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Abstract—In this paper we propose a trust model based on a
Markov chain in order to formalize the trust metric variation
and its stability in the context of Vehicular Ad hoc Networks
(VANETs). The proposed model takes into account not only
the dynamic trust metric variation according to the vehicles
behaviors, but also the constraints related to the monitoring
process. In our model each vehicle can act as monitor and update
the trust metric of its neighbors according to their behavior in
the network. In addition, our model can be customized through
different parameters like the trust interval and the number of
transitions needed to reach the highest trust level. This flexibility
enables to adapt the model according to the application context.
The performance evaluation of the proposed model is presented
with different parameters and two types of disruptive vehicles are
taken into account: malicious and selfish. The obtained results
show the resistance, the robustness and the incentive of the
proposed model against the fluctuations of the vehicles behaviors.

I. INTRODUCTION

In vehicular environments, the time to react to a given

situation is very critical and a vehicle must be able to ac-

curately check the trust of the received information in real

time. The trust and reputation models [1] are proposed as

new approaches to circumvent with this constraint and to

filter out inaccurate messages and malicious vehicles. Trust

establishment is tagged in many existing research works for

peer to peer, sensors, and mobile ad hoc networks [1] [2].

However, in vehicular environments it is facing tremendous

specific challenges related to their characteristics. In general

vehicular networks do not have any centralized third party.

The only possible communications with infrastructures take

place with Road Side Units (RSUs) which are not deployed

along the roads. Therefore, centralized systems are not suitable

to establish trust in vehicular environments. Furthermore, the

vehicles are traveling with a high speed, consequently, the

communications between the vehicles are short in time and

it is difficult to form an experience history between peers. In

addition, a trust model must be scalable providing the same

achievement independently on the density of vehicles in the

network.

The main existing trust models for VANETs are based on

the verification of vehicles identities and their legitimacy in

the network [3], [4], [5]. They are classified as entity oriented

models such as identity-based systems where the trust metric

is related to the vehicle credentials and its trustworthiness is

static. Other existing trust models are based on a data-oriented

approach. Indeed, in VANETs, when the vehicle introduces a

new information in the network it will be responsible for the

consequences of this information. In this paper, we propose a

new hybrid dynamic trust model combining both approaches:

entity and data oriented. We use a Markov Chain to formalize

the proposed trust model. The goal of this modeling is to take

into account different parameters related to the robustness,

stability and flexibility of the trust model. Unlike static trust

models, we propose a dynamic model based on the monitoring

of the instantaneous vehicles behaviors in the network. The

monitoring process considers the legitimacy of the information

and the cooperation rate of the vehicles. We include also the

constraints related to the efficiency of the monitoring process,

particularly, the probability of false positives and negatives.

Furthermore, our model is fully distributed, the assessment of

vehicles behavior does not require any type of infrastructure.

The remainder of the paper is organized as follows. First,

we discuss some existing trust models designed for VANETs.

In section 2, we detail the proposed trust model. Section 3

exposes the simulation results and section 4 concludes the

paper.

II. RELATED WORK

The trust models in VANETs can be classified into three

main types: entity-oriented, data-oriented and hybrid models.

In the entity-oriented trust models the evaluation of the legit-

imacy of an entity is required. In [5], the authors propose a

reputation-based trust model where the vehicles are organized

off-line into groups and each one has a reputation value.

Each group reputation increases if the average of its members

opinion is conform to the road state. It is obvious that this

approach is not resilient against colluding vehicles which

belong to the same group and they broadcast false information

to make the reputation score of their group drive down.

Another shortcoming is the absence of a reputation value for

each vehicle to punish malicious ones. In our proposal, we

remedy to this problem by an instantaneous evaluation of the

vehicles behavior and a malicious vehicle is revoked whenever
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it is detected. In [4], the authors propose a fuzzy approach

to decide whether to accept a warning message or not based

on the trustworthiness of the issuer of the message. In this

model, the authors assume that a vehicle requests from its

neighbors information about the reputation of its peers which

makes a supplementary overhead also this needs additional

time. However, in our proposal each vehicle executes a stand-

alone trust metric evaluation process using the already existing

messages in the network. In the above exposed models, the

trust establishment is related to the verification of the trustwor-

thiness of the entities. However, inaccurate information cannot

be detected without verifying the information itself.

Many research works propose instead, data-oriented trust

models which require the evaluation of the trustworthiness of

the information received in the messages. The authors in [6]

propose a data trust model where the validity of the received

reports about occurred events is inferred by a decision mod-

ule [7] [8] to calculate the posteriori probability of the events.

