G. Abele, Rockslide movement supported by the mobilization of groundwater?saturated valley floor sediments, Z. Geomorphol, vol.41, pp.1-20, 1997.

J. A. Anderson, S. C. Sides, D. L. Soltesz, T. Sucharski, and K. J. Becker, Modernization of the integrated software for imagers and spectrometers , Lunar Planet, 2004.

D. D. Barkan, Dynamics of Bases and Foundations: Rock Mass and Mud Wave Deposit, translated by L, 1962.

F. Bigot?cormier and D. R. Montgomery, Valles Marineris landslides: Evidence for a strength limit to Martian relief?, Earth and Planetary Science Letters, vol.260, issue.1-2, pp.179-186, 2007.
DOI : 10.1016/j.epsl.2007.05.028

URL : https://hal.archives-ouvertes.fr/hal-00407714

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well?Balanced Schemes for Sources, Front. Math. Ser, vol.134, 2004.

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography, Communications in Mathematical Sciences, vol.2, issue.3, pp.359-389, 2004.
DOI : 10.4310/CMS.2004.v2.n3.a2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Bouchut, A. Mangeney?castelnau, B. Perthame, and J. P. Vilotte, A new model of Saint Venant and Savage???Hutter type for gravity driven shallow water flows, Comptes Rendus Mathematique, vol.336, issue.6, pp.531-536, 2003.
DOI : 10.1016/S1631-073X(03)00117-1

M. H. Bulmer and B. A. Zimmerman, Reassessing landslide deformation in Ganges Chasma, Mars, Geophysical Research Letters, vol.26, issue.19, pp.10-1029, 2005.
DOI : 10.1029/2004GL022021

P. R. Christensen, Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results, Science, vol.300, issue.5628, pp.2056-2061, 2003.
DOI : 10.1126/science.1080885

N. A. Cressie, The origins of kriging, Mathematical Geology, vol.2, issue.3, pp.239-252, 1990.
DOI : 10.1007/BF00889887

D. M. Cruden and O. Hungr, The debris of the Frank Slide and theories of rockslide?avalanche mobility, Can, J. Earth Sci, vol.23, pp.425-432, 1986.

D. M. Cruden and D. J. Varnes, Landslide types and processes, in Landslides: Investigation and Mitigation, Spec. Rep. Transp. Res. Board, vol.247, pp.36-75, 1996.

W. B. Dade and H. E. Huppert, Long-runout rockfalls, Long?runout rockfalls, pp.803-806, 1998.
DOI : 10.1130/0091-7613(1998)026<0803:LRR>2.3.CO;2

T. R. Davies and M. J. Mcsaveney, Runout of dry granular avalanches, Canadian Geotechnical Journal, vol.36, issue.2, pp.313-320, 1999.
DOI : 10.1139/t98-108

R. P. Denlinger and R. M. Iverson, Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests, Journal of Geophysical Research: Solid Earth, vol.392, issue.B1, pp.553-566, 2001.
DOI : 10.1029/2000JB900330

R. P. Denlinger and R. M. Iverson, Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation, Journal of Geophysical Research: Earth Surface, vol.392, issue.F1, pp.10-1029, 2004.
DOI : 10.1029/2003JF000084

G. Félix and N. Thomas, Relation between dry granular flow regimes and morphology of deposits: formation of lev??es in pyroclastic deposits, Earth and Planetary Science Letters, vol.221, issue.1-4, pp.197-231, 2004.
DOI : 10.1016/S0012-821X(04)00111-6

K. P. Harrison and R. E. Grimm, Rheological constraints on martian landslides, Rheological constraints on Martian landslides, pp.347-362, 2003.
DOI : 10.1016/S0019-1035(03)00045-9

A. J. Hogg, Two-dimensional granular slumps down slopes, Physics of Fluids, vol.19, issue.9, p.93301, 2008.
DOI : 10.1017/S0022112006002588

O. Hungr, Dynamics of rock avalanches and other types of mass movements, 1981.

O. Hungr, A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Canadian Geotechnical Journal, vol.32, issue.4, pp.610-623, 1995.
DOI : 10.1139/t95-063

O. Hungr, Simplified models of spreading flow of dry granular material, Canadian Geotechnical Journal, vol.45, issue.8, pp.1156-1168, 2008.
DOI : 10.1139/T08-059

O. Hungr and S. G. Evans, Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism, Geological Society of America Bulletin, vol.116, issue.9, pp.1240-1252, 2004.
DOI : 10.1130/B25362.1

R. M. Iverson, The physics of debris flows, Reviews of Geophysics, vol.237, issue.2, pp.245-296, 1997.
DOI : 10.1029/97RG00426

