the elements of K. Then, f is
an M-critical face for X and K is the crucial clique induced
by f .

If K is a crucial clique forX, then from Th. 23, Prop. 17
and Prop. 18,K is a minimal non-simple set forX. Con-
versely, if K is a minimal non-simple set forX, then by
Prop. 26,K is a crucial clique. Thus, we have the following
theorem.

Theorem 27. Let X be a pure d-complex inFd, with d∈
{2,3,4}, and let K be a set of facets of X. Then K is a
minimal non-simple set for X if and only if it is a crucial
clique for X.

We retrieve thanks to Th. 20, and by inspection of all
possible configurations, a previously established property
about MNSs that are connected components [31, 14, 17,
19], its most general formulation being found in [19].

Proposition 28 (adapted from Kong [19], theorem 3-2).
Let X be a pure d-complex inFd, with d∈ {2,3,4}, let K
be a set of facets of X, such that K− is a connected compo-
nent of X, and such that the intersection of all its facets is
non-empty. Then, K is a minimal non-simple set for X.

We also retrieve thanks to Th. 20, and from the obser-
vation that a face with a non-empty core has necessarily a
dimension that is at least 1, the following property.

Proposition 29(adapted from Gau and Kong [12], theorem
8-2). Let X be a pure4-complex inF

4 (resp. 3-complex in
F

3, 2-complex inF2), let K be a MNS such that K− is not a
connected component of X. Then, K is a non-empty subset
of a 2×2×2 block of eight4-faces (resp. a2×2 block of
four 3-faces, a set of two2-faces having an intersection that
is a1-face).

Conclusion
Critical kernels constitute a powerful framework to study

parallel homotopic thinning in any dimension. Indeed,
the very notion of critical kernel may be seen as thinning
scheme, which consists of iteratively computing the criti-
cal kernel of the result of the previous step. Critical kernels
may also be used to design new algorithms, as well as to
check the topological validity of existing ones.

We demonstrated in this article that the main concepts
previously introduced in order to study topology-preserving
parallel thinning in the framework of digital topology,
namely P-simple points and minimal non-simple sets, may
be not only retrieved in the framework of critical kernels,
but also better understood and enriched. Critical kernels
thus appear to constitute a unifying framework which en-
compasses previous works on parallel thinning.

Furthermore, in contrast with minimal non-simple sets,
critical kernels provide a methodology to produce thinning
algorithms which preserve topology “by construction”, and
we showed in this paper that these algorithms are more pow-
erful than those which may be designed on the basis of P-
simple points.

Appendix

In the sequel, we denote byX+ the set of all facets of a
complexX.
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Proof of Th. 7. Suppose thatX∪Y is collapsible. By ap-
plying Th. 5 with A = X ∪Y andB = X, we deduce that
X∪Y collapses ontoX. By Prop. 1, we deduce thatY col-
lapses ontoX ∩Y. And by applying Th. 5 withA = Y and
B = X∩Y, we deduce thatX∩Y is collapsible.
Now, suppose thatX ∩Y is collapsible. By applying Th. 5
with A = X and B = X ∩Y, we deduce thatX collapses
onto X ∩Y. By Prop. 1, we deduce thatX ∪Y collapses
ontoY. And sinceY is collapsible, by transitivityX ∪Y is
collapsible.�

Proof of Cor. 8. By Th. 7, the property holds whenever
ℓ = 2. Suppose that it holds untilℓ−1≥ 2, and let us prove
it for ℓ.
i ⇒ ii. For any j ∈ {1, . . . , ℓ}, let Z j = ∩i= j

i=1Xi. For any
L ⊆ {1, . . . , ℓ}, 0 < |L| < ℓ, the recurrence hypothesis im-
plies that∩i∈LXi is collapsible, in particularZℓ−1 is col-
lapsible. It remains to prove thatZℓ is collapsible. For any
j ∈{1, . . . , ℓ−1}, letYj = Xj ∪Xℓ. For allL⊆{1, . . . , ℓ−1},
L 6= /0, we see that∪i∈LYi is collapsible. From the recur-
rence hypothesis, we deduce that∩i=ℓ−1

i=1 Yi is collapsible.
But,∩i=ℓ−1

i=1 Yi = Zℓ−1∪Xℓ. SinceZℓ−1∪Xℓ, Zℓ−1 andXℓ all
are collapsible, from Th. 7 we deduce thatZℓ−1∩Xℓ = Zℓ is
collapsible.
ii ⇒ i. The proof is obtained by exchanging intersection
and union in the previous reasoning.�

Proof of Prop. 17. Let Z = [X ⊘ K′] andY = [X ⊘ K′] ⊘ k̂
(see an illustration in Fig. 12). By definition of a crucial
clique, the facef is included in any facet ofK, thus f is
contained in bothZ andY. Suppose thatg is also an M-

f

k

X Z Y

Figure 12. Illustration (in F
3) for the proof of

Prop. 17.