However, since inference module use the prior probability,

it is not easy to derive it since the high speed. The authors

in [9] proposed an event-based reputation model to filter out

bogus messages. In order to decide about the legitimacy of the

messages, the vehicle observes if the behavior of the reporter

corresponds to the standard behavior result of that event. We

notice that this solution is not realistic because a malicious

vehicle can broadcast a message about an unreal event and

it reacts correspondingly. Nevertheless, data oriented models

seems to be efficient to filter out malicious data that is why

we build our model on. Additionally, we combine it with a

cooperation assessment parameter.

In order to circumvent the shortcoming of the two above

mentioned approaches, the authors proposed in [10], a hybrid

approach using a piggybacking technique. In fact, a trust-

worthiness opinion is appended to each message reporting an

event. The drawback of this proposal is that the first opinion

appended to the message will affect other opinions since

its computing is recursive; it is based on opinion received

in the message. In [12], the authors assume that in the

network there is a set of trusted vehicles called anchors which

broadcast reliable data. The data validation is ensured either

by comparing the received data to other vehicles agreement

or to the data of the anchors. The shortcoming of this model

is that the validation process is accurate only if there is a

sufficient number of reports from other vehicles. The trust

model that we propose is a fully distributed and hybrid

approach based on a monitoring process. We aim to conceive

a flexible model combining many parameters relayed to the

cooperativeness of vehicles in order to detect selfish ones, their

ability to broadcast and forward legitimate information and the

efficiency of the monitoring process.

III. THE ANALYTICAL TRUST MODEL

In this section, we describe our proposed trust model. We

present the states transitions diagram for the Markov chain

model. The model resolution, also the computation of different

transition probabilities are detailed.

A. Trust Model Overview

In the network, we consider that when an event occurs

on the road, all vehicles which are in the vicinity of that

event must broadcast alerts messages reporting it. Furthermore,

vehicles forward all received messages from their neighbors.

We note that the arrival of alert messages to the transmission

queue of vehicles is modeled in the following section.

Our purpose is to establish a dynamic and distributed trust

model where each vehicle called monitor affects a local trust

metric Tm to each vehicle from its neighbors called monitored

vehicle. In fact, the evaluation of the behavior of the monitored

vehicle by the monitor vehicle is based on two main aspects:

the reliability of the message sent by the monitored vehicle

and its cooperation ratio. Thus, according to the outcome of

the monitoring process, the monitored vehicle will have its Tm

increased, decreased or unchanged. Additionally , the Tm can

change to null, and as presented in figure 1, this transition

is weighted by a probability related to the honesty of the

monitored vehicle when it broadcasts the alert messages, also

it depends on the current state of the vehicle.

We model the update process of the Tm at the monitor

vehicle using a discrete-time Markov chain with N +1 states

and a transition matrix P = (Pi,j(t))0≤i,j≤N as represented in

figure 1. Consider a random variable (Xt)t≥0 which represents

the current local Tm corresponding to a given state of a mon-

itored vehicle assigned by a monitor vehicle, the probability

of transition from state i to state j is:

Pi,j(t) = Pr(Xt = j|Xt−1 = i) (1)

The Tm has a value in [0, 1], state 0 is the non trusted state

wherein Tm = 0 and state N is the highest trusted state where

Tm = 1. Each vehicle has an initial trust metric T0 in [0, 1].
The interval [0, 1] is divided into N + 1 states, each one

represents a step of γ (1 mod γ = 0). The values of γ and N are

determined based on the degree of accuracy assessment and

severity towards the Tm of vehicles that we want to achieve

with our model. By using these two parameters we aim to

make our model flexible in the context wherein it is used.

B. States Transition Probabilities

1) One step increasing/decreasing of the Tm: If the current

state is i at time t (Pr(Xt = i) > 0) and the vehicle shows a

positive behavior, its Tm transits to the state i+1 otherwise it

transits to the state i− 1. The positive behavior in our model

is related to: the ability of the vehicle to correctly forward

all received legitimate messages, and to the legitimacy of its

own broadcasted messages. The transitions probabilities are

expressed as follows:

Pi,i+1(t) = pi(t− 1) ∗ pc ∗ pw 0 ≤ i < N

Pi,i−1(t) = pi(t− 1) ∗ (1− pc) ∗ pw 0 < i ≤ N
(2)

Where pi(t) is the probability to be in state i at time t, given

that the initial state is 1, pc is the probability to positively

cooperate in the network, and pw is he probability to correctly

evaluate the received messages. It is expressed as follows:

pw = 1− pe (3)
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Fig. 1. States transitions diagram of the proposed approach

In equation 3, pe is the probability of false positives and

false negatives following the monitoring process [13]. Using

this parameter, we aim to take into account the constraints

related to the nature of the network and to the monitoring in

wireless environments. Indeed, this avoids the over and under

estimation in the monitoring and consequently in the trust level

evaluation. Particularly, pe includes the probability of collusion

while transmitting warning messages and the failure of the

monitored vehicle to access to the transmission channel.