R. M. Iverson, M. Logan, and R. P. Denlinger, Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests, Journal of Geophysical Research: Earth Surface, vol.392, issue.F1, pp.10-1029, 2004.
DOI : 10.1029/2003JF000085

K. Kelfoun and T. H. Druitt, Numerical modeling of the emplacement of Socompa rock avalanche, Chile, Journal of Geophysical Research, vol.66, issue.3???4, pp.10-1029, 2005.
DOI : 10.1029/2005JB003758

R. R. Kerswell, Dam break with Coulomb friction: A model for granular slumping?, Physics of Fluids, vol.36, issue.5, pp.17-057101, 2005.
DOI : 10.1017/S0022112003007468

C. Y. Kuo, Y. C. Tai, F. Bouchut, A. Mangeney, M. Pelanti et al., Simulation of Tsaoling landslide, Taiwan, based on Saint Venant equations over general topography, Engineering Geology, vol.104, issue.3-4, pp.181-189, 2009.
DOI : 10.1016/j.enggeo.2008.10.003

URL : https://hal.archives-ouvertes.fr/hal-01342301

L. Lacaze, J. C. Phillips, and R. R. , Planar collapse of a granular column: Experiments and discrete element simulations, Physics of Fluids, vol.16, issue.6, p.63302, 2008.
DOI : 10.1063/1.2929375.1

E. Lajeunesse, A. Mangeney?castelnau, J. ?p, and . Vilotte, Spreading of a granular mass on a horizontal plane, Physics of Fluids, vol.63, issue.7, pp.2371-2381, 2004.
DOI : 10.1017/S0022112089000340

E. Lajeunesse, C. Quantin, P. Allemand, and C. Delacourt, New insights on the runout of large landslides in the Valles-Marineris canyons, Mars, Geophysical Research Letters, vol.29, issue.19, pp.10-1029, 2006.
DOI : 10.1029/2005GL025168

URL : https://hal.archives-ouvertes.fr/hal-00093116

F. Legros, The mobility of long-runout landslides, Engineering Geology, vol.63, issue.3-4, pp.301-331, 2002.
DOI : 10.1016/S0013-7952(01)00090-4

G. Lube, H. E. Huppert, R. S. Sparks, and M. A. Hallworth, Axisymmetric collapses of granular columns, Journal of Fluid Mechanics, vol.508, pp.175-199, 2004.
DOI : 10.1017/S0022112004009036

A. Lucas and A. Mangeney, Mobility and topographic effects for large Valles Marineris landslides on Mars, Geophysical Research Letters, vol.172, issue.10, pp.10-1029, 2007.
DOI : 10.1029/2007GL029835

URL : https://hal.archives-ouvertes.fr/hal-00311785

A. Lucas, A. Mangeney, F. Bouchut, M. O. Bristeau, and D. Mège, Benchmark excercises for granular flows, paper presented at 2007 International Forum on Landslide Disaster Management, 2007.

A. Lucas, A. Mangeney, D. Mège, and K. Kelfoun, New methodology for initial volume estimation of Martian landslides from DTM and imagery, paper 8023 presented at Workshop on Martian Gullies: Theories and Tests, Lunar and Planet, Inst, 2008.

B. K. Lucchitta, Morphology of Chasma walls, Mars, J. Res. U. S. Geol. Surv, vol.6, pp.651-662, 1978.

B. K. Lucchitta, Landslides in Valles Marineris, Mars, Journal of Geophysical Research, vol.6, issue.B14, pp.8097-8113, 1979.
DOI : 10.1029/JB084iB14p08097

B. K. Lucchitta, Valles Marineris, Mars: Wet debris flows and ground ice, Icarus, vol.72, issue.2, pp.411-429, 1987.
DOI : 10.1016/0019-1035(87)90183-7

B. K. Lucchitta, A. S. Mcewen, G. D. Clow, P. E. Geissler, R. B. Singer et al., The canyon system on Mars, in Mars, pp.453-492, 1992.

M. C. Malin and K. S. Edgett, Evidence for Persistent Flow and Aqueous Sedimentation on Early Mars, Science, vol.302, issue.5652, pp.1931-1934, 2000.
DOI : 10.1126/science.1090544

A. Mangeney, Geomorphology: Landslide boost from entrainment, Nature Geoscience, vol.115, issue.2, pp.77-78, 2011.
DOI : 10.1038/ngeo1077

A. Mangeney, P. Heinrich, and R. Roche, Analytical Solution for Testing Debris Avalanche Numerical Models, Pure and Applied Geophysics, vol.157, issue.6-8, pp.1081-1096, 2000.
DOI : 10.1007/s000240050018

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Mangeney, L. Staron, D. Volfson, and L. Tsimring, Comparison between discrete and continuum modeling of granular spreading, Proceedings of the 10th WSEAS International Conference on Applied Mathematics, pp.63-70, 2006.

