R. Balian, ?????????????????? ?????????????? ?? ???????????? ????????????????????, Il Nuovo Cimento B Series 10, vol.9, issue.1, pp.183-193, 1968.
DOI : 10.1007/BF02710326

P. Chadwick, M. Vianello, and S. Cowin, A new proof that the number of linear elastic symmetries is eight, Journal of the Mechanics and Physics of Solids, vol.49, issue.11, pp.2471-2492, 2001.
DOI : 10.1016/S0022-5096(01)00064-3

F. I. Fedorov, Theory of Elastic Waves in Crystals, 1968.
DOI : 10.1007/978-1-4757-1275-9

J. Guilleminot, A. Noshadravan, C. Soize, and R. G. Ghanem, A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.17-20, pp.1637-1648, 2011.
DOI : 10.1016/j.cma.2011.01.016

URL : https://hal.archives-ouvertes.fr/hal-00684305

J. Guilleminot and C. Soize, Non-Gaussian positive-definite matrix-valued random fields with constrained eigenvalues: Application to random elasticity tensors with uncertain material symmetries, International Journal for Numerical Methods in Engineering, vol.31, issue.3, pp.1128-1151, 2011.
DOI : 10.1002/nme.3212

URL : https://hal.archives-ouvertes.fr/hal-00684290

J. Guilleminot and C. Soize, Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model, International Journal for Numerical Methods in Engineering, vol.94, issue.108, pp.613-635, 2011.
DOI : 10.1002/nme.3338

URL : https://hal.archives-ouvertes.fr/hal-00699345

E. T. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, pp.620-630, 1957.
DOI : 10.1103/PhysRev.106.620

E. T. Jaynes, The Probability Theory: the Logic of Science, 2003.
DOI : 10.1017/CBO9780511790423

G. Jumarie, Maximum Entropy, Information without probability and complex fractal, 2000.
DOI : 10.1007/978-94-015-9496-7

J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles and Their Applications, 1992.
DOI : 10.1007/978-94-011-2430-0_1

I. A. Kunin, An algebra of tensor operators and its applications to elasticity, International Journal of Engineering Science, vol.19, issue.12, pp.1551-1561, 1981.
DOI : 10.1016/0020-7225(81)90078-1

D. G. Luenberger, Optimization by Vector Space Methods, 2009.

M. Mehrabadi and S. Cowin, EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS, The Quarterly Journal of Mechanics and Applied Mathematics, vol.43, issue.1, pp.15-41, 1990.
DOI : 10.1093/qjmam/43.1.15

M. Moakher and A. N. Norris, The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry, Journal of Elasticity, vol.40, issue.31???32, pp.215-263, 2006.
DOI : 10.1007/s10659-006-9082-0

M. Ostoja-starzewski, Microstructural Randomness and Scaling in Mechanics of Materials, 2008.
DOI : 10.1201/9781420010275

L. Schwartz, Analyse II Calcul Différentiel et Equations Différentielles, Hermann, 1997.

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

K. Sobczyk and J. Trebicki, Maximum entropy principle in stochastic dynamics, Probabilistic Engineering Mechanics, vol.5, issue.3, pp.102-110, 1990.
DOI : 10.1016/0266-8920(90)90001-Z

C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics, Probabilistic Engineering Mechanics, vol.15, issue.3, pp.277-294, 2000.
DOI : 10.1016/S0266-8920(99)00028-4

URL : https://hal.archives-ouvertes.fr/hal-00686293

C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, The Journal of the Acoustical Society of America, vol.109, issue.5, pp.1979-1996, 2001.
DOI : 10.1121/1.1360716

URL : https://hal.archives-ouvertes.fr/hal-00686287

C. Soize, Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.1-3, pp.26-64, 2006.
DOI : 10.1016/j.cma.2004.12.014

URL : https://hal.archives-ouvertes.fr/hal-00686157

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices, International Journal for Numerical Methods in Engineering, vol.195, issue.4, pp.1583-1611, 2008.
DOI : 10.1002/nme.2385

URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, vol.23, issue.2-3, pp.307-323, 2008.
DOI : 10.1016/j.probengmech.2007.12.019

URL : https://hal.archives-ouvertes.fr/hal-00685154

L. Walpole, Fourth-Rank Tensors of the Thirty-Two Crystal Classes: Multiplication Tables, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.391, issue.1800, pp.149-179, 1984.
DOI : 10.1098/rspa.1984.0008