From the transition matrix P, it is possible to compute the

probability to be in state i at time t, pi(t). In fact, given that

the initial state of a vehicle is X0 = 1, the probability for

our Markovian process to be in state k at time tk > 0 is

pk(tk) = P1,k(tk). In addition, the probability to reach state

i at time t > tk given that Xtk = k is Pk,i(t). Therefore, we

can use the Chapman-Kolmogorov equation [11] to compute

the probability pi(t) that a vehicle is in state i at time t:

pi(t) =
∑

k in [1..N ]

P1,k(tk) ∗ Pk,i(t) (4)

In order to evaluate the cooperation of a monitored vehicle,

first, a monitor vehicle calculates a forwarding rate called F .

The forwarding rate F is the number of messages forwarded

by a monitored vehicle divided by the total number of mes-

sages transmitted by the monitor vehicle:

F =
the number of forwarded messages

the total number of transmitted messages
(5)

Secondly, the monitor vehicle calculates the probability that

the monitored vehicle has a positive cooperation in the network

denoted pc as follows:

pc = F ∗ Pm (6)

where Pm is the probability that the monitored vehicle is

not malicious. In fact we use this parameter in order to

evaluate the honesty of the vehicle when transmitting or for-

warding information. Tremendous works exist in the literature

aiming to detect malicious nodes in MANETs [14], [13]and

VANETs [4].

2) State sojourn probability : A vehicle can keep the same

Tm for a certain period of time because either it has no

message in its buffer to forward or it has not detected events

on the road. We consider that the application layer in the

monitored vehicle generates alert messages according to a

Poisson process with a rate λ1. In addition, the monitored

vehicle receives alert messages from other vehicles according

to a Poisson process with a rate λ2 ≥ λ1. We suppose that a

message needs the period ts to be treated in the higher layer

before being sent, so we assume that the time required for the

treatment of messages is exponential with a rate 1/ts. Then,

according to [16], the probability Pq that the transmission

queue is empty is:

Pq = 1−
1− (1− θ)θB

1− θ(B+1)
(7)

θ = (λ1 + λ2) ∗ ts (8)

Where B is the size of the transmission queue and we assume

that λ1,λ2 and ts have the same values for all vehicles. Thus,

from equation 7 we deduce the probability that a node sojourns

in state i, Pi,i (i 6= N ):

Pi,i(t) = pi(t− 1) ∗ Pq (9)

3) Trusted state sojourn Probability: The vehicle keeps

the trusted state N (Tm = 1) either because it positively

cooperates as discussed above or it has no messages in

its transmission queue. We express PN,N the probability to

sojourn in state N as follows:

PN,N (t) = pN (t− 1) ∗ (pc ∗ pw + Pq) (10)

Yet, the trusted vehicles are also monitored by their neighbors

in order to avoid that they benefit from the trusted state and

behave maliciously or selfishly in the network.

4) Transition to the non trusted state: As we mentioned

above, the monitor vehicle assesses both the cooperativeness of

the monitored vehicle and the legitimacy of the information it

broadcasts. Thus, according to the outcome of the monitoring

process, the Tm of the monitored vehicle can nullify with a

given probability that reflects the legitimacy of its broadcasted

messages. The probability of this transition is related to the

current state of the vehicle and to its honesty represented

by Pm. Logically, if a vehicle reaches a high Tm, this

means that it is almost honest as expressed by equation (6).

However, a malicious vehicle can behave honestly to reach

the highest trust level and then it tries to benefit from its

state and to broadcast false information. Thus, we consider

this transition in order to detect such a malicious behavior
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known as camouflage attack. The probability that the vehicle

transits to state 0 is calculated as follows:

pi,0(t) = pi(t− 1) ∗ (1− Pm) (11)

IV. PERFORMANCE EVALUATION

A. Analytical Results

In order to validate our trust model we consider a Markov

chain as represented in figure 1 with N = 10 states. Each one

represents a step γ = 0.1. The initial trust metric for each

vehicle is Tm = 0.1. We conducted a set of preliminary tests

in order to investigate the convergence and the persistence

of the proposed approach as function of different parameters.