A. Mangeney, F. Bouchut, N. Thomas, J. ?. Vilotte, M. ?o et al., Numerical modeling of self-channeling granular flows and of their levee-channel deposits, Journal of Geophysical Research, vol.55, issue.XXXV, pp.201710-1029, 2007.
DOI : 10.1029/2006JF000469

URL : https://hal.archives-ouvertes.fr/insu-01289104

A. Mangeney, L. S. Tsimring, D. Volfson, I. S. Aranson, and F. Bouchut, Avalanche mobility induced by the presence of an erodible bed and associated entrainment, Geophysical Research Letters, vol.68, issue.2, pp.10-1029, 2007.
DOI : 10.1029/2007GL031348

URL : https://hal.archives-ouvertes.fr/hal-00311802

A. Mangeney, O. Roche, O. Hungr, N. Mangold, G. Faccanoni et al., Erosion and mobility in granular collapse over sloping beds, Journal of Geophysical Research, vol.45, issue.11/12, pp.10-1029, 2010.
DOI : 10.1029/2009JF001462

URL : https://hal.archives-ouvertes.fr/hal-00521671

A. Mangeney?castelnau, J. ?. Vilotte, M. ?. Bristeau, B. Perthame, F. Bouchut et al., Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme, Journal of Geophysical Research, vol.392, issue.3, p.252710, 1029.
DOI : 10.1029/2002JB002024

URL : https://hal.archives-ouvertes.fr/hal-00922781

A. Mangeney?castelnau, F. Bouchut, J. P. Vilotte, E. Lajeunesse, E. Aubertin et al., On the use of Saint Venant equations to simulate the spreading of a granular mass, Journal of Geophysical Research: Solid Earth, vol.392, issue.47, pp.10-1029, 2005.
DOI : 10.1029/2002JB002024

N. Mangold, A. Mangeney, V. Migeon, V. Ansan, A. Lucas et al., Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties, Journal of Geophysical Research, vol.108, issue.E6, pp.1100110-1029, 2010.
DOI : 10.1029/2009JE003540

URL : https://hal.archives-ouvertes.fr/hal-00730525

A. S. Mcewen, Mobility of large rock avalanches: Evidence from Valles Marineris, Mars, Geology, vol.17, issue.12, pp.1111-1114, 1989.
DOI : 10.1130/0091-7613(1989)017<1111:MOLRAE>2.3.CO;2

D. Mège and O. Bourgeois, Destabilization of Valles Marineris wallslopes by retreat of ancient glaciers, Lunar Planet, 1713.

D. Mège and P. Masson, Amounts of crustal stretching in Valles Marineris, Mars, Planetary and Space Science, vol.44, issue.8, pp.749-782, 1996.
DOI : 10.1016/0032-0633(96)00013-X

H. J. Melosh, Acoustic fluidization: A new geologic process?, Journal of Geophysical Research: Solid Earth, vol.12, issue.B13, pp.7513-7520, 1979.
DOI : 10.1029/JB084iB13p07513

J. P. Peulvast and P. L. Masson, Erosion and tectonics in Central Valles Marineris (Mars): a new morpho-structural model, Earth, Moon, and Planets, vol.38, issue.(1312), pp.191-217, 1993.
DOI : 10.1007/BF00572245

J. C. Phillips, A. J. Hogg, R. R. Kerswell, and N. H. Thomas, Enhanced mobility of granular mixtures of fine and coarse particles, Earth and Planetary Science Letters, vol.246, issue.3-4, pp.466-480, 2006.
DOI : 10.1016/j.epsl.2006.04.007

M. Pirulli and A. Mangeney, Results of Back-Analysis of the Propagation of Rock Avalanches as a Function of the Assumed Rheology, Rock Mechanics and Rock Engineering, vol.5, issue.1, pp.59-84, 2008.
DOI : 10.1007/s00603-007-0143-x

M. Pirulli, M. O. Bristeau, A. Mangeney, and C. Scavia, The effect of the earth pressure coefficients on the runout of granular material, Environmental Modelling & Software, vol.22, issue.10, pp.1437-1454, 2007.
DOI : 10.1016/j.envsoft.2006.06.006