critical face forX which is in [K′]−, and letK′′ be the cru-
cial clique forX induced byg. If K′′ 6⊆ [K′∪{k}], then by
definition ofY, g must be included in a facet which is in
Y. OtherwiseK′′ ⊆ K, hencef ⊆ g, and by definition of an
M-critical face, f = g. From this we see thatY contains the
critical kernel ofX. Furthermore,Z is an essential subcom-
plex of X (sinceZ+ ⊆ X+ ⊆ Ess(X)) andY is an essential
subcomplex ofX (idem). From Th. 15iii, we deduce thatZ
collapses ontoY, in other words,k is simple forZ. �

Proof of Prop. 18. Let W = [X ⊘ K], Y = W ∪ k̂, and
Z = W∪ f̂ (see an illustration in Fig. 13). We know thatY

k
f

X W Y Z

Figure 13. Illustration (in F
3) for the proofs of

Prop. 18 and Prop. 25.

is an essential subcomplex ofX (sinceY+ ⊆ X+ ⊆ Ess(X))
and we can see thatZ is an essential subcomplex ofX, since
f is M-critical, thus essential forX. From Th. 15, we de-
duce thatY collapses ontoZ, and by Prop. 1,̂k collapses
ontok̂∩Z (i).
Suppose thatk is simple for Y, that is, Y collapses
ontoY ⊘ k̂ = W, thus by Prop. 1,̂k collapses ontôk∩W
(ii). By definition of Z andW, k̂∩W is a subcomplex of
k̂∩Z. Thus from (i), (ii) and Th. 6, we deduce thatk̂∩Z
collapses ontôk∩W.
Remark that̂k∩Z = [k̂∩W]∪ f̂ , thus by Prop. 1,̂f collapses
onto f̂ ∩ [k̂∩W] = f̂ ∩W. Again by Prop. 1, we deduce that
Z =W∪ f̂ collapses ontoW, i.e., f is simple forZ, a contra-
diction with Prop. 14 and the fact thatf is critical for X. �

Proof of Prop. 19. Notice that the property trivially holds
when |K| = 1, suppose now that|K| = ℓ > 1. Let us
write K = {k = k1,k2, . . . ,kℓ}. By hypothesis,k is sim-
ple for ∪i∈L{[X ⊘ K]∪ k̂∪ k̂i}, ∀L ⊆ {2, . . . , ℓ} such that
L 6= /0. By Prop. 4,k̂ collapses onto∪i∈L{[X ⊘ K]∪ k̂i}∩ k̂
= ∪i∈L{([X ⊘ K]∪ k̂i)∩ k̂}, ∀L ⊆ {2, . . . , ℓ} such thatL 6=
/0. By Cor. 8 and Th. 5 (withA = k̂), k̂ collapses onto
∩i=ℓ

i=2{([X ⊘ K]∪ k̂i)∩ k̂} = ([X ⊘ K]∩ k̂)∪ ([∩i=ℓ
i=2k̂i ]∩ k̂) =

([X ⊘ K]∩ k̂)∪ f̂ , where f = ∩{h∈ K}. Thus f cannot be
empty, otherwisêk would collapse onto[X ⊘ K]∩ k̂, a con-
tradiction with Prop. 4 and the fact thatk is not simple for
[X ⊘ K]∪ k̂. Since f is a non-empty intersection of faces,f
is a face.�

Proof of Th. 20. Let us denote by|C (Z)| the number of
connected components of any set of facesZ. The property
is straightforward when|K| = 1, suppose now that|K| > 1.
LetY = X ⊘ K. Suppose thatK− is a connected component
of X, thusK−∩Y = /0. Since f̂ ⊆ K−, we havef̂ ∩Y = /0.
By Prop. 12, f̂ ∩Y = Core( f̂ ,X), henceCore( f̂ ,X) = /0.
Conversely, suppose thatCore( f̂ ,X) = /0, hencef̂ ∩Y = /0
and|C (Y∪ f̂ )|= |C (Y)|+1. Sincef is M-critical for X, the
critical kernel ofX is contained inY∪ f̂ , furthermoreY∪ f̂
is an essential subcomplex ofX. By Th. 15ii, X collapses
ontoY∪ f̂ , hence|C (Y∪ f̂ )|= |C (X)|= |C (Y)|+1, and by
definition ofY, K− is a connected component ofX. �

The proof of Th. 21 will be given after the one of
Prop. 25 for a more comfortable reading, as the two proofs
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share a common argument.

