Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds

Abstract : We recently introduced the watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: the first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a notion of contrast, called connection value, on which are (implicitly) ased several morphological region merging methods. We also establish the links and differences between watershed cuts, minimum spanning forests, shortest-path forests and topological watersheds. Finally, we present illsutrations of the proposed framework to the segmentation of artwork surfaces and diffusion tensor images.
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2010, 32 (5), pp.925-939
Liste complète des métadonnées

https://hal-upec-upem.archives-ouvertes.fr/hal-00729346
Contributeur : Jean Cousty <>
Soumis le : lundi 14 janvier 2013 - 11:12:55
Dernière modification le : lundi 14 janvier 2013 - 15:15:58
Document(s) archivé(s) le : lundi 15 avril 2013 - 03:52:28

Fichier

WatershedCutsPAMI-part2-full.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00729346, version 1

Citation

Jean Cousty, Gilles Bertrand, Laurent Najman, Michel Couprie. Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2010, 32 (5), pp.925-939. <hal-00729346>

Partager

Métriques

Consultations de
la notice

197

Téléchargements du document

292