Furthermore, we study the resilience of the model against some

misbehaving scenarios.

1) Convergence of the Tm: We investigate the convergence

of our model, particularly we are interested on the required

time and the needed conditions for a vehicle to reach the

trusted state where Tm=1 and to remain in. To this end, we plot

the probability to get Tm = 1 that we call the trustworthiness

of a vehicle, as function of the time, the forwarding rate F and

Pm. We set parameters pe to 0.20 as computed in [13] and

Pq to 0.25.

We notice from figures 2a and 2b that for time units less

than 10, P (Tm = 1) is equal to 0 because a vehicle starts

from Tm = 0.1 and it must pass by all states from 1 to

N = 10, then the vehicle needs at least 10 time units to

reach Tm = 1. After, the P (Tm = 1) incessantly grows until

reaching a maximum in the 14th time unit. Regarding the

attenuation of P (Tm = 1) after reaching the maximum in

figure 2a, we explain this behavior by the cumulating effect

of Pm. If the vehicle does not improve its behavior related

to Pm, the probability to reach Tm = 1 decreases. However,

in figure 2b where Pm = 1, when P (Tm = 1) reaches 1 it

does not attenuate as for the previous case where Pm < 1.

This result confirms our explanation for the attenuation in the

previous plot, also this result points out the sensibility of the

trustworthiness to the parameter Pm. In addition, we remark

in both plots that for small values of F (0.35 and 0.45) the

drop of P (Tm = 1) is less rapid compared to higher values

of F (0.90 and 1.00), however it is obvious that P (Tm = 1)
is less important. Hence, if a vehicle reaches the trusted state

with a legal behavior and a full cooperation, it keeps its trust

state.

We conclude that the trustworthiness is getting higher for

high values of the forwarding rate F. However, the persistence

in the trusted state strongly depends on the behavior of the

vehicle expressed by Pm. The more positively the vehicle

cooperates, the more chance it has to be trusted, and the longer

it keeps its trusted state.

2) Impact of a disruptive behavior: Let us now study the

ability of our trust model to handle dynamic behaviors of the

vehicles. In general, a disruptive vehicle divides its behavior

into two parts: in the first part it positively participates in the

network in order to reach the highest trust level. However, in

the second part it changes its positive behavior to negative one

in order to benefit from the reached trust level to attack the

network. In this study, we focus on two main scenarios.

Scenario 1: : When a vehicle reaches the highest trust

level, it will act selfishly by reducing its forwarding rate F in

order to keep its throughput only for its own data transmission.

The vehicle shows a good behavior (Pm=1 and F=1) for the

first 20 time units to build up its Tm. Then it proceeds with a

disruptive behavior following a pattern of bad behavior where

it degrades its forwarding rate for 10 time units followed

by a good behavior for 10 time units and so on. From the

plot of figure 3, we notice that P(Tm=1) brutally decreases

with the first misbehave time unit (21th). Along the period

the vehicle does not cooperate, its trustworthiness grows

slowly because it is not acting maliciously in the network

and it continues to transmits its own messages (λ1 6= 0).
Once the monitored vehicle restores its cooperation rate, its

trustworthiness resumes to the old value. We remark also

that when the degradation decreases, the vehicle finds its

previous trustworthiness level more rapidly. The difference

in the fall of the trustworthiness between the curves proves

that the trustworthiness of the vehicles strongly depends on

its cooperation quality (pc). This result proves that our model

reacts rapidly and accurately to the change in the behavior

of vehicles. It points out that our trust model is dynamic

unlike static models where the trustworthiness is not sensible

to behavior changes.

Scenario 2: : We consider a disruptive vehicle which

shows a good behavior (Pm=1) for the first 20 times units to

build up its Tm and then it proceeds with a disruptive behavior

with Pm=0.45 as plotted in figure 4, giving a pattern of a

bad behavior for 10 times units followed by a good behavior

for 10 time units and so on. From the plot of figure 4, the

trustworthiness decreases at the first misbehaving time unit.

Once again, we notice the high sensibility of the proposed

model to the parameter Pm which reflects the honesty of

the vehicles. When the vehicle resumes its good behavior

(Pm = 1), it doesn’t restore its first trusted state and its

trustworthiness increases slightly up to only 0.18 in figure 4.