URL : https://hal.archives-ouvertes.fr/hal-00313762

O. Pouliquen, Scaling laws in granular flows down rough inclined planes, Physics of Fluids, vol.4, issue.3, pp.542-548, 1999.
DOI : 10.1103/PhysRevLett.79.949

O. Pouliquen and Y. Forterre, Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane, Journal of Fluid Mechanics, vol.453, pp.133-151, 2002.
DOI : 10.1017/S0022112001006796

URL : https://hal.archives-ouvertes.fr/hal-00135182

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes: the art of scientific computing, Analytica Chimica Acta, vol.199, 1988.
DOI : 10.1016/S0003-2670(00)82860-3

S. P. Pudasaini and K. Hutter, Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, 2007.

C. Quantin, P. Allemand, and C. Delacourt, Morphology and geometry of Valles Marineris landslides, Planetary and Space Science, vol.52, issue.11, pp.1011-1022, 2004.
DOI : 10.1016/j.pss.2004.07.016

URL : https://hal.archives-ouvertes.fr/hal-00102264

P. Reiche, The Toreva-Block: A Distinctive Landslide Type, The Journal of Geology, vol.45, issue.5, pp.538-548, 1937.
DOI : 10.1086/624563

O. Roche, M. A. Gilbertson, J. C. Phillips, and R. S. Sparks, Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement, Journal of Geophysical Research: Solid Earth, vol.378, issue.16, pp.10-1029, 2004.
DOI : 10.1029/2002GL014819

K. Sassa, The mechanism of debris flows, Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, pp.1173-1176, 1985.

K. Sassa, Special lecture: geotechnical model for the motion of landslides, Landslides: Proceedings of the Fifth International Symposium on Landslides, pp.37-56, 1988.
DOI : 10.1016/0148-9062(89)90311-2

H. Sato, D. Baratoux, K. Kurita, F. Heuripeau, and P. Pinet, Volume measurements of Martian landslides: Accuracy assessment and implications for dynamics, LPI Contrib, p.1353, 2007.

S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, vol.196, issue.-1, pp.177-215, 1989.
DOI : 10.1007/BF01180101

N. Schorghofer, O. Aharonson, M. F. Gerstell, and L. Tatsumi, Three decades of slope streak activity on Mars, Three decades of slope streak activity on Mars, pp.132-140, 2007.
DOI : 10.1016/j.icarus.2007.04.026

R. A. Schultz, Structural development of Coprates Chasma and western Ophir Planum, J. Geophys. Res, vol.96, issue.22, pp.777-22792, 1991.

R. A. Schultz, Gradients in extension and strain at Valles Marineris, Mars, Planetary and Space Science, vol.43, issue.12, pp.1561-1566, 1995.
DOI : 10.1016/0032-0633(95)00111-5

R. A. Schultz, Multiple-process origin of Valles Marineris basins and troughs, Mars, Planetary and Space Science, vol.46, issue.6-7, pp.827-834, 1998.
DOI : 10.1016/S0032-0633(98)00030-0

P. J. Shaller, Analysis and implications of large Martian and terrestrial landslides, Calif. Inst. of Technol, 1991.

S. Siavoshi and A. Kudrolli, Failure of a granular step, Physical Review E, vol.71, issue.5, pp.71-051302, 2005.
DOI : 10.1103/PhysRevE.71.051302

K. J. Smart, D. M. Hooper, and D. W. Sims, Discrete element modeling of landslides in Valles Marineris, Mars, Abstract P51B?1430 presented at 2010 Fall Meeting, pp.13-17, 2010.

D. E. Smith and M. T. Zuber, The relationship of the MOLA topography of Mars to the mean atmospheric pressure, Bull. Am. Astron. Soc, pp.31-1178, 1999.

R. Sosio, G. B. Crosta, and O. Hungr, Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps), Engineering Geology, vol.100, issue.1-2, pp.11-26, 2008.
DOI : 10.1016/j.enggeo.2008.02.012

V. Soukhovitskaya and M. Manga, Martian landslides in Valles Marineris: Wet or dry?, Icarus, vol.180, issue.2, pp.348-352, 2006.
DOI : 10.1016/j.icarus.2005.09.008

J. M. Torson and K. J. Becker, ISIS?A software architecture for processing planetary images, Lunar Planet, 1219.

A. Voellmy, Über die Zertörungskraft von Lawinen, Schweiz. Bauztg, vol.73, pp.280-285, 1955.

F. Bouchut, U. Cnrs-8050, M. L. Vallèe, F. , and F. A. Lucas, California Institute of Technology, Division of Geological and Planetary Sciences, 1200 E. California Blvd