Proof of Prop. 25. From Th. 23 and Prop. 19, we deduce
that f is a face ofX. Let ℓ = |K|, if ℓ = 1 the property
follows straightforwardly from the definitions. From now,
suppose thatℓ ≥ 2. Let us writeK = {k = k1,k2, . . . ,kℓ},
W = [X ⊘ K], Y = W∪ k̂, andZ = W∪ f̂ (see Fig. 13 for an
illustration). LetL be any non-empty subset of{2, . . . , ℓ},
and let us writeYL = W∪{ki | i ∈ L}−. From Th. 23ii,k
is simple forYL ∪ k̂, that is,YL ∪ k̂ collapses ontoYL. From
Prop. 1,k̂ collapses ontôk∩YL = k̂∩ [W∪ {ki | i ∈ L}−]
= k̂∩ [∪{W∪ k̂i | i ∈ L}] = ∪{[W∪ k̂i ]∩ k̂ | i ∈ L}. From
Cor. 8 and Th. 5 (withA = k̂), we deduce that̂k collapses
onto ∩{[W∪ k̂i ]∩ k̂ | 2≤ i ≤ ℓ}= k̂∩ [∩{W∪ k̂i | 1≤ i ≤ ℓ}]
= k̂∩Z ; and by Prop. 1,Y = k̂∪Z collapses ontoZ. Sup-
pose thatf is not a critical face forX, i.e., f̂ collapses
onto Core( f̂ ,X). From Prop. 12, we haveCore( f̂ ,X) =
f̂ ∩W. Thus, sinceY collapses ontoW∪ f̂ and f̂ collapses
onto f̂ ∩W (hence by Prop. 1W∪ f̂ collapses ontoW), we
deduce thatY collapses ontoW, which means thatk is sim-
ple forY, a contradiction with Th. 23i.�

Proof of Th. 21. Suppose thatk is P-simple for〈X,C〉. Let
f be any face ink such thatf 6= k and such that the setK
of all facets ofX containingf is included inC. Let us write
K = {k = k1,k2, . . . ,kℓ}. By definition of a P-simple facet,
we know thatk is simple for[X ⊘ K]∪ k̂, thus by Prop. 4,̂k
collapses onto[X ⊘ K]∩ k̂ (1). We also know thatk is simple
for ∪i∈L{[X ⊘ K]∪ k̂∪ k̂i}, ∀L ⊆ {2, . . . , ℓ} such thatL 6= /0.
By Prop. 4,k̂ collapses onto∪i∈L{[X ⊘ K]∪ k̂i}∩ k̂, ∀L ⊆
{2, . . . , ℓ} such thatL 6= /0. By Cor. 8 and Th. 5,̂k collapses
onto∩i=ℓ

i=2{[X ⊘ K]∪ k̂i}∩ k̂ = (k̂∩ [X ⊘ K])∪(∩i=ℓ
i=2{k̂i ∩ k̂})

= ([X ⊘ K]∩ k̂)∪ f̂ (2). Furthermore,f̂ is collapsible (3)
since f is a cell. From (1), (2), (3), Th. 7 and Th. 5, we
deduce that̂k collapses onto([X ⊘ K]∩ k̂)∩ f̂ = [X ⊘ K]∩ f̂ ,
hence[X ⊘ K]∩ f̂ is collapsible (by Th. 5), and̂f collapses
onto [X ⊘ K]∩ f̂ (again by Th. 5). Thus by Prop. 14,f is
not critical forX. Since this holds for any such facef , the
forward implication is proved.
Suppose now thatk is not P-simple for〈X,C〉. Thus, there
exists a setT ⊆C\ {k} such thatk is not simple forX ⊘ T.
Without loss of generality, we suppose thatT is minimal for
this property,i.e., k is simple forX ⊘ T ′ whatever the setT ′

strictly included inT. Let f denote the intersection of all
the facets ofT ∪{k}. From Prop. 19, we deduce thatf is a
face ofX. From now on, the proof is essentially the same
as the proof of Prop. 25, showing thatf is a critical face.�

Proof of Prop. 26. See Fig. 14 for an illustration. From
Prop. 25 we know thatf is critical for X, suppose that
there exists a critical facef ′ for X which strictly contains
f . We may assume thatf ′ is M-critical for X (otherwise
there would exist an M-critical face containing bothf ′ and
f , and this face should be chosen). LetK′ = {k∈X | f ′ ⊆ k}
(by construction we haveK′ ⊆ K), Y = [X ⊘ K′], andY′ =

Y∪ f̂ ′. We haveK′ 6= K, otherwise we would havef ′ = f .
Let k∈ K′ and letY′′ =Y∪ k̂. From Th. 23ii we deduce that

f’ f’

k

X Y Y′ Y′′

Figure 14. Illustration (in F
3) for the proof of

Prop. 26.

Y′′ collapses ontoY. By Prop. 1, it follows that̂k collapses
onto k̂∩Y (1). The complexY′ contains, by construction,
the critical kernel ofX. Furthermore, since it can be seen
that bothk and f ′ are essential forX, we know thatY′′ is
an essential subcomplex ofX andY′ is an essential sub-
complex ofX. By Th. 15iii, we deduce thatY′′ collapses
ontoY′. By Prop. 1, it follows that̂k collapses ontôk∩Y′

(2). From (1), (2) and Th. 6, we deduce thatk̂∩Y′ collapses
ontok̂∩Y, i.e., (k̂∩Y)∪ f̂ ′ collapses ontôk∩Y. By Prop. 1,
f̂ ′ thus collapses onto(k̂∩Y)∩ f̂ ′ =Y∩ f̂ ′ and by Prop. 12,
Y∩ f̂ ′ = Core( f̂ ′,X), hence a contradiction with the initial
assumption thatf ′ is critical for X. �
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