S. Berbennia, V. Favier, X. Lemoine, and M. Berveiller, Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels having different microstructures, Materials Science and Engineering: A, vol.372, issue.1-2, pp.128-136, 2004.
DOI : 10.1016/j.msea.2003.11.010

S. Beurthey and A. Zaoui, Structural morphology and relaxation spectra of viscoelastic heterogeneous materials, European Journal of Mechanics - A/Solids, vol.19, issue.1, pp.1-16, 2000.
DOI : 10.1016/S0997-7538(00)00157-1

URL : https://hal.archives-ouvertes.fr/hal-00111287

L. C. Brinson and W. S. Lin, Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites, Composite Structures, vol.41, issue.3-4, pp.353-367, 1998.
DOI : 10.1016/S0263-8223(98)00019-1

F. T. Fisher and L. C. Brinson, Viscoelastic interphases in polymer???matrix composites: theoretical models and finite-element analysis, Composites Science and Technology, vol.61, issue.5, pp.731-748, 2001.
DOI : 10.1016/S0266-3538(01)00002-1

C. Friebel, I. Doghri, and V. Legat, General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions, International Journal of Solids and Structures, vol.43, issue.9, pp.2513-2541, 2006.
DOI : 10.1016/j.ijsolstr.2005.06.035

Z. Hashin, Viscoelastic Behavior of Heterogeneous Media, Journal of Applied Mechanics, vol.32, issue.3, pp.630-636, 1965.
DOI : 10.1115/1.3627270

Z. Hashin, Complex moduli of viscoelastic composites???I. General theory and application to particulate composites, International Journal of Solids and Structures, vol.6, issue.5, pp.539-552, 1970.
DOI : 10.1016/0020-7683(70)90029-6

H. Hassanzadeh and M. Pooladi-darvish, Comparion of different numerical Laplace inversion methods for engineering applications, Appl. Math. Comput, vol.189, pp.1966-1981, 2007.

M. Kaliske and H. Rothert, Formulation and implementation of three-dimensional viscoelasticity at small and finite strains, Computational Mechanics, vol.19, issue.3, pp.228-239, 1997.
DOI : 10.1007/s004660050171

B. Kurnatowski and A. Matzenmiller, Finite element analysis of viscoelastic composite structures based on a micromechanical material model, Computational Materials Science, vol.43, issue.4, pp.957-973, 2008.
DOI : 10.1016/j.commatsci.2008.02.026

N. Lahellec and P. Suquet, Effective behavior of linear viscoelastic composites: A time-integration approach, International Journal of Solids and Structures, vol.44, issue.2, pp.507-529, 2007.
DOI : 10.1016/j.ijsolstr.2006.04.038

URL : https://hal.archives-ouvertes.fr/hal-00091303

N. Laws and R. Mclaughlin, Self-Consistent Estimates for the Viscoelastic Creep Compliances of Composite Materials, Proc. R. Soc. Lond. A, pp.251-273, 1978.
DOI : 10.1098/rspa.1978.0041

M. Lévesque, M. D. Gilchrist, N. Bouleau, K. Derrien, and D. Baptiste, Numerical inversion of the Laplace???Carson transform applied to homogenization of randomly reinforced linear viscoelastic media, Computational Mechanics, vol.2, issue.3, pp.771-789, 2007.
DOI : 10.1007/s00466-006-0138-6

C. Maeau, V. Favier, and M. Berveiller, Micromechanical modeling coupling time-independent and time-dependent behaviors for heterogeneous materials, International Journal of Solids and Structures, vol.46, issue.2, pp.223-237, 2009.
DOI : 10.1016/j.ijsolstr.2008.08.028

P. S. Mangat and M. M. Azari, A theory for the creep of steel fibre reinforced cement matrices under compression, Journal of Materials Science, vol.5, issue.3, pp.1119-1133, 1985.
DOI : 10.1007/BF00585757

A. Matzenmiller and S. Gerlach, Micromechanical modeling of viscoelastic composites with compliant fiber???matrix bonding, Computational Materials Science, vol.29, issue.3, pp.283-300, 2003.
DOI : 10.1016/j.commatsci.2003.10.005

V. F. Pasa-dutra, S. Maghous, A. Campos-filho, and A. Pacheco, A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete, Cement and Concrete Research, vol.40, issue.3, pp.460-472, 2010.
DOI : 10.1016/j.cemconres.2009.10.018

P. and P. Castañeda, New variational principles in plasticity and their application to composite materials, Journal of the Mechanics and Physics of Solids, vol.40, issue.8, pp.1757-1788, 1992.
DOI : 10.1016/0022-5096(92)90050-C

J. M. Ricaud and R. Masson, Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours, International Journal of Solids and Structures, vol.46, issue.7-8, pp.1599-1606, 2009.
DOI : 10.1016/j.ijsolstr.2008.12.007

H. Sabar, M. Berveiller, V. Favier, and S. Berbenni, A new class of micromacro models for elastic-viscoplastic heterogeneous materials, Int. J. Solids. Struct, issue.12, pp.392357-3276, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00128381

P. Spanne, J. F. Thovert, and C. J. Jacquin, Synchrotron Computed Microtomography of Porous Media: Topology and Transports, Physical Review Letters, vol.73, issue.14, pp.732001-2004, 1994.
DOI : 10.1103/PhysRevLett.73.2001

R. Taylor, K. Pister, and G. Goudreau, Thermomechanical analysis of viscoelastic solids, International Journal for Numerical Methods in Engineering, vol.18, issue.1, pp.45-59, 1970.
DOI : 10.1002/nme.1620020106

P. A. Turner and C. N. Tomé, Self-consistent modeling of visco-elastic polycrystals: Application to irradiation creep and growth, Journal of the Mechanics and Physics of Solids, vol.41, issue.7, pp.411191-1211, 1993.
DOI : 10.1016/0022-5096(93)90090-3

Y. M. Wang and G. J. Weng, The Influence of Inclusion Shape on the Overall Viscoelastic Behavior of Composites, Journal of Applied Mechanics, vol.59, issue.3, pp.510-518, 1992.
DOI : 10.1115/1.2893753

W. T. Weeks, Numerical Inversion of Laplace Transforms Using Laguerre Functions, Journal of the ACM, vol.13, issue.3, pp.419-429, 1966.
DOI : 10.1145/321341.321351

J. Yvonnet, D. Gonzalez, and Q. He, Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.33-36, pp.2723-2737, 2009.
DOI : 10.1016/j.cma.2009.03.017

URL : https://hal.archives-ouvertes.fr/hal-00692234

J. Yvonnet and Q. He, The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, Journal of Computational Physics, vol.223, issue.1, pp.341-368, 2007.
DOI : 10.1016/j.jcp.2006.09.019

URL : https://hal.archives-ouvertes.fr/hal-00693621