The same behavior of curves is repeated for the following

steps until time unit 80.

There are two conclusions that can be derived from analyzing

the results. First, if a vehicle proves a malicious behavior even

for a short period of time, this affects its trustworthiness on the

network and it is difficult to restore the trusted state. Secondly,

we deduce that the proposed model is incentive. Indeed, the

vehicle must be neither selfish nor malicious not only to reach

the trusted state but also to remain in.

B. Simulation Results

We study in this section, the feasibility of our trust model

in high mobility environments. Specifically, we investigate the

convergence of the trust metric in such environments and we

focus on the followed reasoning to decide different parameters

used in our proposed trust model particularly, the number of

states N and transition step γ. To this end, we conducted a

set of tests using the simulator Veins [15] considering two
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vehicular models: a Urban model and a highway. Vehicles

travel with a maximum speed of 15m/s and 25m/s for the

urban model and the highway, respectively. In the highway

model, all vehicles are traveling towards the same direction.

However, in the urban model the vehicles passes by multiple

crosses and they can change the direction at any time there

are in a cross. The arrival of vehicles in the road is a Poisson

process with a rate of 2 vehicles per one second.

We plot in figures 5a and 5b the average number of vehicles

encountered along a trip per one vehicle and the average

encounter duration between two vehicles. From figure 5a,

we remark that in the highway model, the average number

of encountered vehicles is more important than the urban

model. This is essentially due to the high speed of vehicles

which makes the neighborhood change frequently in highway

compared to the urban model. This is an important recommen-

dation for our trust model. In fact, a vehicle will not travel

isolated in the network and this augments the likelihood that

its behavior is monitored.

According to the proposed model, the trust metric is evalu-

ated each time the monitor receives a message from the mon-

itored vehicle. Thus the time units expected in figures 2a and

2b correspond to the average time period between two evalu-

ations of the trusted metric that we call iteration duration.

It relies on the inter arrivals time of the messages from the

monitored to the monitor and the average time required to

assess F and pc by the monitor vehicle. Hence, if the vehicle

proves a legitimate behavior (F = 1 and Pm = 1), it needs

only a time period of N*iteration duration to have its

Tm = 1. It is the minimal required convergence time of the

trust metric. From figure 5b, the average encounter duration in

the highway model is higher than urban model, it reaches 100s.

However, in the urban model, the average encounter duration

is less than 60s. We plot in figure 5c, the maximal and minimal

time for the trust metric convergence for both urban and high-

way model. For the minimal convergence time we consider

different iteration duration: 2s, 3s and 5s and N=10 states.

The goal is to investigate if the average encounter duration

guarantees the convergence of the trust metric to the trusted

state. As depicted in figure 5c, we remark that the maximal

encounter duration in the urban model insures the convergence

for N=10, only for iteration duration < 5s. We deduce that

in case where the network traffic is reduced in the urban model,

the number of states N can be reduced to quickly reach the

convergence to the trusted state. However, we remark that for

the highway scenario, the encounter duration guarantees the

convergence even for limited traffic of messages. Hence, in

this model our trust model can be executed with N higher

than 10 states. Thus, from the analysis of above results, we

conclude that our model is highly adaptive to applications.

Indeed, the different parameters values are constrained by the
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context where the trust model is processed, particularly the

speed, the duration of encounter between vehicles and the

network traffic.

V. CONCLUSION

In this paper, we propose a dynamic and distributed trust

model aiming at establishing a trust relationship between

vehicles and filtering out malicious and selfish vehicles. This

trust model is formalized by Markov chain used to stress

the trust evolution system, to introduce different parameters

and to make it flexible. The monitoring process is based on

the assessment of the cooperativeness of a vehicle also its

honesty while broadcasting alert messages. In addition, the

proposed model has a set of characteristics. It is incentive

because it incites the vehicles to positively act in the network

without adopting the selfish or the malicious behaviors in order

to keep their reached trust level. It is robust because it is

able to detect the different malicious behaviors. It is flexible

because it presents different customized parameters like the

trust interval and the number of transitions needed to reach

the highest trust level. We conducted a set of simulations

to investigate the performances of our trust model and to

point out the reaction of our model to behavior changes. The

obtained results illustrate the positive reaction of the model

face to disruptive behaviors. In our future work, we are aiming

at enhancing the performance evaluation of our trust model in

real context of VANETs and we will extend our model in order

to manage global trust metric where each vehicle has only one

Tm known by all its neighbors.
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